CN113851723B - 一种电解液及金属-硫电池 - Google Patents

一种电解液及金属-硫电池 Download PDF

Info

Publication number
CN113851723B
CN113851723B CN202010598041.0A CN202010598041A CN113851723B CN 113851723 B CN113851723 B CN 113851723B CN 202010598041 A CN202010598041 A CN 202010598041A CN 113851723 B CN113851723 B CN 113851723B
Authority
CN
China
Prior art keywords
electrolyte
metal
compound
structural formula
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010598041.0A
Other languages
English (en)
Other versions
CN113851723A (zh
Inventor
邓永红
冯建文
钱韫娴
肖映林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Capchem Technology Co Ltd
Original Assignee
Shenzhen Capchem Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Capchem Technology Co Ltd filed Critical Shenzhen Capchem Technology Co Ltd
Priority to CN202010598041.0A priority Critical patent/CN113851723B/zh
Publication of CN113851723A publication Critical patent/CN113851723A/zh
Application granted granted Critical
Publication of CN113851723B publication Critical patent/CN113851723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种电解液,包括溶剂及电解质盐;所述电解质盐包括以下结构式1所示的化合物:
Figure DDA0002558075960000011
其中,R1和R3各自独立地选自
Figure DDA0002558075960000012
Figure DDA0002558075960000013
R4选自S或Se;R5选自C、Si、Ge、Sn、S或Se;R2选自具有部分氢或全部氢被其它元素或基团取代的碳链或芳香基团;M1选自N、B、P、As、Sb或Bi;M2选自Li、Na、K、Mg或Al,n选自1、2或3;所述溶剂包括以下结构式2所示的化合物:
Figure DDA0002558075960000014
其中,m选自3~10,R6和R7各自独立地选自氢或碳原子数1~3的烃基。同时,本发明还公开了包括上述电解液的金属‑硫电池。本发明提供的电解液能够有效解决醚类溶剂电解液存在的循环性能差的问题。

Description

一种电解液及金属-硫电池
技术领域
本发明属于二次电池技术领域,具体涉及一种电解液及金属-硫电池。
背景技术
随着21世纪的到来,能源问题日益严峻,环境污染持续恶化,为了实现可持续发展,新能源和可再生能源的利用和发展成为世界各国研究的热点。水能、风能、氢能、核能、潮汐能、太阳能在世界各国都得到大力的发展和利用。储能器件性能的提高,能有效地促进新能源应用的普及。众多的储能设备中,电化学储能电池以其能量密度高、能源转换效率好、污染小、组合和移动方便等特点,成为世界各国重要研究方向之一。
在各类电化学储能电池中,单质硫或硫基复合物/金属电池的理论能量密度高达2600Wh·kg-1,实际能量密度目前可达到300Wh·kg-1,未来几年内可能提高到600Wh·kg-1左右,被认为是当前最具研究价值和应用前景的二次锂电池体系之一。单质硫作为锂离子电池正极材料时、产生的中间产物多硫化锂(Li2Sn,3≤n≤8)在电解液中溶解会导致电池库仑效率和活性物质利用率低下等问题。此外,碱金属锂、钠或钾作为负极,在低温充电或大倍率充电时由于负极动力学条件较差,非常容易引起金属锂、钠或钾在负极表面形成镀层,随着镀层的生长,最终会形成金属枝晶,金属枝晶生长到一定程度后就会和隔膜接触,对隔膜形成积压和针刺等,最终导致隔膜发生机械失效,引发正负极之间短路。金属枝晶的产生是影响电池安全性能的重要因素。
现有解决金属枝晶的方法主要是利用多种纳米技术进行对锂金属集流体进行修饰,包括碳球结构、三维金属集流体等,但是由于使用了较复杂的工艺,成本不能进一步降低,并且性能提高不显著,无法实现大规模生产;其次,人工SEI膜普遍存在锂离子电导较低,不符合当下对快速充放电的需求;近年来,通过有效调控电解液的方式抑制锂枝晶的生长和多硫化物穿梭备受关注,主要方式是通过增加电解液中锂盐浓度或是增加局部锂盐浓度解决由于低浓度锂盐带来的空间电荷分布不均匀,从而使得锂金属沉积均匀化,抑制锂枝晶的生长和死锂的产生。通过向常规锂盐浓度的电解液中增加成膜添加剂也是一种抑制锂枝晶和多硫化物穿梭的手段。但是,现有的成膜添加剂也仍未能很好地解决金属-硫电池存在的金属枝晶问题。
另一方面,为了改善锂硫电池的安全性,人们尝试使用沸点和闪点高,蒸汽压低的醚类溶剂来代替可燃的醚类溶剂。然而,该电解液体系的长期循环性能较差,50次循环后放电比容量仅剩400mAh/g左右。例如,Marco Agostini等人(Chemistry of Materials.27(2015)4604-4611)报道了1M LiCF3SO3-TEGDME电解液体系的锂硫电池循环性能,其放电比容量衰减非常快,原因是锂金属负极的SEI膜不稳定,导致硫活性物质的不断消耗。
发明内容
针对现有金属-硫电池存在循环性能不足的问题,本发明提供了一种电解液及金属-硫电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种电解液,包括溶剂及电解质盐;
所述电解质盐包括以下结构式1所示的化合物:
Figure BDA0002558075940000021
其中,R1和R3各自独立地选自
Figure BDA0002558075940000022
R4选自S或Se;R5选自C、Si、Ge、Sn、S或Se;R2选自具有部分氢或全部氢被其它元素或基团取代的碳链或芳香基团;M1选自N、B、P、As、Sb或Bi;M2选自Li、Na、K、Mg或Al,n选自1、2或3;
所述溶剂包括以下结构式2所示的化合物:
Figure BDA0002558075940000023
其中,m选自3~10,R6和R7各自独立地选自氢或碳原子数1~3的烃基。可选的,结构式1所示的化合物中,R2选自部分氢或全部氢被卤族元素或卤代烃基取代的1-4个碳的饱和或不饱和碳链、部分氢或全部氢被卤族元素或卤代烃基取代的芳香环。
可选的,结构式1所示的化合物中,R2选自部分氢或全部氢被氟或氟代烃基取代的1-4个碳的饱和或不饱和碳链、部分氢或全部氢被氟或氟代烃基取代的芳香环。
可选的,结构式1所示的化合物包括以下化合物中的一种或多种:
Figure BDA0002558075940000031
Figure BDA0002558075940000041
Figure BDA0002558075940000051
Figure BDA0002558075940000061
Figure BDA0002558075940000071
Figure BDA0002558075940000081
可选的,电解液中,所述电解质盐的含量为0.01M~10M。
可选的,结构式2所示的化合物包括以下化合物中的一种或多种:
Figure BDA0002558075940000082
Figure BDA0002558075940000091
可选的,以所述电解液的总质量为100%计,所述结构式2所示的化合物的含量为80%~90%。
可选的,所述电解液中还包括金属硝酸盐,以所述电解液的质量为100%计,所述金属硝酸盐的质量百分含量为0.1%~10%。
另一方面,本发明提供了一种金属-硫电池,包括正极材料、负极材料以及如上所述的电解液,所述正极材料包括单质硫和硫基复合物中的一种。
可选的,所述负极材料选自第一主族金属材料。
