CN106119797A - 室温下紫外光辅助溅射制备azo薄膜的方法 - Google Patents

室温下紫外光辅助溅射制备azo薄膜的方法 Download PDF

Info

Publication number
CN106119797A
CN106119797A CN201610666204.8A CN201610666204A CN106119797A CN 106119797 A CN106119797 A CN 106119797A CN 201610666204 A CN201610666204 A CN 201610666204A CN 106119797 A CN106119797 A CN 106119797A
Authority
CN
China
Prior art keywords
sputtering
ultraviolet light
thin film
room temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610666204.8A
Other languages
English (en)
Inventor
王新昌
郭松昌
闫震
李光辉
丁万勇
万志刚
蒋振伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Ancai Hi Tech Co Ltd
Original Assignee
Henan Ancai Hi Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Ancai Hi Tech Co Ltd filed Critical Henan Ancai Hi Tech Co Ltd
Priority to CN201610666204.8A priority Critical patent/CN106119797A/zh
Publication of CN106119797A publication Critical patent/CN106119797A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

室温下紫外光辅助溅射制备AZO薄膜的方法,采用紫外光在线辐照的情况下,利用磁控溅射室温沉积AZO薄膜,其步骤为:(1) 衬底清洗;(2) 预溅射;(3) 紫外光辐照;(4) AZO薄膜制备。通过紫外光辅助室温磁控溅射方法制备的AZO薄膜无需再进行后续的处理环节,降低了生产成本,工艺操作相对简单,适于工业生产。

Description

室温下紫外光辅助溅射制备AZO薄膜的方法
技术领域
本发明涉及室温下紫外光辅助溅射制备AZO薄膜的方法,属于电子薄膜材料制备技术领域。
背景技术
透明导电氧化物薄膜(TCO)是一种既具有导电性又具有高透明性的功能薄膜材料,它具有较大的禁带宽度,在可见光区透明,且具有较低的电阻率。TCO薄膜优良的光电特性使其在太阳能电池、平板显示器、气敏元件等领域得到了广泛的应用,是信息产业中不可或缺的材料。在TCO薄膜中,目前应用较多的是锡掺杂氧化铟(ITO)透明导电薄膜,其具有高的可见光透光率、低的电阻率和良好的机械强度。然而由于金属铟属于稀有金属,全球存量非常稀少,价格昂贵且具有一定的毒性,因此急需寻找一种价格低廉且性能优异的ITO替换材料。与ITO相比,铝掺杂氧化锌(AZO)具有原材料价格便宜、无毒、H等离子体环境中稳定性好、光学性能优异等特点,被公认为是替代ITO透明导电薄膜材料的最佳候选者。制备AZO薄膜的方法主要有溶胶-凝胶法、磁控溅射、脉冲激光沉积法等,其中磁控溅射法具有沉积速率高、制备成本低、工艺控制相对简单,适于工业化生产,是制备AZO透明导电薄膜的主要方法。从工业生产和应用来看,透明导电薄膜的制备温度不能太高,然而高性能尤其是具有低电阻率的AZO薄膜通常只能在较高的温度才能获得,因此如何采用磁控溅射技术在室温条件下制备出高性能的AZO薄膜仍没有得到解决。
发明内容
本发明的目的是为了提供一种能够在室温条件下制备出光电性能优异的AZO薄膜的方法,以解决现有技术存在的问题。
为实现本发明的目的,本发明采用的技术方案是:室温下紫外光辅助溅射制备AZO薄膜的方法,采用紫外光在线辐照的情况下,利用磁控溅射室温沉积AZO薄膜,其步骤为:
(1) 衬底清洗:分别采用丙酮、无水乙醇对衬底超声清洗10-30 min,再用去离子水对衬底超声清洗10-15 min,然后进行干燥;
(2) 预溅射:将干燥后的衬底装入溅射镀膜设备的真空腔体内,将活动挡板置于出衬底与靶材之间,并抽真空至5×10-3 Pa,然后充入工作气体氩气至真空室压强为0.1-0.8Pa,并进行预溅射5-30 min;
(3) 紫外光辐照:打开位于溅射真空腔体底部的紫外灯,紫外灯功率为15-40W,波长为254nm或365nm,紫外灯距离衬底15-30 cm;
(4) AZO薄膜制备:打开活动挡板,在紫外光辐照情况下,室温条件下进行AZO溅射镀膜,溅射真空气氛为氩气,真空室压强为0.15-0.8 Pa,溅射功率为80-200 W,溅射时间为20-60 min,进一步的,所述衬底包括硬质衬底及柔性衬底,所述的硬质衬底包括玻璃或石英,所述的柔性衬底包括聚对苯二甲酸乙二醇酯或聚碳酸酯或聚甲基丙烯酸甲酯,进一步的,所述的溅射镀膜设备为射频磁控溅射设备或直流磁控溅射设备,进一步的,溅射所用靶材为AZO陶瓷靶材,靶材中氧化铝和氧化锌的质量百分比范围在:氧化铝:2-4 wt%,氧化锌:96-98 wt%,进一步的,所述的紫外灯对着衬底正面,紫外光可以照射到整个衬底表面,进一步的,溅射靶材与衬底之间的距离为12 cm。
与现有技术相比,本发明的优点在于:
(1) 降低了溅射制备AZO薄膜的衬底温度同时保证光电性能,本发明利用紫外光在线辅助的方法,在溅射的同时紫外光线辐照到衬底表面,使得到达衬底的溅射粒子的能量增大,增强溅射粒子在薄膜中的迁移率,因此有利于AZO薄膜在低温条件下晶化,从而能在室温下制备出光电性能优异的AZO薄膜;
(2) 利用本发明制备的AZO薄膜结晶性能良好,薄膜附着力强,表面致密平整;
(3) 通过紫外光辅助室温磁控溅射方法制备的AZO薄膜无需再进行后续的处理环节,降低了生产成本,工艺操作相对简单,适于工业生产。
附图说明
图1为实施例1在玻璃衬底上紫外光辅助室温溅射AZO薄膜的XRD图谱。
图2为实施例1在玻璃衬底上紫外光辅助室温溅射AZO薄膜的透射光谱图。
图3为实施例3在PC柔性衬底上紫外光辅助室温溅射AZO薄膜的XRD图谱。
图4为实施例3在PC柔性衬底上紫外光辅助室温溅射AZO薄膜的透射光谱图。
具体实施方式
为了更充分的解释本发明的实施,提供本发明的实施实例,这些实施实例仅仅是对本发明的阐述,不限制本发明的范围。
实施例1
选取厚度为1 mm的超白玻璃作为衬底,分别采用丙酮、无水乙醇对衬底超声清洗15min,再用去离子水超声清洗10 min,干燥后装入衬底架上;选用氧化铝与氧化锌的质量比为2:98的AZO陶瓷为靶材,采用直流磁控溅射沉积AZO薄膜,将活动挡板置于出衬底与靶材之间,打开机械泵和分子泵抽真空至5×10-3 Pa,然后充入工作气体高纯氩气(99.99%)至真空室压强为0.15 Pa,开启直流电源预溅射10 min;接着打开位于溅射真空腔体底部的紫外灯,紫外灯功率为25 W,波长为254nm,紫外灯距离衬底25 cm,然后打开挡板,进行AZO薄膜沉积,溅射条件为:溅射功率为150 W,工作压力为0.15 Pa,靶基距为12 cm,衬底温度为室温,溅射时间为20 min。获得的AZO薄膜为(002)择优取向,如图1所示,且薄膜表面平整,表面粗糙度为3.686 nm,,电阻率为8.57×10-4 Ω•cm,在可见光区(380-800 nm)的平均透过率为89.76%。作为对比,我们做了一组未施加紫外光在线辅助的实验(其他条件均相同),获得AZO薄膜的电阻率为1.33×10-3 Ω•cm,在可见光区(380-800 nm)的平均透过率为89.21%(图2),这表明紫外光在线辐照能够保持AZO薄膜在可见光区平均透过率的情况下显著降低电阻率。
实施例2
选取厚度为1 mm的超白玻璃作为衬底,分别采用丙酮、无水乙醇对衬底超声清洗15min,再用去离子水超声清洗10 min,干燥后装入衬底架上;选用氧化铝与氧化锌的质量比为2:98的AZO陶瓷为靶材,采用直流磁控溅射沉积AZO薄膜,将活动挡板置于出衬底与靶材之间,打开机械泵和分子泵抽真空至5×10-3 Pa,然后充入工作气体高纯氩气(99.99%)至真空室压强为0.15 Pa,开启直流电源预溅射10 min;接着打开位于溅射真空腔体底部的紫外灯,紫外灯功率为25 W,波长为254nm,紫外灯距离衬底25 cm,然后打开挡板,进行AZO薄膜沉积,溅射条件为:溅射功率为150 W,工作压力为0.15 Pa,靶基距为12 cm,衬底温度为室温,溅射时间为30 min。获得的AZO薄膜为(002)择优取向,电阻率为6.19×10-4 Ω•cm,在可见光区(380-800 nm)的平均透过率为88.24%。
实施例3
选取厚度为0.3 mm的聚碳酸酯(PC)膜为衬底,分别采用丙酮、无水乙醇对衬底超声清洗20 min,再用去离子水超声清洗15 min,干燥后装入衬底架上;选用氧化铝与氧化锌的质量比为2:98的AZO陶瓷为靶材,采用直流磁控溅射沉积AZO薄膜,将活动挡板置于出衬底与靶材之间,打开机械泵和分子泵抽真空至5×10-3 Pa,然后充入工作气体高纯氩气(99.99%)至真空室压强为0.15 Pa,开启直流电源预溅射10 min;接着打开位于溅射真空腔体底部的紫外灯,紫外灯功率为25 W,波长为254nm,紫外灯距离衬底25 cm,然后打开挡板,进行AZO薄膜沉积,溅射条件为:溅射功率为100 W,工作压力为0.15 Pa,靶基距为12 cm,衬底温度为室温,溅射时间为30 min。获得的AZO薄膜为(002)择优取向,如图3所示,且薄膜表面平整,电阻率为1.10×10-3 Ω•cm,在可见光区(380-800 nm)的平均透过率为87.63%(图4)。作为对比,我们做了一组未施加紫外光在线辅助的实验(其他条件均相同),获得AZO薄膜的电阻率为2.23×10-3 Ω•cm,在可见光区(380-800 nm)的平均透过率为88.69%,这表明紫外光在线辐照技术能够在保持AZO薄膜在可见光透过率的情况下明显降低电阻率。
实施例4
选取厚度为0.3 mm的PC膜为衬底,分别采用丙酮、无水乙醇对衬底超声清洗20 min,再用去离子水超声清洗15 min,干燥后装入衬底架上;选用氧化铝与氧化锌的质量比为2:98的AZO陶瓷为靶材,采用直流磁控溅射沉积AZO薄膜,将活动挡板置于出衬底与靶材之间,打开机械泵和分子泵抽真空至5×10-3 Pa,然后充入工作气体高纯氩气(99.99%)至真空室压强为0.15 Pa,开启直流电源预溅射10 min;接着打开位于溅射真空腔体底部的紫外灯,紫外灯功率为25 W,波长为254nm,紫外灯距离衬底25 cm,然后打开挡板,进行AZO薄膜沉积,溅射条件为:溅射功率为100 W,工作压力为0.15 Pa,靶基距为12 cm,衬底温度为室温,溅射时间为40 min。获得的AZO薄膜的电阻率为9.69×10-4 Ω•cm,在可见光区(380-800 nm)的平均透过率为84.75%。
在详细说明本发明的实施方式之后,熟悉该项技术的人士可清楚地了解,在不脱离上述申请专利范围与精神下可进行各种变化与修改,凡依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的范围,且本发明亦不受限于说明书中所举实例的实施方式。

Claims (6)

1.室温下紫外光辅助溅射制备AZO薄膜的方法,其特征在于,采用紫外光在线辐照的情况下,利用磁控溅射室温沉积AZO薄膜,其步骤为:
(1) 衬底清洗:分别采用丙酮、无水乙醇对衬底超声清洗10-30 min,再用去离子水对衬底超声清洗10-15 min,然后进行干燥;
(2) 预溅射:将干燥后的衬底装入溅射镀膜设备的真空腔体内,将活动挡板置于出衬底与靶材之间,并抽真空至5×10-3 Pa,然后充入工作气体氩气至真空室压强为0.1-0.8Pa,并进行预溅射5-30 min;
(3) 紫外光辐照:打开位于溅射真空腔体底部的紫外灯,紫外灯功率为15-40W,波长为254nm或365nm,紫外灯距离衬底15-30 cm;
(4) AZO薄膜制备:打开活动挡板,在紫外光辐照情况下,室温条件下进行AZO溅射镀膜,溅射真空气氛为氩气,真空室压强为0.15-0.8 Pa,溅射功率为80-200 W,溅射时间为20-60 min。
2.根据权利要求1所述的室温下紫外光辅助溅射制备AZO薄膜的方法,其特征在于:所述衬底包括硬质衬底及柔性衬底,所述的硬质衬底包括玻璃或石英,所述的柔性衬底包括聚对苯二甲酸乙二醇酯或聚碳酸酯或聚甲基丙烯酸甲酯。
3.根据权利要求1所述的室温下紫外光辅助溅射制备AZO薄膜的方法,其特征在于:所述的溅射镀膜设备为射频磁控溅射设备或直流磁控溅射设备。
4.根据权利要求1所述的室温下紫外光辅助溅射AZO薄膜的制备方法,其特征在于:溅射所用靶材为AZO陶瓷靶材,靶材中氧化铝和氧化锌的质量百分比范围在:氧化铝:2-4wt%,氧化锌:96-98 wt%。
5.根据权利要求1所述的室温下紫外光辅助溅射AZO薄膜的制备方法,其特征在于:所述的紫外灯对着衬底正面,紫外光可以照射到整个衬底表面。
6. 根据权利要求1所述的室温下紫外光辅助溅射AZO薄膜的制备方法,其特征在于:溅射靶材与衬底之间的距离为12 cm。
CN201610666204.8A 2016-08-15 2016-08-15 室温下紫外光辅助溅射制备azo薄膜的方法 Pending CN106119797A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610666204.8A CN106119797A (zh) 2016-08-15 2016-08-15 室温下紫外光辅助溅射制备azo薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610666204.8A CN106119797A (zh) 2016-08-15 2016-08-15 室温下紫外光辅助溅射制备azo薄膜的方法

Publications (1)

Publication Number Publication Date
CN106119797A true CN106119797A (zh) 2016-11-16

Family

ID=57257930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610666204.8A Pending CN106119797A (zh) 2016-08-15 2016-08-15 室温下紫外光辅助溅射制备azo薄膜的方法

Country Status (1)

Country Link
CN (1) CN106119797A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112806835A (zh) * 2021-02-26 2021-05-18 西安钛斗金属制品科技有限公司 一种复合不粘锅的制备方法
CN114717529A (zh) * 2022-04-13 2022-07-08 华南理工大学 一种反应磁控溅射系统中的紫外辅助沉积装置及沉积方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨若欣 等: "不同衬底上ZnO:Al透明导电膜的性能", 《硅酸盐学报》 *
苏达 等: "在线紫外辐照辅助沉积柔性ITO薄膜的研究", 《真空科学与技术学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112806835A (zh) * 2021-02-26 2021-05-18 西安钛斗金属制品科技有限公司 一种复合不粘锅的制备方法
CN112806835B (zh) * 2021-02-26 2022-10-04 西安钛斗金属制品科技有限公司 一种复合不粘锅的制备方法
CN114717529A (zh) * 2022-04-13 2022-07-08 华南理工大学 一种反应磁控溅射系统中的紫外辅助沉积装置及沉积方法

Similar Documents

Publication Publication Date Title
CN100517517C (zh) 一种柔性复合透明导电膜及其制备方法
CN101475317A (zh) 触摸屏用高透过率导电玻璃及其生产工艺
CN107015412A (zh) 一种固态全薄膜电致变色器件的结构及制备方法
CN105551579B (zh) 一种可电致变色的多层透明导电薄膜及其制备方法
CN101465172A (zh) 复合结构透明导电膜及其制备方法
CN105677071B (zh) 触摸屏及其制备方法
Jung et al. Properties of AZO/Ag/AZO multilayer thin film deposited on polyethersulfone substrate
CN201343500Y (zh) 触摸屏用高透过率导电玻璃
CN106119778A (zh) 室温溅射沉积柔性azo透明导电薄膜的方法
CN102174689A (zh) Fzo/金属/fzo透明导电薄膜及其制备方法
TW201342684A (zh) 用於有機發光裝置的反射陽極電極及其製造方法
CN106119797A (zh) 室温下紫外光辅助溅射制备azo薄膜的方法
CN106571173A (zh) 耐高温复合透明导电膜、制备方法和应用
JP6000265B2 (ja) ガラスを被覆する方法
CN101350366A (zh) 防静电tft基板及其加工工艺
CN106756789A (zh) 一种复合透明导电薄膜及其制备方法
JP2008097969A (ja) ZnO系透明導電膜及びその製造方法
CN109811308A (zh) 一种ito导电膜制作工艺
CN102605334B (zh) 一种用于全光器件的Ge-Sb-Se非晶薄膜的制备方法
CN112194380A (zh) 镀膜玻璃及其制造方法
Lakhonchai et al. Comparing the performance of transparent, conductive ZnO/Ag/ZnO thin films that have an interlayer coating formed by either DC magnetron sputtering or HiPIMS
TWI615494B (zh) 鍍製光學硬膜之封閉式高能磁控濺鍍裝置及其製造方法
De Bosscher et al. Rotating cylindrical ITO targets for large area coating
US20120114950A1 (en) Coated article and method of making the same
CN112028499B (zh) 以CuAg合金为缓冲层的可室温制备的非晶态透明导电复合薄膜及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116

RJ01 Rejection of invention patent application after publication