CN113889296A - 一种低电阻、高透光和低损耗的复合膜层及其制备方法 - Google Patents

一种低电阻、高透光和低损耗的复合膜层及其制备方法 Download PDF

Info

Publication number
CN113889296A
CN113889296A CN202111167886.5A CN202111167886A CN113889296A CN 113889296 A CN113889296 A CN 113889296A CN 202111167886 A CN202111167886 A CN 202111167886A CN 113889296 A CN113889296 A CN 113889296A
Authority
CN
China
Prior art keywords
low
argon
vacuum chamber
vacuum
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111167886.5A
Other languages
English (en)
Inventor
雷沛
郎建林
颜悦
韦家虎
霍钟褀
纪建超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN202111167886.5A priority Critical patent/CN113889296A/zh
Publication of CN113889296A publication Critical patent/CN113889296A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0094Reactive sputtering in transition mode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明是一种低电阻、高透光和低损耗的复合膜层及其制备方法,该复合膜层是在衬底上由单膜叠加而成,所述单膜从下至上依次为介质层/金属层/介质层构成的三层基元、多孔过渡层、透明导电层。该复合膜层利用磁控溅射制备方法和膜层后处理方法进行制备,通过调控三明治结构与单层透明导电膜进行膜层体系重构,形成新的超低电阻同时保持较高透光下制备低电阻高透光的透明导电膜层。在保持原有三明治结构透明导电膜电阻不变的情况下,可进一步提高透明导电氧化物膜层的透光,为一种新型透明导电薄膜层体系结构。