可选的,所述金属-硫电池还包括有隔膜,所述隔膜位于所述正极材料和所述负极材料之间。
根据本发明提供的电解液,发明人通过大量实验发现,将结构式1所示的电解质盐与结构式2所示的溶剂共用于电解液中,其中结构式1所示的电解质盐能在循环过程中分解生成富含卤化碱金属的SEI膜,另外,少量的结构式2所示的溶剂的分解也会生成柔韧性较好的有机组分,并参与该SEI膜的形成过程,该SEI膜能抑制结构式2所示溶剂的持续分解,使锂硫电池的电化学阻抗在长期循环中保持较小的增加。结构式1所示的电解质盐与结构式2所示的溶剂配合形成的SEI膜同时具有高机械强度的卤化碱金属以及柔韧性强的有机组分。因此,该复合SEI膜的稳定性比单一溶剂或者单一锂盐形成的SEI膜更好,具有较高的稳定性,更有效地保护锂金属负极和硫正极,提高锂硫电池的长期循环性能和倍率性能。
附图说明
图1是本发明实施例9和对比例9制备得到的锂锂对称电池的循环性能测试图;
图2是本发明实施例1、对比例1和对比例3制备得到的锂硫电池的电池循环性能测试图;
图3是本发明实施例2、对比例2和对比例4制备得到的锂硫电池的电池循环性能测试图。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种电解液,包括溶剂及电解质盐;
所述电解质盐包括以下结构式1所示的化合物:
Figure BDA0002558075940000101
其中,R1和R3各自独立地选自
Figure BDA0002558075940000102
R4选自S或Se;R5选自C、Si、Ge、Sn、S或Se;R2选自具有部分氢或全部氢被其它元素或基团取代的碳链或芳香基团;M1选自N、B、P、As、Sb或Bi;M2选自Li、Na、K、Mg或Al,n选自1、2或3;
所述溶剂包括以下结构式2所示的化合物:
Figure BDA0002558075940000103
其中,m选自3~10,R6和R7各自独立地选自氢或碳原子数1~3的烃基。发明人通过大量实验发现,将结构式1所示的电解质盐与结构式2所示的溶剂共用于电解液中,其中结构式1所示的电解质盐能在循环过程中分解生成富含卤化碱金属的SEI膜,另外,少量的结构式2所示的溶剂的分解也会生成柔韧性较好的有机组分,并参与该SEI膜的形成过程,该SEI膜能抑制结构式2所示溶剂的持续分解,使锂硫电池的电化学阻抗在长期循环中保持较小的增加。结构式1所示的电解质盐与结构式2所示的溶剂配合形成的SEI膜同时具有高机械强度的卤化碱金属以及柔韧性强的有机组分。因此,该复合SEI膜的稳定性比单一溶剂或者单一锂盐形成的SEI膜更好,具有较高的稳定性,更有效地保护锂金属负极和硫正极,提高锂硫电池的长期循环性能和倍率性能。
在一些实施例中,结构式1所示的化合物中,R2选自部分氢或全部氢被卤族元素或卤代烃基取代的1-4个碳的饱和或不饱和碳链、部分氢或全部氢被卤族元素或卤代烃基取代的芳香环。
若所述碳链过长,则易导致结构式1所示化合物的稳定性降低,从而影响其在电解液中发挥作用。
在更优选的实施例中,结构式1所示的化合物中,R2选自部分氢或全部氢被氟或氟代烃基取代的1-4个碳的饱和或不饱和碳链、部分氢或全部氢被氟或氟代烃基取代的芳香环。
在一些实施例中,结构式1所示的化合物包括以下化合物中的一种或多种:
Figure BDA0002558075940000111
Figure BDA0002558075940000121
Figure BDA0002558075940000131
Figure BDA0002558075940000141
Figure BDA0002558075940000151
Figure BDA0002558075940000161
需要说明的是,以上是本发明所要求保护的部分化合物,但不限于此,不应理解为对本发明的限制。
在一些实施例中,电解液中,所述电解质盐的含量为0.01M~10M。
在优选的实施例中,电解液中,所述电解质盐的含量为0.1M~5M。
在更优选的实施例中,电解液中,所述电解质盐的含量为0.1M~2M。
在一些实施例中,结构式2所示的化合物包括以下化合物中的一种或多种:
Figure BDA0002558075940000162
Figure BDA0002558075940000171
需要说明的是,以上是本发明所要求保护的部分化合物,但不限于此,不应理解为对本发明的限制。
在更优选的实施例中,所述溶剂选自四乙二醇二甲醚(TEGDME)。
在一些实施例中,以所述电解液的总质量为100%计,所述结构式2所示的化合物的含量为80%~90%。
在一些实施例中,所述电解液中还包括金属硝酸盐,以所述电解液的质量为100%计,所述金属硝酸盐的质量百分含量为0.1%~10%。
在一些实施例中,所述金属硝酸盐包括LiNO3、NaNO3和KNO3中的一种或多种。
本发明的另一实施例提供了一种金属-硫电池,包括正极材料、负极材料以及如上所述的电解液,所述正极材料包括单质硫和硫基复合物中的一种。
在一些实施例中,所述正极材料为硫和碳材料的复合物。
在一些实施例中,所述负极材料选自第一主族金属材料。
在优选的实施例中,所述负极材料包括Li、K和Na中的一种或多种。
在优选实施例中,所述金属硝酸盐中的金属离子与所述负极材料选自相同的金属元素,当所述负极材料选自Li时,所述金属硝酸盐选自LiNO3;当所述负极材料选自Na时,所述金属硝酸盐选自NaNO3;当所述负极材料选自K时,所述金属硝酸盐选自KNO3
在优选实施例中,结构式1~结构式3中,M2选自与所述负极材料选自相同的金属元素,当所述负极材料选自Li时,所述M2选自Li+;当所述负极材料选自Na时,所述M2选自Na+;当所述负极材料选自K时,所述M2选自K+
在一些实施例中,所述金属-硫电池还包括有隔膜,所述隔膜位于所述正极材料和所述负极材料之间。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例用于说明本发明公开的电解液、金属-硫电池及其制备方法,包括以下操作步骤:
电解液制备:向铝罐中加入1,1,2,2,3,3-六氟-1,3-二磺酰亚胺锂(简写LiHFDF)作为锂盐,LiHFDF购自TCI公司,纯度为98%;再向铝罐中用移液枪加入3mL的溶剂四乙二醇二甲醚(化合物96),将铝罐封好放在磁力搅拌台上搅拌12h直至锂盐溶解得到电解液,控制磁力搅拌温度条件为30℃,磁力搅拌12h,所述LiHFDF浓度为1M,加入1%的硝酸锂,电解液配置全过程在氩气气氛的手套箱中进行,水含量<1ppm,氧含量<1ppm;
电池制备:将硫与科琴黑按1:3的质量比例混合,在155℃下加热12h,得到含硫量为66%的C/S复合物,将该复合物与10wt%PVDF的NMP溶液混合,将该混合浆料涂覆在铝箔上,在60℃下真空干燥12小时,切成直径为12mm的圆片作为纽扣式电池正极,隔膜为celgard2325型隔膜,负极为直径16mm,厚度为0.4mm的锂片,电解液用量为20ul/mgS。
实施例2~8
实施例2~8用于说明本发明公开的电解液、金属-硫电池及其制备方法,包括以下操作步骤:
采用如表1中实施例2~8所示的正极材料、负极材料、电解液溶剂和电解液添加物。
对比例1~8
对比例1~8用于对比说明本发明公开的电解液、金属-硫电池及其制备方法,包括以下操作步骤:
采用如表1中对比例1~8所示的正极材料、负极材料、电解液溶剂和电解液添加物。
性能测试
一、对上述实施例1~8和对比例1~8制备得到的电池进行电池循环性能测试和倍率性能测试,得到的测试结果填入表1。
表1
Figure BDA0002558075940000191
Figure BDA0002558075940000201
Figure BDA0002558075940000211
各实施例及对比例的测试条件补充说明:
①有金属-硫电池及锂锂对称电池均在30℃恒温间内进行测试。
②300圈循环后容量保持率的计算方法:(300圈放电比容量/首圈放电比容量)×100%。
从表1的测试结果可以看出,相对于现有的其他金属-硫电池电解液,本发明提供的金属-硫电池电解液中结构式1所示的化合物和结构式2所示的化合物能明显提高金属-硫电池的长期循环性能。
对比实施例3、对比例5和对比例6的测试结果可知,当碱金属负极为钠片时,单独使用TEGDME的对比例5放电比容量衰减较快,300圈容量保持率仅为29.83%;单独使用NaHFDF的对比例6的放电比容量衰减更快,且电池在300圈前就已经失效。相比之下,同时使用TEGDME和NaHFDF的实施例3的电池循环性能得到明显改善,300圈容量保持率为55.48%。该结果说明,当碱金属负极为钠片时,结构式1的化合物和结构式2的化合物的共同添加仍能提高金属-硫电池的长期循环性能。
对比实施例4、对比例7和对比例8的测试结果可知,当碱金属负极为钾片时,单独使用TEGDME的对比例7和单独使用KHFDF的对比例8的放电比容量衰减较快,而同时使用TEGDME和KHFDF的实施例4的电池循环性能得到明显改善,300圈容量保持率为54.08%。该结果说明,当碱金属负极为钾片时,结构式1的化合物和结构式2的化合物的共同添加仍能提高金属-硫电池的长期循环性能。
实施例1、实施例5及实施例6比较了LiHFDF浓度对锂硫电池循环性能的影响。如表1测试结果所示,三种锂盐浓度(1.0M、1.5M和2.0M)的300圈容量保持率均高于60%,其中1.5M浓度的300圈容量保持率最高,达到67.71%。该结果证明适当调节锂盐浓度可以进一步提高长期循环性能和容量保持率。
实施例1和实施例7比较了不同结构式1所示的化合物对锂硫电池循环性能的影响。结合对比例1的测试结果,说明结构式1所示的化合物普遍与结构式2所示的化合物存在协同作用,另外,实施例7的初始放电比容量和300圈容量保持率均低于实施例1,说明合理选择结构式1所示的化合物可以进一步提高长期循环性能和容量保持率。
实施例1和实施例8比较了不同结构式2所示的化合物对锂硫电池循环性能的影响。可见,实施例8的初始放电比容量和300圈容量保持率与实施例1接近,结合对比例3的测试结构,说明结构式2所示的化合物普遍与结构式1所示的化合物存在协同作用,能提高长期循环性能和容量保持率。
二、将实施例1提供的电解液应用于Li-Li对称电池,得到实施例9;将对比例1提供的电解液应用于Li-Li对称电池,得到对比例9;对上述实施例9和对比例9制备得到的锂锂对称电池进行循环性能测试,测试结果如图1所示。从图1可知,实施例9中采用本发明提供的电解液时,锂锂对称电池能稳定循环600h以上。而对比例9的锂锂对称电池循环400h后极化开始增大,循环500h后电池因极化太大而损坏。说明本发明提供的电解液能够在电极表面形成稳定的复合SEI膜,有效地提高了电池的循环稳定性。
三、对上述实施例1、对比例1和对比例3制备得到的锂硫电池进行电池循环性能测试,测试结果如图2所示。从图2可知,在0.5C(1C=1675mA/g)电流密度下,对比例1的首圈放电比容量为1041mAh/g,循环170圈之后,放电比容量跌到了700mAh/g以下,且库伦效率出现较为严重的波动。对比例3的首圈放电比容量为1088mAh/g,但是放电比容量衰减较快,循环61圈后,放电比容量只剩下760mAh/g。另外,对比例3的库伦效率衰减非常快。相对于单独使用TEGDME的对比例1和单独使用LiHFDF的对比例3,同时使用TEGDME和LiHFDF的实施例1的电池循环性能得到明显改善,且放电比容量明显更高。此外,实施例1的电池库伦效率更加稳定,该结果说明TEGDME和LiHFDF同时存在能形成稳定的复合SEI膜,显著提高金属-硫电池的电化学性能。
四、对上述实施例2、对比例2和对比例4制备得到的锂硫电池进行电池循环性能测试,测试结果如图3所示。与图2结果类似,单独使用TEGDME的对比例2和单独使用LiHFDF的对比例4的放电比容量衰减较快,且库伦效率要么波动剧烈,要么快速衰减。相比之下,同时使用TEGDME和LiHFDF的实施例2的电池循环性能得到明显改善,实施例2的锂硫电池能稳定循环600圈,且放电比容量明显更高,库伦效率更接近100%。该结果进一步说明,即使在1.0C的高电流密度下,TEGDME和LiHFDF共同分解形成的SEI膜仍能有效保护锂金属负极,从而显著提高金属-硫电池的电化学性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种电解液,其特征在于,包括溶剂及电解质盐;
所述电解质盐包括以下结构式1所示的化合物:
Figure FDA0003870499910000011
其中,R1和R3各自独立地选自
Figure FDA0003870499910000012
R4选自S或Se;R5选自C、Si、Ge、Sn、S或Se;R2选自具有部分氢或全部氢被其它元素或基团取代的碳链或芳香基团;M1选自N、B、P、As、Sb或Bi;M2选自Li、Na、K、Mg或Al,n选自1、2或3;
所述溶剂包括以下结构式2所示的化合物:
Figure FDA0003870499910000013
其中,m选自3~10,R6和R7各自独立地选自氢或碳原子数1~3的烃基;
以所述电解液的总质量为100%计,所述结构式2所示的化合物的含量为80%~90%。
2.根据权利要求1所述的电解液,其特征在于,结构式1所示的化合物中,R2选自部分氢或全部氢被卤族元素或卤代烃基取代的1-4个碳的饱和或不饱和碳链、部分氢或全部氢被卤族元素或卤代烃基取代的芳香环。
3.根据权利要求2所述的电解液,其特征在于,结构式1所示的化合物中,R2选自部分氢或全部氢被氟或氟代烃基取代的1-4个碳的饱和或不饱和碳链、部分氢或全部氢被氟或氟代烃基取代的芳香环。
4.根据权利要求1所述的电解液,其特征在于,结构式1所示的化合物包括以下化合物中的一种或多种:
Figure FDA0003870499910000021
Figure FDA0003870499910000031
Figure FDA0003870499910000041
Figure FDA0003870499910000051
Figure FDA0003870499910000061
Figure FDA0003870499910000071
5.根据权利要求1~4任意一项所述的电解液,其特征在于,电解液中,所述电解质盐的含量为0.01M~10M。
6.根据权利要求1所述的电解液,其特征在于,结构式2所示的化合物包括以下化合物中的一种或多种:
Figure FDA0003870499910000072
Figure FDA0003870499910000081
7.根据权利要求1所述的电解液,其特征在于,所述电解液中还包括金属硝酸盐,以所述电解液的质量为100%计,所述金属硝酸盐的质量百分含量为0.1%~10%。
8.一种金属-硫电池,其特征在于,包括正极材料、负极材料以及如权利要求1~7任意一项所述的电解液,所述正极材料包括单质硫和硫基复合物中的一种。
9.根据权利要求8所述的金属-硫电池,其特征在于,所述负极材料选自第一主族金属材料。
CN202010598041.0A 2020-06-28 2020-06-28 一种电解液及金属-硫电池 Active CN113851723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010598041.0A CN113851723B (zh) 2020-06-28 2020-06-28 一种电解液及金属-硫电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010598041.0A CN113851723B (zh) 2020-06-28 2020-06-28 一种电解液及金属-硫电池

Publications (2)

Publication Number Publication Date
CN113851723A CN113851723A (zh) 2021-12-28
CN113851723B true CN113851723B (zh) 2023-01-17

Family

ID=78972152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010598041.0A Active CN113851723B (zh) 2020-06-28 2020-06-28 一种电解液及金属-硫电池

Country Status (1)

Country Link
CN (1) CN113851723B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970657A (zh) * 2018-09-30 2020-04-07 深圳新宙邦科技股份有限公司 一种金属-硫电池
CN110970651A (zh) * 2018-09-30 2020-04-07 深圳新宙邦科技股份有限公司 一种金属-硫电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326468B1 (ko) * 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
JP2011187232A (ja) * 2010-03-05 2011-09-22 Sony Corp リチウム二次電池、リチウム二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
JPWO2011136226A1 (ja) * 2010-04-26 2013-07-22 旭硝子株式会社 二次電池用非水電解液および二次電池
JP2015018602A (ja) * 2011-11-11 2015-01-29 旭硝子株式会社 非水電解液二次電池
JP6004275B2 (ja) * 2012-03-19 2016-10-05 国立大学法人横浜国立大学 アルカリ金属−硫黄系二次電池
JP2017069146A (ja) * 2015-10-02 2017-04-06 旭化成株式会社 化合物、添加剤、電解液及びリチウムイオン二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970657A (zh) * 2018-09-30 2020-04-07 深圳新宙邦科技股份有限公司 一种金属-硫电池
CN110970651A (zh) * 2018-09-30 2020-04-07 深圳新宙邦科技股份有限公司 一种金属-硫电池

Also Published As

Publication number Publication date
CN113851723A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN109244542B (zh) 一种锂硫电池用电解液及其应用
CN106159325B (zh) 一种锂离子电池用低温电解液及低温锂离子电池
CN109888385B (zh) 一种锂金属二次电池用电解液及锂金属二次电池
CN110611084B (zh) 一种具有长循环寿命和100%库伦效率的锂硫二次电池
CN113937341A (zh) 一种金属锌二次电池
CN110148787A (zh) 一种提高锂硫电池容量的电解液及锂硫电池
CN114447333B (zh) 一种钠离子电池
CN107565088B (zh) 一种金属锂二次电池负极的制备方法
CN114373982B (zh) 一种基于液态醚类有机电解液的少负极二次钠电池及其制备方法
CN112490507A (zh) 一种锂硫电池电解液及其制备方法和应用
CN113506914A (zh) 一种三元锂离子电池电解液及含有该电解液的锂离子电池
CN114039108B (zh) 一种耐高温水系锌离子电池电解液及其制备方法和应用
CN111129593A (zh) 一种二次锂金属电池电解液的添加剂、电解液及制备方法
CN110970651B (zh) 一种金属-硫电池
CN114024030A (zh) 一种非水电解液及含有该非水电解液的电池
CN110854436B (zh) 一种二次锂金属电池电解液及其制备方法
CN108063241A (zh) 抑制锂金属表面产生锂枝晶的方法
CN108987673B (zh) 一种含导电保护薄膜的锂负极及其制备方法和应用
CN113851723B (zh) 一种电解液及金属-硫电池
CN107482284B (zh) 一种锂氧气电池
CN115692844A (zh) 一种钠二次电池及电解液
CN106785023B (zh) 一种锂离子电池硅基/硅碳复合负极材料用电解液体系
CN111916828B (zh) 一种锂硫电池电解液及其应用
CN112886065B (zh) 一种电解液及金属-硫电池
CN110649316B (zh) 电解液添加剂、锂离子电池电解液和锂硫电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant