CN112279876A - 一种dj型极性二维双层杂化钙钛矿材料及制备方法和应用 - Google Patents

一种dj型极性二维双层杂化钙钛矿材料及制备方法和应用 Download PDF

Info

Publication number
CN112279876A
CN112279876A CN202011273903.9A CN202011273903A CN112279876A CN 112279876 A CN112279876 A CN 112279876A CN 202011273903 A CN202011273903 A CN 202011273903A CN 112279876 A CN112279876 A CN 112279876A
Authority
CN
China
Prior art keywords
pentanediamine
methyl
preparation
cspb
hybrid perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011273903.9A
Other languages
English (en)
Inventor
符冬营
辛建丽
张献明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202011273903.9A priority Critical patent/CN112279876A/zh
Publication of CN112279876A publication Critical patent/CN112279876A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测技术领域,具体涉及一种DJ型极性二维双层杂化钙钛矿材料及制备方法和应用。本发明通过分步合成,首先合成了三维钙钛矿结构的CsPbBr3化合物,以CsPbBr3三维钙钛矿为基础,通过引入长链有机胺(2‑甲基‑1,5‑戊二胺)阳离子,得到了一种极性二维双层DJ型有机‑无机杂化钙钛矿材料,即(2‑甲基‑1,5‑戊二胺)CsPb2Br7。该材料表现出优异的吸光性能,同时表现出优越的紫外光电响应性能,而且其稳定性达到272℃。因此该晶体材料作为一种新型的半导体材料,在光电探测等领域具有潜在的应用价值。

Description

一种DJ型极性二维双层杂化钙钛矿材料及制备方法和应用
技术领域
本发明属于光电探测技术领域,具体涉及一种DJ型极性二维双层杂化钙钛矿材料及制备方法和应用。
背景技术
紫外光探测器可以将紫外光信号转换为电信号,在环境监测、保密通信、导弹预警等方面显示出广泛的应用。近年来,三维有机-无机杂化金属卤化物钙钛矿(ABX3,A=MA+,FA+,Cs+;B=Pb2+,Sn2+,Ge2+;X=Cl-,Br-,I-)由于制备工艺简单,在光电子领域显示出诱人的应用潜力。其中,载流子迁移率高、光吸收系数大、缺陷密度低的CsPbBr3受到了广泛的关注。与类似于MAPbBr3或FAPbBr3的有机金属卤化物钙钛矿相比,CsPbBr3具有更好的力学性能和水稳定性。将链状有机阳离子引入到三维CsPbBr3中可以设计出有趣的二维杂化钙钛矿半导体。除了那些RP型杂化钙钛矿外,最近的研究表明,Dion-Jacobson(DJ)型杂化钙钛矿中的二胺阳离子可以消除相邻无机层之间的范德华空隙,从而比RP型杂化钙钛矿有更稳定的结构。但是基于DJ型铯基杂化钙钛矿用于紫外波段的光电探测材料目前数量不多。在这种情况下,将双胺阳离子引入到原型CsPbBr3中开发用于紫外光检测的二维多层DJ型铯基杂化钙钛矿的新成员是迫切需要的。
发明内容
针对上述问题本发明提供了一种DJ型极性二维双层杂化钙钛矿材料及制备方法和应用。
为了达到上述目的,本发明采用了下列技术方案:
一种DJ型极性二维双层杂化钙钛矿材料,其特征在于:所述DJ型极性二维双层杂化钙钛矿材料为(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料,其化学式为:C6H18N2CsPb2Br7,结构简式为:(C6H12N2H6)CsPb2Br7;(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料属于正交晶系,Pca21空间群;(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料的晶胞参数为
Figure BDA0002778533730000021
Z=4,单胞体积为
Figure BDA0002778533730000022
一种DJ型二维双层杂化钙钛矿材料的制备方法,包括以下步骤:
步骤1,将Pb(AC)2·3H2O溶解在HBr水溶液中,再依次加入Cs2CO3和2-甲基-1,5-戊二胺,得到淡黄色粉末沉淀。
步骤2,将步骤1得到的淡黄色粉末沉淀加热至沸腾后,得到一种清澈的浅黄色溶液,将该溶液缓慢冷却至室温可生长出大尺寸单晶体,该单晶体即为(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料。通过分步合成,首先合成了三维钙钛矿结构的CsPbBr3化合物,进一步引入长链烷烃双胺插入到三维钙钛矿结构的CsPbBr3化合物中,该合成方法有利于制备本专利中的二维双层DJ型(C6H12N2H6)CsPb2Br7晶体材料。解决了该晶体材料稳定、均一、纯相合成的问题,使得该晶体材料能够被简便、规模化制备。
进一步,所述步骤1中的醋酸铅的浓度为0.379g/mmol,Cs2CO3的浓度为0.326g/mmol,2-甲基-1,5-戊二胺的浓度为0.116g/mmol,HBr溶液的浓度为48%的HBr溶液。
进一步,所述步骤1中醋酸铅的用量为2.5-4mmol,HBr溶液的用量为20mL,Cs2CO3的用量为1.5-3mmol,2-甲基-1,5-戊二胺的用量为1.5-3mmol。
更进一步,所述步骤1中2-甲基-1,5-戊二胺与Cs2CO3的质量比为0.356-0.4:1。
进一步,所述步骤2中缓慢冷却的时间为6~8天。通过缓慢降温过程有利于减少晶体生长中产生的缺陷,能够稳定地生长出高质量的晶体材料,满足了其应用于光电探测的需求。
一种DJ型极性二维双层杂化钙钛矿材料的应用,所述(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料应用于半导体材料或紫外光探测领域的新型材料。该材料具有铅溴八面体共顶点相连形成的二维无机双层结构,铯离子填充于该二维无机双层孔道中,沿c轴方向排列的双层无机层CsPb2Br7 2-把交替排列的[2meptH2]2+二胺阳离子夹在中间,使得该晶体材料具有独特的DJ型极性结构,有利于该晶体材料用于紫外光电探测。
与现有技术相比本发明具有以下优点:
1、本发明二维双层DJ型极性有机-无机杂化钙钛矿半导体材料合成方法简单、成本低、反应条件温和、热力学稳定性较高。
2、本发明的晶体材料可用于紫外波段的光电探测,其具有较低的暗电流(1.7*10-11A)、较大的开关比(~103)、较快的响应时间(~200μs)和较高的光探测率(最高可达~109Jones)。
3、本发明的晶体材料是极性材料,晶体的极性有利于载流子的传输,降低晶体的缺陷密度,使得使用该晶体组装的光电探测器件具有较低的暗电流和较大的开关比。
附图说明
图1为(2-甲基-1,5-戊二胺)CsPb2Br7的块状晶体;
图2为(2-甲基-1,5-戊二胺)CsPb2Br7DJ型极性钙钛矿形成的示意图;
图3为(2-甲基-1,5-戊二胺)CsPb2Br7吸收光谱图;
图4为(2-甲基-1,5-戊二胺)CsPb2Br7理论计算带隙图;
图5(a)为(2-甲基-1,5-戊二胺)CsPb2Br7在266nm处不同光功率强度下的光响应图;(b)为(2-甲基-1,5-戊二胺)CsPb2Br7光电流开关性能图;
图6(a)为(2-甲基-1,5-戊二胺)CsPb2Br7的单晶光电探测器示意图,右上角单晶的辐照面积估计为4×10-3cm2;(b)为(2-甲基-1,5-戊二胺)CsPb2Br7SCLC方法得到的对数I-V曲线图;(c)为(2-甲基-1,5-戊二胺)CsPb2Br7晶体光电探测器在377nm和266nm的光响应图;(d)为(2-甲基-1,5-戊二胺)CsPb2Br7光电流和计算响应率曲线图;(e)为(2-甲基-1,5-戊二胺)CsPb2Br7在10V偏压时不同光照强度下的D*和EQE曲线图;(f)为(2-甲基-1,5-戊二胺)CsPb2Br7瞬时光电流响应图。
具体实施方式
下面结合说明书附图和具体实施例对本发明内容进行详细说明,但是本发明并不仅限于以下实施例子:
实施例1
将Pb(AC)2·3H2O(3mmol)溶解在20mL(48wt.%)的HBr溶液中。随后,在溶液中加入等摩尔Cs2CO3(2mmol)和2-甲基-1,5-戊二胺(2mmol),得到淡黄色粉末沉淀。加热至沸腾后,得到一种清澈的浅黄色溶液。将上述溶液(1K/d)缓慢冷却至室温可生长出大尺寸单晶。该晶体即为所述的(2-甲基-1,5-戊二胺)CsPb2Br7材料。通过X射线单晶衍射仪进行分析得出晶体结构,如图1所示。
实施例2
(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料的吸光能力分析:
对合成的有机-无机杂化(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料,通过紫外-可见(UV-Vis)吸收光谱分析其基本光学性质和紫外-可见吸收光谱,结果表明该晶体的吸光度在~436nm处开始下降(图3),直接带隙(Eg)为~2.75eV,这与第一性原理密度泛函理论(DFT)的理论结果一致(图4),表明(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料是一种很有前途的紫外光探测候选材料。
实施例3
(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料的电子性质分析:
采用空间电荷限制电流(SCLC)测量方法对(2-甲基-1,5-戊二胺)CsPb2Br7晶体的缺陷密度(Ntrap)进行量化。该晶体的Ntrap值估计为7.3×1010cm-3,这一结果表明,该晶体的缺陷密度总体较低。这将极大地促进器件的电荷传输。表明该晶体是一种在集成光电功能器件领域有着潜在应用价值的新型有机-无机杂化半导体材料。
实施例4
(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料的光电导特性分析:
采用波长为266nm的激发光对(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料进行光电导性能测试,该光电探测器拥有较低的暗电流(1.7×10-11A)和较大的开关比(~103)。晶体器件显示出优异的紫外光响应性,同时,紫外光探测器的R和EQE分别约为0.1mA/W和40%,D*值高达109Jones,图5a描述了该器件在266nm光照度下的时间响应,这表明该器件是光稳定性的,可以在光打开和关闭的情况下在高和低电导状态之间可逆地切换。此外,还根据光电流的时间轨迹估算了该晶体的光响应时间(图5b),根据器件的响应时间定义,器件的上升/下降时间(τrf)约为232/150μs,表明了其是一个优秀的紫外光探测器。
实施案例5
(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料在不同波段的光电探测性能分析:
采用波长为266nm和377nm的激发光对(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料进行光电导性能测试。如图6所示,该器件表现出优异的光电流产生特性。所以,该晶体材料可以用于紫外波段光电探测。
本发明性能评价:
(1)吸光性能
(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料的紫外-可见吸收光谱图显示出该晶体的吸光度在~436nm处开始下降(图3),直接带隙(Eg)为~2.75eV,这与第一性原理密度泛函理论(DFT)的理论结果一致(图4)。表明该晶体是一种很有前途的紫外光探测候选材料。
(2)电子性能
采用空间电荷限制电流(SCLC)测量方法对该晶体的的缺陷密度(Ntrap)进行了量化。该晶体的Ntrap值估计为7.3×1010cm-3,这一结果表明,该晶体的缺陷密度总体较低。这将极大地促进器件的电荷传输。表明了该晶体是一种在集成光电功能器件领域有着潜在应用价值的新型有机-无机杂化半导体材料。
(3)光电探测性能
为了测试该晶体材料的光电探测性能,我们组装了小型光电探测器。基于(2-甲基-1,5-戊二胺)CsPb2Br7二维层状有机-无机杂化钙钛矿光电探测器拥有较低的暗电流(1.7×10-11A)和较大的开关比(~103)。同时,紫外光探测器的R和EQE分别约为0.1mA/W和40%,D*值高达109Jones,而且该器件在266nm光照度下的时间响应表明了该器件是光稳定性的,可以在光打开和关闭的情况下在高和低电导状态之间可逆地切换。此外,器件的上升/下降时间(τrf)约为232/150μs.
以上所述仅为本发明的较佳实例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属于本发明的涵盖范围。
上述内容对实施例做了详细的说明,但本发明不受上述实施方式和实施例的限制,在不脱离本发明宗旨的前提下,在本领域技术人员所具备的知识范围内还可以对其进行各种变化和改进,这些变化和改进均落入本发明要保护的范围之内。

Claims (7)

1.一种DJ型极性二维双层杂化钙钛矿材料,其特征在于:所述DJ型极性二维双层杂化钙钛矿材料为(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料,其化学式为:C6H18N2CsPb2Br7,结构简式为:(C6H12N2H6)CsPb2Br7;(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料属于正交晶系,Pca21空间群;(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料的晶胞参数为
Figure FDA0002778533720000011
Z=4,单胞体积为
Figure FDA0002778533720000012
2.根据权利要求1所述的一种DJ型极性二维双层杂化钙钛矿材料的制备方法,其特征在于:包括以下步骤:
步骤1,将Pb(AC)2·3H2O溶解在HBr水溶液中,再依次加入Cs2CO3和2-甲基-1,5-戊二胺,得到淡黄色粉末沉淀;
步骤2,将步骤1得到的淡黄色粉末沉淀加热至沸腾后,得到一种清澈的浅黄色溶液,将该溶液缓慢冷却至室温可生长出大尺寸单晶体,该单晶体即为(2-甲基-1,5-戊二胺)CsPb2Br7晶体材料。
3.根据权利要求2所述的一种DJ型极性二维双层杂化钙钛矿材料的制备方法,其特征在于:所述步骤1中醋酸铅的浓度为0.379g/mmol,Cs2CO3的浓度为0.326g/mmol,2-甲基-1,5-戊二胺的浓度为0.116g/mmol,HBr水溶液的浓度为48wt%。
4.根据权利要求2所述的一种DJ型极性二维双层杂化钙钛矿材料的制备方法,其特征在于:所述步骤1中醋酸铅的用量为2.5-4mmol,HBr水溶液的用量为20mL,Cs2CO3的用量为1.5-3mmol,2-甲基-1,5-戊二氨的用量为1.5-3mmol。
5.根据权利要求2所述的一种DJ型极性二维双层杂化钙钛矿材料的制备方法,其特征在于:所述步骤1中2-甲基-1,5-戊二胺与Cs2CO3的质量比为0.356-0.4:1。
6.根据权利要求2所述的一种DJ型极性二维双层杂化钙钛矿材料的制备方法,其特征在于:所述步骤2中缓慢冷却的时间为6~8天。
7.一种DJ型极性二维双层杂化钙钛矿材料的应用,其特征在于:应用于半导体材料或紫外光探测领域的新型材料。
CN202011273903.9A 2020-11-14 2020-11-14 一种dj型极性二维双层杂化钙钛矿材料及制备方法和应用 Withdrawn CN112279876A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011273903.9A CN112279876A (zh) 2020-11-14 2020-11-14 一种dj型极性二维双层杂化钙钛矿材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011273903.9A CN112279876A (zh) 2020-11-14 2020-11-14 一种dj型极性二维双层杂化钙钛矿材料及制备方法和应用

Publications (1)

Publication Number Publication Date
CN112279876A true CN112279876A (zh) 2021-01-29

Family

ID=74399482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011273903.9A Withdrawn CN112279876A (zh) 2020-11-14 2020-11-14 一种dj型极性二维双层杂化钙钛矿材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN112279876A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880718A (zh) * 2021-11-05 2022-01-04 中国科学院福建物质结构研究所 具有共生结构的卤化物钙钛矿材料、制备方法及其用途
CN113999121A (zh) * 2021-10-12 2022-02-01 山西大学 窄带隙、无铅、稳定和光电性能优异的dj二维双钙钛矿
CN114870893A (zh) * 2022-05-08 2022-08-09 北京师范大学 一种2d层状有机/无机杂化钙钛矿光催化剂的制备方法及其光催化还原二氧化碳的应用
WO2023164932A1 (zh) * 2022-03-04 2023-09-07 宁德时代新能源科技股份有限公司 钙钛矿太阳能电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109853031A (zh) * 2019-02-27 2019-06-07 中南大学 一种高质量二维层状碘化铅钙钛矿单晶材料及其制备方法
CN110172027A (zh) * 2019-06-12 2019-08-27 郑州大学 一种二维钙钛矿光吸收材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109853031A (zh) * 2019-02-27 2019-06-07 中南大学 一种高质量二维层状碘化铅钙钛矿单晶材料及其制备方法
CN110172027A (zh) * 2019-06-12 2019-08-27 郑州大学 一种二维钙钛矿光吸收材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONGYING FU等,: "Polar CsPbBr3-based Dion–Jacobson hybrid for promising UV photodetection", 《CHEM. COMMUN.》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999121A (zh) * 2021-10-12 2022-02-01 山西大学 窄带隙、无铅、稳定和光电性能优异的dj二维双钙钛矿
CN113880718A (zh) * 2021-11-05 2022-01-04 中国科学院福建物质结构研究所 具有共生结构的卤化物钙钛矿材料、制备方法及其用途
CN113880718B (zh) * 2021-11-05 2023-10-10 中国科学院福建物质结构研究所 具有共生结构的卤化物钙钛矿材料、制备方法及其用途
WO2023164932A1 (zh) * 2022-03-04 2023-09-07 宁德时代新能源科技股份有限公司 钙钛矿太阳能电池及其制备方法
CN114870893A (zh) * 2022-05-08 2022-08-09 北京师范大学 一种2d层状有机/无机杂化钙钛矿光催化剂的制备方法及其光催化还原二氧化碳的应用

Similar Documents

Publication Publication Date Title
Lei et al. Lead‐free double perovskite Cs2AgBiBr6: fundamentals, applications, and perspectives
Wali et al. Advances in stability of perovskite solar cells
Bella et al. Caesium for perovskite solar cells: an overview
Ji et al. Inch‐Size Single Crystal of a Lead‐Free Organic–Inorganic Hybrid Perovskite for High‐Performance Photodetector
Ding et al. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector
Liu et al. Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits
CN112279876A (zh) 一种dj型极性二维双层杂化钙钛矿材料及制备方法和应用
Wei et al. Synthesis and properties of a lead-free hybrid double perovskite:(CH3NH3) 2AgBiBr6
Wang et al. Ultrasensitive polarized-light photodetectors based on 2D hybrid perovskite ferroelectric crystals with a low detection limit
Li et al. Structure tunable organic–inorganic bismuth halides for an enhanced two-dimensional lead-free light-harvesting material
Tian et al. Two-dimensional organic–inorganic hybrid Ruddlesden–Popper perovskite materials: preparation, enhanced stability, and applications in photodetection
Zeng et al. Combination of solution-phase process and halide exchange for all-inorganic, highly stable CsPbBr3 perovskite nanowire photodetector
Kennard et al. Phase stability and diffusion in lateral heterostructures of methyl ammonium lead halide perovskites
CN113571645A (zh) Dj型无甲胺窄带隙二维双层杂化钙钛矿材料及制备方法
Zhang et al. Thermochromism to tune the optical bandgap of a lead-free perovskite-type hybrid semiconductor for efficiently enhancing photocurrent generation
Garcia-Fernandez et al. [(CH3) 2NH2] 7Pb4X15 (X= Cl–and Br–), 2D-perovskite related hybrids with dielectric transitions and broadband photoluminiscent emission
Purusothaman et al. Elucidation of the unsymmetrical effect on the piezoelectric and semiconducting properties of Cd-doped 1D-ZnO nanorods
Hu et al. Intermediate phase-assisted solution preparation of two dimensional CsPbCl3 perovskite for efficient ultraviolet photodetection
Sansom et al. Chemical control of the dimensionality of the octahedral network of solar absorbers from the CuI–AgI–BiI3 phase space by synthesis of 3D CuAgBiI5
Guo et al. The compatibility of methylammonium and formamidinium in mixed cation perovskite: The optoelectronic and stability properties
Peng et al. Highly efficient broadband green emission of (TPA) CuCl2 single crystals: Understanding the formation of self-trapped states
Duan et al. Recent progress with one-dimensional metal halide perovskites: from rational synthesis to optoelectronic applications
Ghosh et al. Recent Advances and Opportunities in Low‐Dimensional Layered Perovskites for Emergent Applications beyond Photovoltaics
Dong et al. An ion migration induced self-powered photoelectrical detector based on FAPbBr 3 single crystals
Sk Recent progress of lead-free halide double perovskites for green energy and other applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210129