Description

一种低电阻、高透光和低损耗的复合膜层及其制备方法
技术领域
本发明是一种低电阻、高透光和低损耗的复合膜层及其制备方法,属于透明导电薄膜技术领域。
背景技术
透明导电薄膜因其兼顾透明和导电特性,广泛地应用于先进光电器件及其系统中。随着光电器件的快速发展,对透明导电薄膜的光电性能提出了更高的要求。然而,透光性和导电性是一对矛盾体,两者互相掣肘,集高透光和高导电为一体的薄膜体系是研究者的极致追求。因此,研究者们都在尝试获得高透光且高导电的透明导电薄膜体系,并将两者性能匹配指数最大化。单层透明导电薄膜通常需要高温(≥350℃)和相当的厚度才能达到较低的电阻,阻碍了其应用前景;在此基础上,发展了介质层/金属/介质层复合薄膜体系在低温下具有较高的电导率和透光,但是其一般电阻仅能达到4~5Ω/□。此后透光急剧下降,并且此结构需满足光学/厚度匹配性。
发明内容
本发明正是针对上述现有技术状况而设计提供了一种低电阻、高透光和低损耗的复合膜层及其制备方法,其目的是在保持原有三明治结构透明导电膜电阻不变的情况下,可进一步提高透明导电膜层的透光性。
为实现上述目的是,本发明技术方案的内容如下:
本发明技术方案所提供的低电阻、高透光和低损耗的复合膜层是在衬底上由单膜叠加而成,所述单膜从下至上依次为介质层/金属层/介质层构成的三层基元、多孔过渡层、透明导电层。多孔过渡层为一层多孔非晶类高透光膜层,起到缓和薄膜应力的作用。透明导电层为具备高导电性和高透光膜层,在层间用带有不同荷电种类的等离子修饰界面从而增强层间界面结合力,形成一个完整周期的低电阻、高透光透明导电膜,根据所需的透光和电阻要求选择膜层周期数,膜层经过加温退火作用减少膜层间缺陷,最终制备出低电阻、高透光和低损耗的多层透明导电膜。
制备该种低电阻、高透光和低损耗的复合膜层的方法的步骤如下:
步骤一、清洁衬底材料表面,所述衬底材料为金属、无机非金属材料或有机材料,然后然后将衬底置于磁控溅射真空仓内的样品台上,通过真空泵将真空仓内抽成真空,使真空仓内压强达到2.0×10-4Pa~9.9×10-4Pa;
步骤二、在真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化衬底表面,清洗完成后恢复真空仓内的真空状态;
步骤三、向真空仓内通入氧气+氩气混合气体,向靶材施加直流脉冲电源启辉,功率为50W~2000W,预溅射5min~30min,开始在衬底材料表面镀介质层,镀膜时真空仓内气体压强为0.4Pa~5Pa,镀膜时间为1min~30min,然后关闭直流脉冲电源,完成后恢复真空仓内的真空;
所述靶材为半导体氧化物靶材或非氧化物靶材;
步骤四、向真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化介质层表面,清洗完成后恢复本底真空状态;
步骤五、向真空仓内通入50~500sccm的氩气,向金属靶材施加直流脉冲电源,功率10~500W,气压控制在0.2~5Pa,预溅射1~10min进行金属层沉积,沉积时间为1~30min,沉积完成后关闭溅射电源和气体阀门,关闭电源和气体阀门,快速恢复本底真空;
步骤六、向真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化金属层表面,清洗完成后恢复本底真空状态;
步骤七、向真空仓内通入氧气+氩气混合气体,向靶材施加直流脉冲电源启辉,功率为50W~2000W,预溅射5min~30min,开始在金属层表面镀介质层,镀膜时真空仓内气体压强为0.4Pa~5Pa,镀膜时间为1min~30min,然后关闭直流脉冲电源,完成后恢复真空仓内的真空;
所述靶材为半导体氧化物靶材或非氧化物靶材;
步骤八、向真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化介质层表面,清洗完成后恢复本底真空状态;
步骤九、向真空仓内通入氧气+氩气混合气体,向靶材施加直流脉冲电源启辉,功率为50W~2000W,预溅射1min~30min,开始在介质层表面镀多孔过渡层,镀膜时真空仓内气体压强为0.2Pa~5Pa,镀膜时间为1min~30min,然后关闭直流脉冲电源,完成后恢复本底真空;
所述靶材为半导体氧化物靶材或非氧化物靶材;
步骤十、向真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化多孔过渡层表面,清洗完成后恢复本底真空状态;
步骤十一、向真空仓内通入氧气+氩气混合气体,向靶材施加直流脉冲电源启辉,功率为50W~2000W,预溅射1min~30min,开始在多孔过渡层表面镀透明导电层,镀膜时真空仓内气体压强为0.2Pa~5Pa,镀膜时间为1min~30min,然后关闭直流脉冲电源,完成后恢复本底真空;
所述靶材为半导体氧化物靶材或非氧化物靶材;
步骤十二、关闭所有电源和气体阀门,恢复本底真空后10~30min后,破空取出低电阻、高透光和低损耗的复合膜层,随后进行80~200℃真空或者Ar/N2/O2退火0.5~3h,强化复合膜层物理性能并降低薄膜缺陷密度。
根据所需的透光和电阻要求选择膜层周期数,膜层经过加温退火作用减少膜层间缺陷,最终制备出低电阻、高透光和低损耗的多层透明导电膜。
在实施中,步骤一中所述清洁衬底材料表面是用丙酮、石油醚以及去油剂溶液超声波清洗20~30min,再用无水乙醇清洗20~30min,最后用去离子水清洗5~10min后用洁净的空气吹干表面的水汽。
在实施中,上述步骤二、四、六、八、十中所述氩气+氧气或氩气+氮气的混合气体的混合比例为0%~100%。
在实施中,上述步骤三、七、九、十一中所述的氧气+氩气的混合气体的混合比例为0%~50%。
在实施中,上述步骤中所述的半导体氧化物靶材为ITO、IZO、AZO、FTO。
在实施中,上述步骤中所述的非氧化物靶材为ZnS。
在实施中,上述步骤三、中所述的金属靶材为Ag、Cu、Al、Fe、Mn、Gr、Zn、In。
在实施中,重复上述步骤二至十一1~10次,制备多层的低电阻、高透光和低损耗的复合膜层。
在实施中,步骤五中,向真空仓内通入100sccm的氩气,向金属靶材施加直流脉冲电源,功率50W,气压控制在0.3Pa,预溅射3~5min进行金属层沉积,沉积时间为1~3min,沉积完成后关闭溅射电源和气体阀门,关闭电源和气体阀门,快速恢复本底真空。
本发明技术方案以开发极低电阻(≤3Ω/□)且具有较高透光(75%)的透明导电薄膜体系为出发点,借助单层透明导电膜层与介质层/金属/介质层以及过渡层进行周期性堆叠,实现低电阻和高透光复合体系。以介质层/金属/介质层作为三层基元,结合多孔过渡层和透明导电层进行光学和电学匹配,利用界面导电强化、金属和导电膜层的电叠加效应和光学干涉匹配效应实现超低电阻和高透光的匹配。此外,通过调整多孔过渡层厚度和叠加数量来调整整个膜系的应力状态,防止薄膜崩裂和脱落。
磁控溅射法是目前工业和科学界广泛使用的薄膜制备方法,具有薄膜高致密性,优异光电性,强附着性和高环境稳定性等优点。为此,本发明借助磁控溅射技术,保证较低电阻的前提下获得较高透光性的透明导电薄膜体系,通过此技术途径使得透明导电膜体系的光电性能的进一步提升。
附图说明
图1为本发明所述的复合膜层的结构示意图
图2为本发明实施例中制备的复合膜层与单层以及三明治结构的多层透明导电复合膜性能对比
具体实施方式
以下将结合附图和实施例对本发明技术方案作进一步地详述:
参见附图1所示,制备该种低电阻、高透光和低损耗的复合膜层的步骤如下:
1、清洗利用酒精、丙酮、石油醚以及去油剂等化学试剂超声清洗玻璃衬底,5~120min,然后用去离子水清洗5~30min,取出后用洁净的空气吹干表面残留的水汽。衬底包括不限于有机聚合物衬底、无机玻璃衬底以及金属和非金属衬底;
2、将清洗干净的衬底安装于样品台上,抽真空到8.0E-4以后准备镀制透明导电膜;
3、通入氧气和氩气混合气体(混合比例为0%~100%),气压控制在0.05~5Pa,用300~2500V等离子体清洗衬底表面;
4、通入氧气和氩气混合气体(混合比例为0%~50%),气压控制在0.2~5Pa,采用50~2000W功率溅射氧化物靶材,沉积1~30min,采用方法3中的等离子体进行轰击强化。根据镀膜时间和溅射效率决定所需氧化物厚度;
5、通入氧气和氩气混合气体(混合比例为0%~100%),气压控制在0.05~5Pa,用300~2500V等离子体轰击介质层薄膜表面,清除悬浮或弱键原子,并活化氧化物表面;
6、快速恢复腔体到本底真空,切换金属靶材(Ag,Cu,Al,Fe,Mn,Gr等),通入50~500sccm的氩气,气压控制在0.2~5Pa,功率10~500W进行金属层沉积,沉积时间为1~30min。沉积完成后关闭溅射电源和气体阀门;
7、快速抽空到本底真空9.0E-4以下,沉积步骤4中的介质层;
8、按照步骤5中方法进行介质层表面活化;
9、通入氧气和氩气混合气体(混合比例为0%~50%),气压控制在0.2~5Pa,采用50~2000W功率溅射氧化物靶材,沉积1~30min,采用方法3中的等离子体进行轰击强化。根据镀膜时间和溅射效率决定所需氧化物厚度;
10、按照步骤5中方法进行介质层表面活化;
11、通入氧气和氩气混合气体(混合比例为0%~50%),气压控制在0.2~5Pa,采用50~2000W功率溅射氧化物靶材,沉积1~30min,采用方法3中的等离子体进行轰击强化。根据镀膜时间和溅射效率决定所需氧化物厚度;
12、根据多层膜的重复周期数,重复1-8步骤获得多孔性透明导电复合膜层。
通过对上述实施例的结果分析认为:较广泛认可的介质层/金属/介质层透明导电复合膜以及单层透明导电复合膜利用溅射法制备的膜层相比,此膜层具备单层膜或者三明治结构无可比拟的低电阻和高透光的完美结合,同时低温下磁控溅射多层膜具有较低的缺陷密度和低损耗,保证了光电性能的完美结合。一个周期的低电阻、高透光和低损耗薄膜与单层和三明治结构的多层膜光电性能对比,如图2所示。

Claims (10)

1.一种低电阻、高透光和低损耗的复合膜层,其特征在于:该复合膜层是在衬底上由单膜叠加而成,所述单膜从下至上依次为介质层/金属层/介质层构成的三层基元、多孔过渡层、透明导电层。
2.制备权利要求1所述低电阻、高透光和低损耗的复合膜层的方法,其特征在于:该方法的步骤如下:
步骤一、清洁衬底材料表面,所述衬底材料为金属、无机非金属材料或有机材料,然后然后将衬底置于磁控溅射真空仓内的样品台上,通过真空泵将真空仓内抽成真空,使真空仓内压强达到2.0×10-4Pa~9.9×10-4Pa;
步骤二、在真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化衬底表面,清洗完成后恢复真空仓内的真空状态;
步骤三、向真空仓内通入氧气+氩气混合气体,向靶材施加直流脉冲电源启辉,功率为50W~2000W,预溅射5min~30min,开始在衬底材料表面镀介质层,镀膜时真空仓内气体压强为0.4Pa~5Pa,镀膜时间为1min~30min,然后关闭直流脉冲电源,完成后恢复真空仓内的真空;
所述靶材为半导体氧化物靶材或非氧化物靶材;
步骤四、向真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化介质层表面,清洗完成后恢复本底真空状态;
步骤五、向真空仓内通入50~500sccm的氩气,向金属靶材施加直流脉冲电源,功率10~500W,气压控制在0.2~5Pa,预溅射1~10min进行金属层沉积,沉积时间为1~30min,沉积完成后关闭溅射电源和气体阀门,关闭电源和气体阀门,快速恢复本底真空;
步骤六、向真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化金属层表面,清洗完成后恢复本底真空状态;
步骤七、向真空仓内通入氧气+氩气混合气体,向靶材施加直流脉冲电源启辉,功率为50W~2000W,预溅射5min~30min,开始在金属层表面镀介质层,镀膜时真空仓内气体压强为0.4Pa~5Pa,镀膜时间为1min~30min,然后关闭直流脉冲电源,完成后恢复真空仓内的真空;
所述靶材为半导体氧化物靶材或非氧化物靶材;
步骤八、向真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化介质层表面,清洗完成后恢复本底真空状态;
步骤九、向真空仓内通入氧气+氩气混合气体,向靶材施加直流脉冲电源启辉,功率为50W~2000W,预溅射1min~30min,开始在介质层表面镀多孔过渡层,镀膜时真空仓内气体压强为0.2Pa~5Pa,镀膜时间为1min~30min,然后关闭直流脉冲电源,完成后恢复本底真空;
所述靶材为半导体氧化物靶材或非氧化物靶材;
步骤十、向真空仓内通入氩气+氧气或氩气+氮气的混合气体,气压控制在0.05~5Pa,用300~2500V等离子体Ar+清洗、活化多孔过渡层表面,清洗完成后恢复本底真空状态;
步骤十一、向真空仓内通入氧气+氩气混合气体,向靶材施加直流脉冲电源启辉,功率为50W~2000W,预溅射1min~30min,开始在多孔过渡层表面镀透明导电层,镀膜时真空仓内气体压强为0.2Pa~5Pa,镀膜时间为1min~30min,然后关闭直流脉冲电源,完成后恢复本底真空;
所述靶材为半导体氧化物靶材或非氧化物靶材;
步骤十二、关闭所有电源和气体阀门,恢复本底真空后10~30min后,破空取出低电阻、高透光和低损耗的复合膜层,随后进行80~200℃真空或者Ar/N2/O2退火0.5~3h,强化复合膜层物理性能并降低薄膜缺陷密度。
3.根据权利要求2所述的低电阻、高透光和低损耗的复合膜层的制备方法,其特征在于:步骤一中所述清洁衬底材料表面是用丙酮、石油醚以及去油剂溶液超声波清洗20~30min,再用无水乙醇清洗20~30min,最后用去离子水清洗5~10min后用洁净的空气吹干表面的水汽。
4.根据权利要求2所述的低电阻、高透光和低损耗的复合膜层的制备方法,其特征在于:上述步骤二、四、六、八、十中所述氩气+氧气或氩气+氮气的混合气体的混合比例为0%~100%。
5.根据权利要求2所述的低电阻、高透光和低损耗的复合膜层的制备方法,其特征在于:上述步骤三、七、九、十一中所述的氧气+氩气的混合气体的混合比例为0%~50%。
6.根据权利要求2所述的低电阻、高透光和低损耗的复合膜层的制备方法,其特征在于:上述步骤中所述的半导体氧化物靶材为ITO、IZO、AZO、FTO。
7.根据权利要求2所述的低电阻、高透光和低损耗的复合膜层的制备方法,其特征在于:上述步骤中所述的非氧化物靶材为ZnS。
8.根据权利要求2所述的低电阻、高透光和低损耗的复合膜层的制备方法,其特征在于:上述步骤三、中所述的金属靶材为Ag、Cu、Al、Fe、Mn、Gr、Zn、In。
9.根据权利要求2所述的低电阻、高透光和低损耗的复合膜层的制备方法,其特征在于:重复上述步骤二至十一1~10次,制备多层的低电阻、高透光和低损耗的复合膜层。
10.根据权利要求2所述的低电阻、高透光和低损耗的复合膜层的制备方法,其特征在于:步骤五中,向真空仓内通入100sccm的氩气,向金属靶材施加直流脉冲电源,功率50W,气压控制在0.3Pa,预溅射3~5min进行金属层沉积,沉积时间为1~3min,沉积完成后关闭溅射电源和气体阀门,关闭电源和气体阀门,快速恢复本底真空。
CN202111167886.5A 2021-09-30 2021-09-30 一种低电阻、高透光和低损耗的复合膜层及其制备方法 Pending CN113889296A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111167886.5A CN113889296A (zh) 2021-09-30 2021-09-30 一种低电阻、高透光和低损耗的复合膜层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111167886.5A CN113889296A (zh) 2021-09-30 2021-09-30 一种低电阻、高透光和低损耗的复合膜层及其制备方法

Publications (1)

Publication Number Publication Date
CN113889296A true CN113889296A (zh) 2022-01-04

Family

ID=79005416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111167886.5A Pending CN113889296A (zh) 2021-09-30 2021-09-30 一种低电阻、高透光和低损耗的复合膜层及其制备方法

Country Status (1)

Country Link
CN (1) CN113889296A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200531330A (en) * 2004-01-30 2005-09-16 Teijin Dupont Films Japan Ltd Laminated film for dye-sensitized solar cell, electrode for dye-sensitized solar cell and process for producing the same
CN102174689A (zh) * 2011-04-01 2011-09-07 浙江大学 Fzo/金属/fzo透明导电薄膜及其制备方法
TW201322280A (zh) * 2011-11-30 2013-06-01 Chimei Innolux Corp 透明導電膜及應用其之電子裝置
CN107994081A (zh) * 2017-11-22 2018-05-04 朱秋华 一种高效太阳电池结构及其制备方法
CN108399963A (zh) * 2018-01-19 2018-08-14 精电(河源)显示技术有限公司 一种高透过率导电薄膜的制作工艺及其制成的液晶显示屏
CN112410743A (zh) * 2020-11-05 2021-02-26 中国航发北京航空材料研究院 一种多孔透明导电膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200531330A (en) * 2004-01-30 2005-09-16 Teijin Dupont Films Japan Ltd Laminated film for dye-sensitized solar cell, electrode for dye-sensitized solar cell and process for producing the same
CN102174689A (zh) * 2011-04-01 2011-09-07 浙江大学 Fzo/金属/fzo透明导电薄膜及其制备方法
TW201322280A (zh) * 2011-11-30 2013-06-01 Chimei Innolux Corp 透明導電膜及應用其之電子裝置
CN107994081A (zh) * 2017-11-22 2018-05-04 朱秋华 一种高效太阳电池结构及其制备方法
CN108399963A (zh) * 2018-01-19 2018-08-14 精电(河源)显示技术有限公司 一种高透过率导电薄膜的制作工艺及其制成的液晶显示屏
CN112410743A (zh) * 2020-11-05 2021-02-26 中国航发北京航空材料研究院 一种多孔透明导电膜的制备方法

Similar Documents

Publication Publication Date Title
CN112410743B (zh) 一种多孔透明导电膜的制备方法
CN105551579B (zh) 一种可电致变色的多层透明导电薄膜及其制备方法
CN102251216B (zh) 一种制备掺钨氧化钒薄膜的方法
CN108570651A (zh) 一种多腔室卧式磁控溅射镀膜生产线及其镀膜方法
CN105624625B (zh) 一种提高ZnO/Ag/ZnO透明导电膜光电性能的方法
CN106119778A (zh) 室温溅射沉积柔性azo透明导电薄膜的方法
CN101497992A (zh) 用等离子体轰击制备绒面氧化锌透明导电镀膜玻璃的方法
WO1987005742A1 (en) Process for producing transparent conductive film
CN1709689A (zh) Ito镀膜板及其制备方法
CN108914064B (zh) 一种rpd用多元导电氧化物材料及其制备方法
CN108877987A (zh) 基于柔性衬底的ZnO复合透明导电薄膜及其制备方法
CN106893984B (zh) 增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法
CN113889296A (zh) 一种低电阻、高透光和低损耗的复合膜层及其制备方法
CN108441833B (zh) 一种多层透明导电膜及其制备方法
CN112117054B (zh) 一种耐湿热的低温强化透明导电复合膜的制备方法
CN105154841B (zh) 铋掺杂氧化锡薄膜的制备方法
CN211284529U (zh) 电致变色功能薄膜器件连续沉积装置
CN114318264A (zh) 一种基于磁控溅射和刻蚀处理制备ito薄膜的方法
CN113529034A (zh) 一种近红外导电滤光片的镀膜方法
CN112194380A (zh) 镀膜玻璃及其制造方法
CN209281907U (zh) 一种透明导电膜
CN106119797A (zh) 室温下紫外光辅助溅射制备azo薄膜的方法
CN209183558U (zh) 一种太阳能电池片
Kim et al. Electrical and optical characteristics of transparent conducting Si-doped ZnO/hole-patterned Ag/Si-doped ZnO multilayer films
KR101161729B1 (ko) 박막태양전지용 2층 구조의 투명성 전도박막 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination