CN113853260B - 用于激光烧结的粉末及应用 - Google Patents

用于激光烧结的粉末及应用 Download PDF

Info

Publication number
CN113853260B
CN113853260B CN202080037786.8A CN202080037786A CN113853260B CN 113853260 B CN113853260 B CN 113853260B CN 202080037786 A CN202080037786 A CN 202080037786A CN 113853260 B CN113853260 B CN 113853260B
Authority
CN
China
Prior art keywords
laser
powder
laser sintering
absorber
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080037786.8A
Other languages
English (en)
Other versions
CN113853260A (zh
Inventor
马慷慨
乌尔里希·安德列亚斯·希尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deyi Technology Taicang Co ltd
Taqkey Science Co ltd
Original Assignee
Deyi Technology Taicang Co ltd
Taqkey Science Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deyi Technology Taicang Co ltd, Taqkey Science Co ltd filed Critical Deyi Technology Taicang Co ltd
Publication of CN113853260A publication Critical patent/CN113853260A/zh
Application granted granted Critical
Publication of CN113853260B publication Critical patent/CN113853260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62821Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62826Iron group metal oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及用于激光烧结的表面改性的粉末,表面改性的粉末允许改善激光辐射能量耦入,尤其提出了一种粉末,其避免在对具有对激光辐射较低的吸收度的材料进行激光烧结时出现的问题。表面改性的粉末具有颗粒,颗粒具有颗粒核和结合在每个颗粒核的表面上的激光吸收体,其中,激光吸收体占据每个颗粒核的表面的至少30%,并且相比颗粒核,激光吸收体具有对用于激光烧结的激光辐射更高的吸收度。

Description

用于激光烧结的粉末及应用
技术领域
本发明涉及一种用于激光烧结的表面改性的粉末。
背景技术
在粉末床中进行激光烧结描述了一种过程,在该过程中,(例如由金属或塑料构成的)粉末被烧结或完全地且在不使用结合剂的情况下熔化,并在熔体凝固后生成高密度的均质原料。在粉末床中进行激光烧结时,由激光输送的能量被粉末吸收,并在总表面积缩小的情况下导致颗粒局部有限烧结或导致熔化。
选择性激光烧结(SLS)是一种增材式制造方法,以便通过利用激光进行的激光烧结从粉末制造出空间上的结构,例如构件。要制造的构件的几何数据必须作为层数据存在。粉末,例如金属粉末或陶瓷粉末,以1至200μm的层厚度全面地施加到构建平台上。根据层数据以计算机控制的方式按照构件的层轮廓将层烧结到粉末床中。构建平台在每个步骤之前稍微下降,以便随后铺设下一层。通过逐层制造构件,还能够产生侧凹的轮廓。在SLS中的一大的优点是不需要支撑结构。构件在其制造期间被周围的粉末支撑。在制造过程结束时,可以拍掉剩余的粉末。
对于激光烧结,尤其使用光纤激光器或Nd:YAG激光器,它们产生780nm-3000nm近红外范围内的激光辐射。在激光烧结时使用的粉末依赖于材料组成地针对具有限定波长的激光辐射具有不同的吸收度。入射激光辐射的有多少部分被粉末吸收与也称为光谱吸收系数的吸收度有关。
在常见的近红外范围内的激光波长的情况下吸收度低的粉末在激光烧结时出现问题。铜的吸收特性在例如1064nm的常见的激光波长的情况下小于5%。由于吸收度较低,使得铜粉无法在常见的激光波长的情况下用常规激光进行烧结。由于铜粉在该激光波长下的反射特性,使得辐射能量主要耦入到粉末的撑托面中,并可能导致热过载或者甚至是使得撑托面损坏。
EP 3 409 349 A1公开了一种用于激光烧结的表面改性的粉末,其包括一致的颗粒,颗粒具有颗粒核和结合在每个颗粒核的表面上的激光吸收体,其中,相比颗粒核,激光吸收体具有对激光辐射更高的吸收度。颗粒核由纯铜、铜合金、铝或铝合金组成,并且由外层覆盖,其中,外层由金属纳米颗粒或碳纳米管组成。外层的结构可以实现的是,通过在颗粒的表面产生起伏来增加吸收。例如,它可以是具有不平整和凹部、细丝、孔等的层。根据激光的波长可以选择结构,以最大化光学吸收。
US 2018/0051376 A1公开了一种用于在粉末床中进行激光烧结的表面改性的粉末。颗粒核的表面上的牺牲材料具有如下反射能力,其低于颗粒核的反射能力。颗粒核的材料可以是金属材料,包括铝、钛、铜或它们的合金。当粉末遇到足以烧结颗粒核的能量时,牺牲材料会挥发和蒸发。可以在使用能量源,例如激光来输送能量。牺牲材料可以是例如含碳材料、氧化物和/或氮化物。例如,借助流化床反应器、原子层沉积技术、化学气相沉积技术、固液混合后热解和化学镀技术来涂覆颗粒表面。
WO 2018/199110 A1公开了在借助激光来增材式制造时所使用的的表面涂覆的铜基颗粒。表面涂层是金属氧化物层。
发明内容
基于该现有技术,本发明的任务在于,提出一种用于激光烧结的粉末,该粉末能够实现对激光辐射能量耦入的改进;尤其地,应当提出一种粉末,其在原则上不适用于激光烧结的粉末的情况下可以实现激光烧结,其中,激光吸收体,即吸收激光辐射的分子在颗粒核和激光吸收体改变很少的情况下结合在每个颗粒核的表面。
此外,还应当提出一种用于制造层和空间上的结构的方法。
该解决方案所基于的构思在于,提供一种在用于激光烧结的在近红外范围内,尤其是1064nm的激光辐射的波长范围内具有改进的吸收性能的表面改性的由纯铜构成的粉末。
详细地,该任务通过根据本发明的用于激光烧结的表面改性的粉末来解决。
为了在原则上不适用于激光烧结的粉末,例如由纯铜制成的粉末的情况下能够实现激光烧结,激光吸收体的吸收度与颗粒核的吸收度之间的差异必须明显更大。在光纤激光器典型波长为1064nm的情况下,纯铜的吸收度约为5%。为了能够烧结由纯铜制成的颗粒核,所结合的吸收体的吸收度至少为20%,然而优选为30%。
已知金属氢氧化物,例如碱式磷酸铜,在用于激光烧结的激光器的常见的波长范围内,也就是说在近红外范围内,它们具有优异的吸收能力。在以近红外范围内的激光辐射照射材料时,这些金属氧化物或金属氢氧化物被非常强烈地加热,并且有时会生成明显超过1000℃的温度。因此,激光吸收器体金属氢氧化物构成。在激光烧结过程中使用由纯铜构成的粉末的情况下,这些吸收辐射好的金属氢氧化物在近红外范围内的激光辐射下的强加温能够被用于烧结金属颗粒核。
激光吸收体,也就是说吸收激光辐射的分子,优选通过吸附而结合到每个颗粒核的表面上。这种结合尤其在形式为吸附的物理吸附的过程中进行,在该吸附中,分子通过范德华力结合到每个颗粒核的表面上。虽然,在物理吸附中起作用的静电力比在同样被考虑到的化学键的情况下的静电力弱,但足以以足够稳定的方式使分子稳定在用于烧结过程的颗粒核的表面上。通过物理吸附或范德华力的结合的优点在于颗粒核和激光吸收体的变化微小。
用于激光烧结的表面改性的粉末具有颗粒,颗粒具有颗粒核和结合在每个颗粒核的表面上的激光吸收体,其中,激光吸收体占据每个颗粒核的表面的至少25%,优选至少30%。粉末的颗粒全部由纯铜构成。
然而,关于尺寸和形状方面,粉末的颗粒可以有变化。优选地,颗粒具有等效直径D50在10μm-100μm范围内的粒度。
所吸收的激光辐射在激光吸收体中有效地转化为热量。由于激光吸收体结合到表面上,使得热量通过热传导传递到颗粒核上。因此颗粒核与激光吸收体之间的热传导所需的温差所基于的是,由于颗粒核对激光辐射的吸收度较低而使得颗粒核相比激光吸收体受热较少。
针对颗粒核和激光吸收体的材料的吸收特性优选针对波长在近红外范围内,尤其是1064nm的激光辐射来确定。近红外范围从780nm延伸到3μm,并且包括从用于激光烧结的固态激光器发射的激光辐射的典型波长。例如,Nd:YAG固态激光器发射波长为1064nm的激光辐射。
如果用例如用于改善粉末流动特性的另外的材料来部分地占用颗粒,则在制造时必须注意的是,在施加另外的材料之前,首先将吸收激光的分子直接结合在金属的颗粒核上。
非常细的金属粉末通常特征在于具有较差的粉末流动特性,这会损害将粉末引入到粉末床中进行激光烧结。为了有利地影响粉末流动特性并同时能够实现高效的激光烧结,粒度具有在10μm-100μm范围内的等效直径D50。
根据本发明的表面改性的粉末尤其适用于在表面改性的粉末的粉末床中进行激光烧结,例如以便在基材上建立涂覆部。因为粉末的颗粒核由纯铜构成,所以能够在激光烧结过程中在特征在于具有高导电性的表面上建立导体迹线结构和/或接触区域。
然而,在选择性激光烧结的过程中,从根据本发明的粉末不仅能够制造出涂覆部而且能够制造出空间上的结构。尤其地,利用该粉末,使得选择性激光烧结现在也能够用于纯铜,纯铜由于它对通常使用的固态激光器的近红外范围内的激光辐射来说吸收度较低而迄今并未考虑过,比如纯铜。
根据本发明的表面改性的粉末有利地也能够用于利用粉末进行的激光堆焊。
激光堆焊是在借助熔化并同时施加材料、尤其也是粉末形式的材料,将表面堆积到工件上的方法。在激光堆焊中,将高功率激光器、主要是二极管激光器或光纤激光器,用作热源。该方法不仅能够用于产生层而且产生自由成形的2.5D结构。在以粉末进行的激光堆焊中,激光加热工件并使工件局部熔化。同时,输送与粉末混合的惰性气体。经由同轴喷嘴实现具有粉末/气体混合物的作用区域。粉末在被加热的位置处熔化并与工件连接。通过使用表面改性的由纯铜构成的粉末,使得粉末现在也能够在激光堆焊的过程中被加工,否则这些粉末由于吸收度不足而不能轻易被激光熔化。
附图说明
下面参照附图更详细地解释本发明。其中:
图1示出用于激光烧结的表面改性的粉末的单个颗粒的示意图;并且
图2示出用于说明根据图1的粉末在选择性激光烧结中的应用的示意图。
具体实施方式
图1以强烈放大的示意图示出了表面改性的粉末1的仅几个颗粒2。各个颗粒2具有不规则形状,其等效直径D50约为30μm。
粉末1的每个颗粒2由颗粒核3构成,在颗粒核的表面4上结合有分子形式的激光吸收体5。激光吸收体5覆盖了每个颗粒核3的表面4的至少30%。
颗粒核3由对于波长为1064nm的入射的激光辐射具有约5%的低吸收度的纯铜构成。激光吸收体5是由金属氢氧化物、例如碱式磷酸铜构成的粒子,其对波长为1064nm的入射的激光辐射具有非常高的吸收度。
激光吸收体5通过物理吸附结合到颗粒核3的表面4上。例如,结合可以通过由铜构成的颗粒核3和激光吸收体5的混合过程来实现。
以这种方式实现的表面改性的粉末1被用于激光烧结,尤其是用于选择性激光烧结。下面结合图2更详细地阐述选择性激光烧结的过程:
选择性激光烧结是增材式的制造方法,以便通过利用激光器7进行的激光烧结从粉末1制造出构件6。待制造的构件6的几何数据必须作为层数据存在。借助构件6的层数据来控制激光扫描仪10,以激光扫描仪以强度受控的方式将激光器7的激光辐射11逐行地传输到粉末1上。
首先将粉末1从具有在后方引导粉末的活塞12和辊子9的粉末储备器13全面地作为层厚度为20至40μm的层施加到构建平台8上(粉末床)。然后以计算机控制的方式按照构件6的层轮廓将构件6的层数据逐层地烧结到粉末床中。在每个步骤之前,构建平台8稍微下降,以便随后利用辊子9从粉末储备器13中铺设下一层粉末1。替选地,可以使用刮板。
通过逐层制造构件6,也能够生产侧凹的轮廓。不需要支撑结构,这是因为构件6在其制造期间被周围的粉末1支撑。
附图标记列表
1 粉末
2 颗粒
3 颗粒核
4 表面
5 激光吸收体
6 构件
7 激光器
8 构建平台
9 辊子
10 激光扫描仪
11 激光辐射
12 活塞
13 粉末储备器

Claims (7)

1.用于激光烧结的表面改性的粉末(1),所述表面改性的粉末包括
-一致的颗粒(2),所述颗粒具有颗粒核(3),其中,每个颗粒核(3)由纯铜构成,和
-结合在每个颗粒核(3)的表面(4)上的激光吸收体(5),其中,所述激光吸收体(5)占据每个颗粒核(3)的表面(4)的至少25%并且相比所述颗粒核(3),所述激光吸收体具有对用于激光烧结的激光辐射(11)更高的吸收度,
其特征在于,
-所述激光辐射(11)具有在近红外范围内的波长,
-所述激光吸收体(5)由金属氢氧化物构成并且通过物理吸附结合到每个颗粒核(3)的表面(4)上,其中,所述激光吸收体(5)的吸收度为至少20%。
2.根据权利要求1所述的表面改性的粉末,其特征在于,所述激光吸收体(5)以分子形式存在。
3.根据权利要求1或2所述的表面改性的粉末,其特征在于,所述波长为1064nm。
4.根据权利要求1至3中任一项所述的表面改性的粉末(1)用于在所述表面改性的粉末(1)的粉末床中进行激光烧结的应用。
5.根据权利要求1至3中任一项所述的表面改性的粉末(1)用于通过选择性激光烧结制造出空间上的结构(6)的应用。
6.根据权利要求4或5所述的表面改性的粉末(1)的应用,其特征在于,为了实现激光烧结,使用Nd:YAG激光器或光纤激光器(7)。
7.根据权利要求1至3中任一项所述的表面改性的粉末(1)用于利用粉末进行激光堆焊的应用。
CN202080037786.8A 2019-06-19 2020-06-03 用于激光烧结的粉末及应用 Active CN113853260B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019116665 2019-06-19
DE102019116665.9 2019-06-19
PCT/EP2020/065268 WO2020254108A1 (de) 2019-06-19 2020-06-03 Pulver zum lasersintern und verwendung

Publications (2)

Publication Number Publication Date
CN113853260A CN113853260A (zh) 2021-12-28
CN113853260B true CN113853260B (zh) 2023-08-08

Family

ID=70977524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080037786.8A Active CN113853260B (zh) 2019-06-19 2020-06-03 用于激光烧结的粉末及应用

Country Status (5)

Country Link
US (1) US20220219230A1 (zh)
EP (1) EP3934830B1 (zh)
KR (1) KR102584049B1 (zh)
CN (1) CN113853260B (zh)
WO (1) WO2020254108A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056736A2 (en) * 2000-02-04 2001-08-09 Optomec Design Company Laser assisted direct material deposition with modified absorption
CN1950192A (zh) * 2004-03-16 2007-04-18 德古萨公司 用激光技术制造三维物件的方法和装置和用喷墨法施加吸收剂
CN101065204A (zh) * 2004-09-29 2007-10-31 Tdk株式会社 导电性粒子的制造方法、导电性糊料及电子部件的制造方法
CN104907555A (zh) * 2014-03-14 2015-09-16 中国科学院大连化学物理研究所 一种核壳型金/介孔硅碳复合纳米材料、制备方法及应用
CN105339127A (zh) * 2013-06-28 2016-02-17 汉诺威激光中心 用于工件的激光钻孔或激光切割的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007038578A1 (de) * 2007-08-16 2009-02-19 Evonik Degussa Gmbh Verfahren zur Dekorierung von Oberflächen
US9889012B2 (en) * 2009-07-23 2018-02-13 Didier NIMAL Biomedical device, method for manufacturing the same and use thereof
EP2744634B1 (de) * 2011-08-18 2021-02-24 Momentive Performance Materials GmbH Bestrahlungs- bzw. formeinheit
DE102013104222A1 (de) * 2013-04-25 2014-10-30 Kennametal Inc. Hybrides Schneidwerkzeug, Spantransportabschnitt sowie Verfahren zur Herstellung eines Schneidwerkzeugs
US20150102016A1 (en) * 2013-07-29 2015-04-16 Siemens Energy, Inc. Laser metalworking of reflective metals using flux
DE102017102355A1 (de) 2016-02-09 2017-08-10 Jtekt Corporation Herstellungsvorrichtung und herstellungsverfahren für geformten gegenstand
US10576541B2 (en) * 2016-06-22 2020-03-03 United Technologies Corporation Structured powder particles for feedstock improvement for laser based additive manufacturing
US10626503B2 (en) * 2016-08-18 2020-04-21 Hamilton Sundstrand Corporation Particulates and methods of making particulates
EP3628417A4 (en) * 2017-04-28 2021-01-27 Furukawa Electric Co., Ltd. COPPER ALLOY PARTICLES, SURFACE COATED COPPER BASED PARTICLES AND MIXED PARTICLES
FR3066705B1 (fr) * 2017-05-29 2022-12-02 Commissariat Energie Atomique Particule pour la realisation de pieces metalliques par impression 3d et procede de realisation de pieces metalliques
EP3634767A1 (en) * 2017-06-08 2020-04-15 VV Materials LLC Laser marking compositions and methods of making and using the same
CN109746435A (zh) * 2019-01-30 2019-05-14 中国科学院过程工程研究所 一种表面改性的高激光反射率金属粉体及3d打印方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056736A2 (en) * 2000-02-04 2001-08-09 Optomec Design Company Laser assisted direct material deposition with modified absorption
CN1950192A (zh) * 2004-03-16 2007-04-18 德古萨公司 用激光技术制造三维物件的方法和装置和用喷墨法施加吸收剂
CN101065204A (zh) * 2004-09-29 2007-10-31 Tdk株式会社 导电性粒子的制造方法、导电性糊料及电子部件的制造方法
CN105339127A (zh) * 2013-06-28 2016-02-17 汉诺威激光中心 用于工件的激光钻孔或激光切割的方法
CN104907555A (zh) * 2014-03-14 2015-09-16 中国科学院大连化学物理研究所 一种核壳型金/介孔硅碳复合纳米材料、制备方法及应用

Also Published As

Publication number Publication date
EP3934830A1 (de) 2022-01-12
KR102584049B1 (ko) 2023-09-27
CN113853260A (zh) 2021-12-28
US20220219230A1 (en) 2022-07-14
EP3934830B1 (de) 2023-08-02
WO2020254108A1 (de) 2020-12-24
KR20220024016A (ko) 2022-03-03
EP3934830C0 (de) 2023-08-02

Similar Documents

Publication Publication Date Title
Mühler et al. Slurry‐based additive manufacturing of ceramics
US9995541B2 (en) Method for forming a composite material, and heat sink
CN113195184B (zh) 无机材料粉末以及制造结构体的方法
JP6706608B2 (ja) 部品の製造方法
US10994371B2 (en) System and method for depositing a metal to form a three-dimensional part
KR20180048665A (ko) 첨가제 제조방법 및 장치
JP2011021218A (ja) 積層造形用粉末材料及び粉末積層造形法
US10265771B2 (en) Additive manufacture of electrically conductive materials
EP3116706A1 (en) Sintering particulate material
US20120219726A1 (en) Method and device for producing a component
CN108290216B (zh) 3d打印用粉末及3d打印方法
CN113853260B (zh) 用于激光烧结的粉末及应用
US10384285B2 (en) Method of selective laser brazing
US11097350B2 (en) Pre-fusion laser sintering for metal powder stabilization during additive manufacturing
CN113733554A (zh) 一种微波与红外辐射复合成形高分子零件的方法与装置
CN106626379B (zh) 激光制造聚酰胺三维物体的方法和装置
CN110142968B (zh) 一种3d打印材料及其制备方法
US20230415409A1 (en) Enhanced feedstock for additive manufacturing
JP2019181930A (ja) セラミックス粉体、セラミックス粉体の製造方法およびセラミックス粉体を用いたセラミックス構造物の製造方法
Sato et al. Fabrication of Pure Copper Rod by Multi-beam Laser Metal Deposition with Blue Diode Lasers.
KUWANA et al. Fabrication of carbon-decorated Al2O3 composite powders using cellulose nanofiber for selective laser sintering
JP2023012810A (ja) 銅基粉、その製造方法、および銅基粉を用いた光造形物の製造方法
TW201627256A (zh) 選擇性燒結方法以及燒結粉體
JP7484738B2 (ja) 造形体の製造方法、および、造形体
WO2022172972A1 (ja) レーザー照射による複合体の製造方法及び複合体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Uther in Germany

Applicant after: TAQKEY SCIENCE Co.,Ltd.

Applicant after: Deyi Technology (Taicang) Co.,Ltd.

Address before: Neu Isenburg, Germany

Applicant before: TAQKEY SCIENCE Co.,Ltd.

Applicant before: Deyi Technology (Taicang) Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant