CN113862672B - 用于熔盐电解法的钨电极的制备方法 - Google Patents

用于熔盐电解法的钨电极的制备方法 Download PDF

Info

Publication number
CN113862672B
CN113862672B CN202111153293.3A CN202111153293A CN113862672B CN 113862672 B CN113862672 B CN 113862672B CN 202111153293 A CN202111153293 A CN 202111153293A CN 113862672 B CN113862672 B CN 113862672B
Authority
CN
China
Prior art keywords
tungsten electrode
composite layer
composite
powder
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111153293.3A
Other languages
English (en)
Other versions
CN113862672A (zh
Inventor
张鸣一
高平
王昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Metal Material Research Institute
Original Assignee
Inner Mongolia Metal Material Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Metal Material Research Institute filed Critical Inner Mongolia Metal Material Research Institute
Priority to CN202111153293.3A priority Critical patent/CN113862672B/zh
Publication of CN113862672A publication Critical patent/CN113862672A/zh
Priority to ZA2022/07572A priority patent/ZA202207572B/en
Application granted granted Critical
Publication of CN113862672B publication Critical patent/CN113862672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种用于熔盐电解法的钨电极的制备方法。该制备方法包括如下步骤:(1)将铜粉采用等离子喷涂工艺喷涂在待处理的钨电极的待喷涂部位,形成第一复合层;(2)将复合粉末采用超高速激光熔覆工艺覆盖在第一复合层上,形成第二复合层;(3)将氧化锆粉末采用等离子喷涂工艺覆盖在第二复合层上,形成第三复合层。该方法能够提高钨电极的使用寿命。

Description

用于熔盐电解法的钨电极的制备方法
技术领域
本发明涉及一种用于熔盐电解法的钨电极的制备方法,特别涉及一种用于熔盐电解法制备稀土的钨电极的制备方法。
背景技术
稀土元素具有广泛的用途,已被应用于航空、航天及军工材料中。稀土元素易于与氧等元素结合,所以单质稀土无法稳定存在。目前主要采用熔盐电解法制备稀土单质。在熔盐电解过程中通常采用氟化物及氧化物作为熔盐电解液,电解电流可以达到5000A以上,电解质工作温度为1000~1400℃,电解液挥发会产生浓度较高的氢氟酸气体,具有较强的腐蚀性。实际生产过程中通常采用钨棒作为阴极,石墨作为阳极。钨棒暴露在熔盐电解液液面以上,特别是靠近熔盐电解液液面的部位,除了要经受高温外,还要受到挥发性气体的氧化,导致钨棒电极的寿命仅能达到200天左右,增加了生产成本,影响了生产效率。提升钨电极的使用寿命成为亟待解决的问题。
发明内容
本发明的目的在于提供一种用于熔盐电解法的钨电极的制备方法,该方法能够提高钨电极的使用寿命。
本发明提供了一种用于熔盐电解法的钨电极的制备方法,包括如下步骤:
(1)将铜粉采用等离子喷涂工艺喷涂在待处理的钨电极的待喷涂部位,形成第一复合层;
其中,所述铜粉的粒度≤200目;所述钨电极的待喷涂部位为自钨电极与导电电极片相连的一端起,钨电极长度的1/15~1/7处至钨电极长度的1/5~2/5处之间区域的钨电极表面;
(2)将复合粉末采用超高速激光熔覆工艺覆盖在第一复合层上,形成第二复合层;
其中,所述复合粉末的粒度≤200目;所述复合粉末包括C 0.01~0.08wt%,Si1.0~3.5wt%,W 2.0~5.0wt%,Fe 3.0~7.0wt%,Ni 40.00~60.00wt%,Mo 10~17wt%,Cr 20~30wt%和B 0.3~0.9wt%;
(3)将氧化锆粉末采用等离子喷涂工艺喷涂在第二复合层上,形成第三复合层;
其中,所述氧化锆粉末的粒度≤200目。
根据本发明的制备方法,优选地,铜粉为气化球形铜粉。
铜粉的粒度≤200目;优选为≤300目;更优选≤500目。铜粉可以为气化球形铜粉。这样有助于形成高质量的第一复合层,这样的第一复合层与钨电极之间的结合力强,增强钨电极的抗腐蚀性;且能够提高与第二复合层之间的附着力,防止第二复合层在使用的过程中脱落。
钨电极可以为圆棒状。钨电极的直径可以为50~120mm;优选为60~100mm;更优选为70~90mm。钨电极的长度可以为700~1300mm;优选为800~1200mm;更优选为900~1100mm。
根据本发明的制备方法,优选地,还包括如下步骤:
采用喷砂工艺对钨电极的表面进行净化及毛化处理,得到待处理的钨电极。
钨电极经过净化及毛化处理能够增加钨电极的粗糙度,增加复合层和基体的附着面积和结合力。
优选地,钨电极的待喷涂部位为自钨电极与导电电极片相连的一端起,钨电极长度的1/12~1/9处至钨电极长度的1/5~1/3处之间区域的钨电极表面。导电电极片可以为铜板。
根据本发明的制备方法,优选地,步骤(1)中,等离子喷涂工艺的参数为:电流400~800A;电压40~80V;送粉速率:10~25g/min;送气速率25~45L/min。
本发明采用等离子喷涂工艺形成第一复合层。等离子喷涂工艺的参数如下:电流为400~800A,优选为500~700A;电压为40~80V,优选为60~70V;送粉速率为10~25g/min,优选为12~20g/min;送气速率为25~45L/min,优选为28~36L/min。这样对钨电极的热影响小,且提高了第一复合层的均匀性,从而有助于提高钨电极的使用寿命。
第一复合层的厚度可以为0.1~0.8mm;优选为0.2~0.7mm;更优选为0.5~0.6mm。这样既能够延长钨电极的使用寿命,又能够节约成本。
复合粉末中包括C、Si、W、Fe、Ni、Mo、Cr和B。在某些实施方式中,复合粉末由C、Si、W、Fe、Ni、Mo、Cr和B组成。复合粉末中,C的含量为0.01~0.08wt%;优选为0.02~0.07wt%;更优选为0.04~0.06wt%。Si的含量为1.0~3.5wt%;优选为1.5~3.0wt%;更优选为2.3~2.7wt%。W的含量为2.0~5.0wt%;优选为2.5~4.5wt%;更优选为3.4~4.0wt%。Fe的含量为3.0~7.0wt%;优选为4.0~6.0wt%;更优选为4.0~4.6wt%。Ni的含量为40.00~60.00wt%;优选为45.00~55.00wt%;更优选为45.00~50.00wt%。Mo的含量为10~17wt%;优选为12~15wt%。Cr的含量为20~30wt%;优选为25~28wt%。B的含量为0.3~0.9wt%;优选为0.5~0.7wt%。这样能够得到耐高温且耐腐蚀性能良好的第二复合层,从而有助于提高钨电极的使用寿命。
复合粉末的粒度≤200目;优选为≤300目;更优选≤500目。复合粉末可以由原料混粉采用行星式球磨机细化混匀得到。这样能够提高第二复合层的腐蚀性能和耐高温性能,且有助于提高与第一复合层的结合力。
根据本发明的制备方法,优选地,步骤(2)中,超高速激光熔覆工艺的参数为:功率2~5kW;送粉速度10~25g/min;保护气量10~30L/min,送粉气速率0.5~2.5L/min。
本发明采用超高速激光熔覆工艺在第一复合层上,形成第二复合层。超高速激光熔覆工艺的参数如下:功率为2~5kW;优选为3~4kW。送粉速度为10~25g/min;优选为15~20g/min。保护气量为10~30L/min;优选为15~20L/min。送粉气流速为0.5~2.5L/min;优选为1.0~1.8L/min。这样能够提高效率,保证第二复合层的质量。
第二复合层的厚度可以为1.0~2.5mm;优选为1.5~2.0mm。这样既能够延长钨电极的使用寿命,又能够节约成本。
氧化锆粉末的粒度≤200目;优选为≤300目;更优选≤500目。这样能够得到与第二复合层附着力强,且耐高温性能好的第三复合层。
根据本发明的制备方法,优选地,步骤(3)中,等离子喷涂工艺的参数为:电流400~800A;电压40~80V;送粉速率:10~25g/min;送气速率25~45L/min。
本发明采用等离子喷涂工艺形成第三复合层。离子喷涂工艺的参数如下:电流为400~800A,优选为500~650A;电压为40~80V,优选为55~68V;送粉速率为10~25g/min;优选为12~20g/min;送气速率为25~45L/min;优选为28~36L/min。这样能够提高第三复合层的均匀性。
第三复合层的厚度可以为0.2~1.0mm;优选为0.3~0.8mm;更优选为0.6~0.8mm。这样既能够延长钨电极的使用寿命,又能够节约成本。
根据本发明的制备方法,优选地,所述第一复合层的厚度为0.1~0.8mm,所述第二复合层的厚度为1.0~2.5mm,所述第三复合层的厚度为0.2~1.0mm。
根据本发明的制备方法,优选地,还包括如下步骤:
将第三复合层抛光擦亮,得到复合钨电极;将复合钨电极退火,得到用于熔盐电解法的钨电极。
根据本发明的制备方法,优选地,将第三复合层用百叶轮将表面打平,然后用麻轮进行中抛,再用棉轮配合抛光膏进行细抛;将细抛后的第三复合层表面擦亮,得到复合钨电极。这样能够提高钨电极的抗腐蚀效果,提高钨电极的使用寿命。
根据本发明的制备方法,优选地,退火温度为150~250℃,保温时间为6~10h。
在本发明中,退火温度为150~250℃;优选为180~220℃。保温时间为6~10h;优选为7~9h。退火可以在高温电阻炉内进行。这样能够防止内部或表面产生应力裂纹,提高钨电极的使用寿命。
本发明的用于熔盐电解法的钨电极的使用寿命为300天以上;优选为310~360天;更优选为320~340天。
本发明在钨电极的特定部位依次形成由铜形成的第一复合层,由复合粉末形成的第二复合层,由氧化锆粉末形成的第三复合层,三层复合层共同作用,提高了钨电极的耐腐蚀性和耐高温性。这些复合层形成在钨电极的特定部位,既节约了成本又提高了钨电极的使用寿命。
具体实施方式
下面介绍测试方法:
钨电极的使用寿命的测试工况:电解质为质量比为85:15的氟化镧与氟化锂的混合熔盐,电解温度为1100℃,电解电流为8000A,电解电压为8V。
下面介绍原料:
气化球形铜粉:购买自南宫市鑫盾合金焊材喷涂有限公司。
实施例1~3
将钨电极棒(Φ80mm×1000mm)采用喷砂工艺进行表面净化及毛化处理,得到待处理的钨电极。
将气化球形铜粉采用等离子喷涂工艺喷涂在待处理的钨电极的待喷涂部位,形成第一复合层。钨电极的待喷涂部位为自钨电极与导电电极片相连的一端起,钨电极长度的1/10处至钨电极长度的1/4处之间区域的钨电极表面。气化球形铜粉的粒度,形成第一复合层的工艺参数,第一复合层的厚度如表1所示。
将原料混粉采用行星式球磨机细化混匀,得到复合粉末。将复合粉末采用超高速激光熔覆工艺覆盖在第一复合层上,形成第二复合层。超高速激光熔覆工艺使用的设备为6kW超高速激光熔覆设备。复合粉末的成分及粒度,形成第二复合层的工艺参数,第二复合层的厚度如表1所示。
将氧化锆粉末采用等离子喷涂工艺喷涂在第二复合层上,形成第三复合层。氧化锆粉末的粒度,形成第三复合层的工艺参数,第三复合层的厚度如表1所示。
将第三复合层用百叶轮将表面打平,然后用麻轮进行中抛,再用棉轮配合抛光膏进行细抛;将细抛后的第三复合层表面擦亮,得到复合钨电极。
将复合电极在高温电阻炉内退火,退火温度为200℃,保温时间为8h,得到用于熔盐电解法的钨电极。
表1
比较例
将与实施例1相同的钨电极棒直接使用。使用寿命为201天。
本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落入本发明的范围。

Claims (8)

1.一种用于熔盐电解法的钨电极的制备方法,特征在于,包括如下步骤:
(1)将铜粉采用等离子喷涂工艺喷涂在待处理的钨电极的待喷涂部位,形成第一复合层;
其中,所述铜粉的粒度≤200目;所述钨电极的待喷涂部位为自钨电极与导电电极片相连的一端起,钨电极长度的1/15~1/7处至钨电极长度的1/5~2/5处之间区域的钨电极表面;
(2)将复合粉末采用超高速激光熔覆工艺覆盖在第一复合层上,形成第二复合层;
其中,所述复合粉末的粒度≤200目;所述复合粉末包括C0.01~0.08wt%,Si 1.0~3.5wt%,W 2.0~5.0wt%,Fe 3.0~7.0wt%,Ni 40.00~60.00wt%,Mo 10~17wt%,Cr20~30wt%和B 0.3~0.9wt%;
(3)将氧化锆粉末采用等离子喷涂工艺喷涂在第二复合层上,形成第三复合层;
其中,所述氧化锆粉末的粒度≤200目;
(4)将第三复合层抛光擦亮,得到复合钨电极;将复合钨电极退火,得到用于熔盐电解法的钨电极;
其中,退火温度为150~250℃,保温时间为6~10h。
2.根据权利要求1所述的制备方法,其特征在于,所述第一复合层的厚度为0.1~0.8mm,所述第二复合层的厚度为1.0~2.5mm,所述第三复合层的厚度为0.2~1.0mm。
3.根据权利要求1所述的制备方法,其特征在于,铜粉为气化球形铜粉。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,等离子喷涂工艺的参数为:电流400~800A;电压40~80V;送粉速率10~25g/min;送气速率25~45L/min。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,超高速激光熔覆工艺的参数为:功率2~5kW;送粉速度10~25g/min;保护气量10~30L/min,送气速率0.5~2.5L/min。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,等离子喷涂工艺的参数为:电流400~800A;电压40~80V;送粉速率:10~25g/min;送气速率25~45L/min。
7.根据权利要求1所述的制备方法,其特征在于,还包括如下步骤:
采用喷砂工艺对钨电极的表面进行净化及毛化处理,得到待处理的钨电极。
8.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,将第三复合层用百叶轮将表面打平,然后用麻轮进行中抛,再用棉轮配合抛光膏进行细抛;将细抛后的第三复合层表面擦亮,得到复合钨电极。
CN202111153293.3A 2021-09-29 2021-09-29 用于熔盐电解法的钨电极的制备方法 Active CN113862672B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111153293.3A CN113862672B (zh) 2021-09-29 2021-09-29 用于熔盐电解法的钨电极的制备方法
ZA2022/07572A ZA202207572B (en) 2021-09-29 2022-07-08 Preparation method of tungsten electrode for fused salt electrolysis process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111153293.3A CN113862672B (zh) 2021-09-29 2021-09-29 用于熔盐电解法的钨电极的制备方法

Publications (2)

Publication Number Publication Date
CN113862672A CN113862672A (zh) 2021-12-31
CN113862672B true CN113862672B (zh) 2023-10-31

Family

ID=79000628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111153293.3A Active CN113862672B (zh) 2021-09-29 2021-09-29 用于熔盐电解法的钨电极的制备方法

Country Status (2)

Country Link
CN (1) CN113862672B (zh)
ZA (1) ZA202207572B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897642B (zh) * 2021-09-29 2024-06-25 内蒙金属材料研究所 熔盐电解用钨阴极及其制备方法和激光熔覆技术的用途
CN118461003A (zh) * 2022-10-14 2024-08-09 中国兵器装备集团西南技术工程研究所 一种难熔金属-陶瓷复合材料构件及其制备方法
CN116162968B (zh) * 2023-03-17 2023-09-22 赣州晨光稀土新材料有限公司 一种稀土熔盐电解用钨电极及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146563A (zh) * 2011-03-08 2011-08-10 张昆 具有激光熔覆层和隔热涂层的智能调温钢轨生产工艺
CN103774025A (zh) * 2012-10-23 2014-05-07 北京工业大学 一种含有Mn、Mo、Ti的WC-FeNiCr无磁涂层材料及其制备方法
CN103911581A (zh) * 2014-03-24 2014-07-09 燕山大学 一种基于轧辊的氧化锆热障涂层的制备方法
CN105369179A (zh) * 2015-11-20 2016-03-02 沈阳黎明航空发动机(集团)有限责任公司 一种复合氧化锆高温封严涂层制备方法
CN107760956A (zh) * 2017-07-10 2018-03-06 马鞍山市三江机械有限公司 一种硬质合金及局部激光涂覆硬质合金工艺
CN108570703A (zh) * 2018-04-08 2018-09-25 天津大学 基于钨片表面纳米化的钨/铜层状复合材料制备方法
CN111454080A (zh) * 2020-05-12 2020-07-28 清华大学 一种敷铜或敷铜合金氧化铝陶瓷基板及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785508B (zh) * 2017-06-21 2022-09-06 霍加纳斯股份有限公司 适于在基质上提供硬和耐磨涂层的铁基合金、具有硬和耐磨涂层的制品及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146563A (zh) * 2011-03-08 2011-08-10 张昆 具有激光熔覆层和隔热涂层的智能调温钢轨生产工艺
CN103774025A (zh) * 2012-10-23 2014-05-07 北京工业大学 一种含有Mn、Mo、Ti的WC-FeNiCr无磁涂层材料及其制备方法
CN103911581A (zh) * 2014-03-24 2014-07-09 燕山大学 一种基于轧辊的氧化锆热障涂层的制备方法
CN105369179A (zh) * 2015-11-20 2016-03-02 沈阳黎明航空发动机(集团)有限责任公司 一种复合氧化锆高温封严涂层制备方法
CN107760956A (zh) * 2017-07-10 2018-03-06 马鞍山市三江机械有限公司 一种硬质合金及局部激光涂覆硬质合金工艺
CN108570703A (zh) * 2018-04-08 2018-09-25 天津大学 基于钨片表面纳米化的钨/铜层状复合材料制备方法
CN111454080A (zh) * 2020-05-12 2020-07-28 清华大学 一种敷铜或敷铜合金氧化铝陶瓷基板及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李晨希.《材料保护》.2010,第43卷(第3期),第11-13页. *

Also Published As

Publication number Publication date
ZA202207572B (en) 2022-10-26
CN113862672A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
CN113862672B (zh) 用于熔盐电解法的钨电极的制备方法
CN113897642B (zh) 熔盐电解用钨阴极及其制备方法和激光熔覆技术的用途
KR101839280B1 (ko) 고체 고분자형 연료 전지용 세퍼레이터 및 그 제조 방법
CN111996435A (zh) 高熵合金复合粉末及超高速激光熔覆强化镁合金的方法
CN109097620B (zh) 一种激光增材制造La2O3/(Cu,Ni)梯度功能复合材料的方法
CN112962119A (zh) 一种有色金属电积用复合电极板及其制备方法
CN112548399A (zh) 一种不锈钢焊接用活性剂及其制备方法和应用
CN115287529B (zh) 一种镍铁基合金涂层及其制备方法与应用
CN113462911B (zh) 一种强韧耐蚀az80镁合金的制备方法
CN112195435A (zh) 一种类核壳结构Al@(TiB2+Ti4O7)-PbO2阳极板及其制备方法
CN102492367A (zh) 低熔点金属粘接剂及其金属粘接的金刚石丝锯
CN114990383B (zh) 一种提高电极感应熔炼惰性气体雾化粉末细粉收得比例的钛合金及其雾化粉末制备方法
CN109797311B (zh) 一种锌电积阳极的制备方法
CN113185857B (zh) 一种石墨阳极板抗氧化涂层组合物及其应用
CN108690919A (zh) 一种纳米冶金法制备碳纳米管和/或石墨烯增强铅基复合阳极的方法
TWI481725B (zh) Sb-Te alloy powder for sintering, production method of the powder, and sintered body target
CN110587176B (zh) 氧化锆微掺杂的钨电极材料、电极及制备方法、用途
CN113637864A (zh) 一种用于铝合金的铬添加剂及其制备方法
CN117535712B (zh) 一种双极板及其制备方法、电解小室和电解槽
CN112719685B (zh) 熔化极氩弧焊用涂层不锈钢焊丝及其制备方法
CN111270186A (zh) 一种金刚石-铁基复合涂层及其作为高温阀门的密封层的应用
CN110819934A (zh) 耐微生物腐蚀TiN/Ti陶瓷金属复合涂层的制备方法
JPH06192870A (ja) 電解用電極
CN109468667B (zh) 一种锌电积用铅-铁酸锌复合阳极及其制备方法
CN114653950B (zh) 一种钼硅硼固溶强化钼切割丝及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant