CN113862790A - 一种新型极性氧硒化物及其制备方法和应用 - Google Patents

一种新型极性氧硒化物及其制备方法和应用 Download PDF

Info

Publication number
CN113862790A
CN113862790A CN202111157756.3A CN202111157756A CN113862790A CN 113862790 A CN113862790 A CN 113862790A CN 202111157756 A CN202111157756 A CN 202111157756A CN 113862790 A CN113862790 A CN 113862790A
Authority
CN
China
Prior art keywords
polar
oxyselenide
novel
hours
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111157756.3A
Other languages
English (en)
Inventor
黄富强
王瑞琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202111157756.3A priority Critical patent/CN113862790A/zh
Publication of CN113862790A publication Critical patent/CN113862790A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312

Abstract

本发明涉及一种新型极性氧硒化物及其制备方法与用途,化学式为Sr6Cd2Sb6O7Se10,属于单斜晶系Cm极性空间群,具有层状结构,是一类新型光电转换材料。由于该材料具有极性晶体结构,因此晶体内部存在宏观极化,有利于实现光生电子‑空穴的高效分离。Sr6Cd2Sb6O7Se10的光学带隙为1.55eV,可充分利用太阳光谱中的紫外及可见光部分。该材料具有较大的二阶倍频响应特性,证实了材料中存在较强极化。基于材料单晶的光电器件,在500‑1000nm范围内表现出良好的光电响应性,表明该材料为一种有潜力的新型光电转换材料,可用于光电探测、光催化、光伏、激光频率转换等领域。

Description

一种新型极性氧硒化物及其制备方法和应用
技术领域
本发明涉及一种无机晶体材料制备及其作为光电转换材料的应用,属于无机材料领域。
背景技术
光电转换材料是实现太阳能转换利用的核心材料,需具备良好的光生载流子分离及迁移能力。在极性晶体中如铁电晶体,结构基元微观极化的定向积累导致宏观极化(自发极化)的产生,可以促进体相中电子-空穴分离,因此具有良好的光电转换潜能。硒化锑基材料是一类性能优良的光电转换材料,具有适宜于光电转换的光学带隙(~1.2eV)、高光吸收系数(>105cm-1)、良好的稳定性及丰度高低毒性的元素组成。然而目前还没有应用于光电转换的极性硒化锑基材料被开发出来。因此寻找新型极性硒化锑基光电转换材料具有重要的科学意义与应用前景。
发明内容
本发明的目的在于提供一种新型极性氧硒化物及其制备方法和应用
第一方面,本发明提供一种新型极性氧硒化物,化学式为Sr6Cd2Sb6O7Se10,属于单斜晶系Cm极性空间群,其晶胞参数为:
Figure BSA0000254141150000011
α=γ=90°,β=113.776(4),Z=1(测定温度180K),其晶体学数据如表1所示。
所述极性氧硒化物具有层状结构,由[CdSb2Ose5]4-层与层间的Sr2+离子及[SbO2.5]2-一维链构成,结构中存在[SbOSe4]7-四方锥、[SbSe5]7-四方锥和[CdSe4]6-四面体。[SbOSe4]7-四方与[SbSe5]7-通过共用棱方式相互连接,[CdSe4]6-通过共用顶点方式相互连接。
表1 Sr6Cd2Sb6O7Se10的晶体学数据
Figure BSA0000254141150000012
第二方面,本发明提供上述新型极性氧硒化物的制备方法,包括:将含有Sr元素、Cd元素、Sb元素、O元素和Se元素的原料置于真空条件下,采用高温固相反应法于700~850℃保温超过24小时后降温冷却。
根据本发明,所述方法包含以下步骤:
(1)将含有Sr元素、Cd元素、Sb元素、O元素和Se元素的原料置于真空条件下,以元素摩尔比6∶2∶6∶7∶10混合后研磨均匀;
(2)真空下将步骤(1)所得样品10小时内从室温加热到750℃,保温72小时,然后在72小时内降温至600℃,之后自然冷却至室温。
在以上制备过程中,可向反应原料中加入助熔剂,助熔剂种类包括但不限于碱金属卤化物如NaI、KI、RbI、CsI等,以促进晶体生长。
第三方面,本发明提供一种上述极性氧硒化物的用途,其特征在于,用于光电探测、光催化、光伏、激光频率转换等领域。
有益效果:
本发明提供了一种新型极性氧硒化物及其制备方法与用途,化学式为Sr6Cd2Sb6O7Se10,属于单斜晶系Cm极性空间群,具有层状结构(见图1),为一类新型光电转换材料。由于具有极性晶体结构,该材料内部存在宏观极化,有利于实现光生电子-空穴的高效分离。Sr6Cd2Sb6O7Se10的光学带隙为1.55eV,可充分利用太阳光谱中的紫外及可见光部分。该材料具有较大的二阶倍频响应特性,证实了材料中存在较强极化。基于材料单晶的光电器件,在500-1000nm范围内表现出良好的光电响应性,表明该材料为一种有潜力的新型光电转换材料,可用于光电探测、光催化、光伏、激光频率转换等领域。
附图说明
图1为本发明极性氧硒化物Sr6Cd2Sb6O7Se10晶体结构示意图;
图2为本发明实施例2的Sr6Cd2Sb6O7Se10的粉末X射线衍射图,a为实验图谱,b为理论图谱;
图3为本发明实施例2的Sr6Cd2Sb6O7Se10的紫外-可见漫反射图;
图4示出本发明实施例2的Sr6Cd2Sb6O7Se10的不同波长倍频强度图;
图5示出本发明实施例2的Sr6Cd2Sb6O7Se10单晶器件示意图;
图6示出本发明实施例2的Sr6Cd2Sb6O7Se10单晶器件光电响应图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本公开涉及一种新型极性氧硒化物及其制备方法与用途,化学式为Sr6Cd2Sb6O7Se10,属于单斜晶系Cm极性空间群,具有层状结构,为一类新型光电转换材料。由于具有极性晶体结构,该材料内部存在宏观极化,有利于实现光生电子-空穴的高效分离。Sr6Cd2Sb6O7Se10的光学带隙为1.55eV,可充分利用太阳光谱中的紫外及可见光部分。该材料具有较大的二阶倍频响应特性,证实了材料中存在较强极化。基于材料单晶的光电器件,在500-1000nm范围内表现出良好的光电响应性,表明该材料为一种有潜力的新型光电转换材料。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
在下述实施例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均为常规试剂、常规材料以及常规仪器,均可商购获得,其中所涉及的试剂也可通过常规合成方法合成获得。
实施例1
Sr6Cd2Sb6O7Se10晶体的制备:称取0.6217g SrO、0.0972g Sb2O3、0.6494g Sb、0.2248g Cd、0.7896g Se和3.0g CsI,在研钵中充分研磨混合均匀后,转移至内径1cm的石英管中真空封装,抽真空至0.1Pa。将密封的石英管放入马弗炉中,设置保温程序如下:10小时升温至750℃,在750℃保温48小时,然后以3℃每小时的降温速率降温至600℃,之后自然冷却至室温。将产物从石英管内取出,用去离子水洗涤三次后,用丙酮洗涤样品,干燥后可得Sr6Cd2Sb6O7Se10晶体。
实施例2
性能测试:
1)将所得晶体研磨后进行粉末X射线衍射测试,结果如图2所示。所得粉末X射线衍射图谱与单晶结构解析所得Sr6Cd2Sb6O7Se10晶体的理论X射线衍射图谱一致,证明所得晶体具有较高的纯度。
2)使用紫外-可见-近红外漫反射光谱仪测定Sr6Cd2Sb6O7Se10晶体的带隙,所得结果如图3所示,其带隙为1.55eV,可充分利用太阳光谱中的紫外及可见光部分。
3)挑出一颗Sr6Cd2Sb6O7Se10单晶,在波长800-1300nm、功率2.6mW基频光照射下,对其进行倍频响应测试(SHG),具体结果如图4所示,晶体在基频光800-1200nm内均表现出明显的SHG响应,对880nm基频光的响应最强。
4)挑出一颗Sr6Cd2Sb6O7Se10单晶,在晶体两端接钨探针电极,构建光电响应器件如图5所示。对该器件加5V偏压,使用不同波长的光对器件进行照射,检测其电流密度变化,具体结果如图6所示。该器件在500-1000nm入射光照射下均表现出明显的电流增强,其中在700nm入射光照射下的电流增强效应最强。

Claims (5)

1.一种新型极性氧硒化物,其特征在于,化学式为Sr6Cd2Sb6O7Se10,属于单斜晶系Cm空间群,具有含有[SbOSe4]7-四方锥、[SbSe5]7-四方锥和[CdSe4]6-四面体的层状晶体结构。
2.一种权利要求1所述的极性氧硫化物的制备方法,其特征在于,包括:将含有Sr元素、Cd元素、Sb元素、O元素和Se元素的原料置于真空条件下,采用高温固相反应法于700~850℃保温超过24小时后降温冷却。
3.根据权利要求2所述的制备方法,其特征在于,包括如下步骤:
(1)将含有Sr元素、Cd元素、Sb元素、O元素和Se元素的原料置于真空条件下,以元素摩尔比6∶2∶6∶7∶10混合后研磨均匀;
(2)真空下将步骤(1)所得样品10小时内从室温加热到750℃,保温72小时,然后在72小时内降温至600℃,之后自然冷却至室温。
4.一种权利要求2和3所述的极性氧硫化物的制备方法,其特征在于,可向反应原料中加入助熔剂,助熔剂种类包括但不限于碱金属卤化物如NaI、KI、RbI、CsI等。
5.一种权利要求1所述的极性氧硒化物的用途,其特征在于,用于光电探测、光催化、光伏、激光频率转换等领域。
CN202111157756.3A 2021-09-30 2021-09-30 一种新型极性氧硒化物及其制备方法和应用 Pending CN113862790A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111157756.3A CN113862790A (zh) 2021-09-30 2021-09-30 一种新型极性氧硒化物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111157756.3A CN113862790A (zh) 2021-09-30 2021-09-30 一种新型极性氧硒化物及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113862790A true CN113862790A (zh) 2021-12-31

Family

ID=79000896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111157756.3A Pending CN113862790A (zh) 2021-09-30 2021-09-30 一种新型极性氧硒化物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113862790A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803531A (zh) * 2016-04-13 2016-07-27 浙江大学 四元硒化物非线性光学晶体及其制备方法和其用途
CN105951182A (zh) * 2016-05-23 2016-09-21 中国科学院福建物质结构研究所 一类红外非线性光学晶体材料及其制备方法和用途
CN109750357A (zh) * 2017-11-08 2019-05-14 青岛科技大学 红外非线性光学晶体Ba10Zn7M6Q26及其制备方法与用途
CN110607556A (zh) * 2019-09-23 2019-12-24 中国科学院福建物质结构研究所 一种晶体材料、其制备生长方法及其在非线性光学中的应用
CN111676517A (zh) * 2020-05-25 2020-09-18 中国科学院福建物质结构研究所 一种非心混阴离子晶体材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803531A (zh) * 2016-04-13 2016-07-27 浙江大学 四元硒化物非线性光学晶体及其制备方法和其用途
CN105951182A (zh) * 2016-05-23 2016-09-21 中国科学院福建物质结构研究所 一类红外非线性光学晶体材料及其制备方法和用途
CN109750357A (zh) * 2017-11-08 2019-05-14 青岛科技大学 红外非线性光学晶体Ba10Zn7M6Q26及其制备方法与用途
CN110607556A (zh) * 2019-09-23 2019-12-24 中国科学院福建物质结构研究所 一种晶体材料、其制备生长方法及其在非线性光学中的应用
CN111676517A (zh) * 2020-05-25 2020-09-18 中国科学院福建物质结构研究所 一种非心混阴离子晶体材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUIQI WANG,ET AL.: "Sr6Cd2Sb6O7S10: Strong SHG Response Activated by Highly Polarizable Sb/O/S Groups", 《ANGEW. CHEM. INT. ED.》, vol. 58, pages 8078 - 8081, XP072087657, DOI: 10.1002/anie.201902806 *

Similar Documents

Publication Publication Date Title
Phuong et al. Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase
Sun et al. PbPt (IO 3) 6 (H 2 O): a new polar material with two types of stereoactive lone-pairs and a very large SHG response
CN109873080B (zh) 一种钙钛矿单晶x射线探测器及其制备方法
CN113571645A (zh) Dj型无甲胺窄带隙二维双层杂化钙钛矿材料及制备方法
CN110305019A (zh) 一种二维层状钙钛矿晶体及其制备方法
CN107829138A (zh) 一种基于混合阳离子的立方相有机无机钙钛矿单晶材料、制备方法及其应用
Yu et al. Photoluminescent and photovoltaic properties observed in a zinc borate Zn 2 (OH) BO 3
CN113862785A (zh) 一种双钙钛矿单晶及其制备方法和应用、双钙钛矿单晶光电探测器
CN112279876A (zh) 一种dj型极性二维双层杂化钙钛矿材料及制备方法和应用
CN106835284A (zh) 一类红外非线性光学晶体材料及其制备方法和用途
CN110054628A (zh) 一种水稳定杂化铅碘钙钛矿材料及其应用
CN109321244A (zh) 一种铒和镱双掺杂铌酸锂上转换材料及其制备方法和在光学温度传感器中的应用
CN110452698B (zh) 一种可见光超宽带敏化近红外发光的荧光粉及其制备方法
CN111676517B (zh) 一种非心混阴离子晶体材料及其制备方法与应用
CN113862790A (zh) 一种新型极性氧硒化物及其制备方法和应用
CN109750357B (zh) 红外非线性光学晶体Ba10Zn7M6Q26及其制备方法与用途
CN115216844B (zh) 一种中远红外非线性光学晶体硫磷镉的制备及应用
CN114686212B (zh) Mn掺杂二维有机无机杂化钙钛矿BDACdBr4单晶/粉末材料及其制备方法和应用
CN114808132A (zh) 一种氧硫化物非线性光学晶体及其制备方法和应用
CN114380739A (zh) 芳香胺构筑的二维双层dj型钙钛矿及制备方法和应用
Li et al. The role of Mn as dopant on the optoelectronic properties of MA (Pb1− xMnx) Cl3 single crystals
CN111952383A (zh) 一种CsPbBr3-CsPb2Br5全无机混合钙钛矿薄膜的自驱动可见光光电探测器
KR101591267B1 (ko) 신규한 페로브스카이트 화합물
Zhao et al. Near-infrared down-conversion and energy transfer mechanism of Ce3+-Yb3+ Co-doped Ba2Y (BO3) 2Cl phosphors
CN114958370A (zh) 一种二维手性d-j型杂化双钙钛矿晶体及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination