CN113847716A - 空调器的控制方法、运行控制装置及空调器 - Google Patents

空调器的控制方法、运行控制装置及空调器 Download PDF

Info

Publication number
CN113847716A
CN113847716A CN202010601461.XA CN202010601461A CN113847716A CN 113847716 A CN113847716 A CN 113847716A CN 202010601461 A CN202010601461 A CN 202010601461A CN 113847716 A CN113847716 A CN 113847716A
Authority
CN
China
Prior art keywords
electromagnetic wave
wave signal
air conditioner
attenuation coefficient
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010601461.XA
Other languages
English (en)
Inventor
郑伟锐
梁文潮
段晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD Midea Air Conditioning Equipment Co Ltd
Midea Group Wuhan Refrigeration Equipment Co Ltd
Original Assignee
GD Midea Air Conditioning Equipment Co Ltd
Midea Group Wuhan Refrigeration Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GD Midea Air Conditioning Equipment Co Ltd, Midea Group Wuhan Refrigeration Equipment Co Ltd filed Critical GD Midea Air Conditioning Equipment Co Ltd
Priority to CN202010601461.XA priority Critical patent/CN113847716A/zh
Priority to PCT/CN2020/105356 priority patent/WO2022000670A1/zh
Publication of CN113847716A publication Critical patent/CN113847716A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Geophysics (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种空调器的控制方法、运行控制装置及空调器,空调器包括电磁波发射器、电磁波接收器和面板,面板遮盖电磁波发射器和电磁波接收器,控制方法包括:控制电磁波发射器发出第一电磁波信号;获取由电磁波接收器所接收的第二电磁波信号,其中,第二电磁波信号由第一电磁波信号经反射后形成;根据第二电磁波信号与预存的第三电磁波信号调整第一电磁波信号的发射功率;从而能够弥补面板和实际安装场景对第一电磁波信号产生的衰减作用,经过调整第一电磁波信号的发射功率后能够有效保证空调器的检测效果,避免空调器无法正常检测到目标。

Description

空调器的控制方法、运行控制装置及空调器
技术领域
本发明涉及空调器技术领域,特别涉及一种空调器的控制方法、运行控制装置及空调器。
背景技术
目前,越来越多的空调采用毫米波雷达传感器来检测用户的位置、行为、生命体征,来判断用户所需要的空调功能需求,实现空调的自动、智能运行。由于考虑到空调产品外观的美学特征和外观设计的完整性,一般都会把传感器放置到空调内部,外面用面板盖住,传感器不外漏的设计即能保持产品外观完整,同时保证用户不会触摸到传感器而对传感器造成破坏。但是覆盖了空调面板会对发射波信号和反射波信号产生衰减影响,信号衰减后检测效果会下降,甚至在距离较远的位置可能检测不到目标,而且不同厚度、不同材质的面板对发射波信号和反射波信号的衰减程度不同,生产时需要针对每种厚度、材质的面板进行发射信号调整,需要极大的工作量,而且很不灵活。另外,实际安装场景的不同也会对发射波信号和反射波信号的衰减程度产生影响,导致发射信号调整不够可靠。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种空调器的控制方法、运行控制装置及空调器,能够对电磁波信号的发射功率进行调整,从而保证检测效果。
第一方面,本发明实施例提供了一种空调器的控制方法,所述空调器包括电磁波发射器、电磁波接收器和面板,所述面板遮盖所述电磁波发射器和所述电磁波接收器,所述控制方法包括:
控制所述电磁波发射器发出第一电磁波信号;
获取由所述电磁波接收器所接收的第二电磁波信号,其中,所述第二电磁波信号由所述第一电磁波信号经反射后形成;
根据所述第二电磁波信号与预存的第三电磁波信号调整所述第一电磁波信号的发射功率。
根据本发明第一方面实施例的空调器的控制方法,至少具有如下有益效果:空调安装完成后,面板遮盖电磁波发射器和电磁波接收器,对电磁波信号产生衰减作用,空调器通过控制电磁波发射器发出第一电磁波信号,获取由电磁波接收器所接收的第二电磁波信号,然后根据第二电磁波信号与预存的第三电磁波信号来调整第一电磁波信号的发射功率,从而能够弥补面板和实际安装场景对第一电磁波信号产生的衰减作用,经过调整第一电磁波信号的发射功率后能够有效保证空调器的检测效果,避免空调器无法正常检测到目标。
根据本发明的一些实施例,所述根据所述第二电磁波信号与预存的第三电磁波信号调整所述第一电磁波信号的发射功率,包括:
根据所述第二电磁波信号与预存的第三电磁波信号得到遮挡衰减系数;
根据所述遮挡衰减系数调整所述第一电磁波信号的发射功率。
在本实施例中,遮挡衰减系数由第二电磁波信号与预存的第三电磁波信号计算得出,第二电磁波信号为衰减后电磁波信号,预存的第三电磁波信号为目标电磁波信号,根据这两个电磁波信号得到的遮挡衰减系数体现出了面板以及实际安装场景对电磁波信号的衰减作用,根据该遮挡衰减系数来调整第一电磁波信号的发射功率,使得调整后发出的第一电磁波信号能够保证空调器具有良好和准确的检测效果。
根据本发明的一些实施例,所述获取由所述电磁波接收器所接收的第二电磁波信号,包括:
确定所述第一电磁波信号的覆盖区域;
将所述覆盖区域划分为多个子区域,获取由所述电磁波接收器在各个所述子区域所接收的多个第二电磁波信号。
在本实施例中,将第一电磁波信号的覆盖区域划分为多个子区域,能够获取多个对应各个子区域的第二电磁波信号,从而能够获得多组数据来分别体现各个子区域的电磁波信号衰减程度,从而能够根据多组数据对第一电磁波信号的发射功率作出更加准确的调整,进一步保障空调器的检测效果。
根据本发明的一些实施例,所述根据所述第二电磁波信号与预存的第三电磁波信号得到遮挡衰减系数,包括:
根据由所述电磁波接收器在各个所述子区域所接收到的多个所述第二电磁波信号,以及与各个所述子区域一一对应的多个预存的第三电磁波信号,分别得到与各个所述子区域一一对应的多个遮挡衰减系数。
同理,在本实施例中,一个子区域的遮挡衰减系数由对应该子区域的第二电磁波信号与对应该子区域的预存的第三电磁波信号计算得出,根据这两个电磁波信号得到的遮挡衰减系数体现出了面板以及实际安装场景对该子区域电磁波信号的衰减作用,多个遮挡衰减系数能够分别体现各个子区域的电磁波信号衰减程度,从而能够根据多个遮挡衰减系数对第一电磁波信号的发射功率作出更加准确的调整,进一步保障空调器的检测效果。
根据本发明的一些实施例,所述根据所述遮挡衰减系数调整所述第一电磁波信号的发射功率,包括:
在多个所述遮挡衰减系数中确定对应为衰减程度最大的一个作为目标衰减系数;
根据所述目标衰减系数调整所述第一电磁波信号的发射功率。
在本实施例中,确定对应为衰减程度最大的遮挡衰减系数作为目标衰减系数,来调整第一电磁波信号的发射功率,能够使得衰减程度最大的子区域反射的第二电磁波信号能够达到该子区域目标电磁波信号的强度,其余衰减程度没有那么大的子区域反射的第二电磁波信号因此也能达到对应子区域目标电磁波信号的强度。
具体地,根据本发明的一些实施例,所述遮挡衰减系数由以下公式得到:
W-n=R-n/S-n
其中,W-n为所述遮挡衰减系数,R-n为所述第二电磁波信号,S-n为所述第三电磁波信号。
在本实施例中,遮挡衰减系数W-n表征着面板以及实际安装场景对电磁波信号的衰减程度,遮挡衰减系数W-n的数值越大则代表衰减程度越小,遮挡衰减系数W-n的数值越小则代表衰减程度越大。
具体地,根据本发明的一些实施例,所述根据所述目标衰减系数调整所述第一电磁波信号的发射功率,包括,
根据如下公式调整所述第一电磁波信号的发射功率:
Q=P/Wmin
其中,Q为经过调整后的第一电磁波信号的发射功率,P为未经过调整的第一电磁波信号的发射功率,Wmin为所述目标衰减系数。
在本实施例中,将调整前的第一电磁波信号的发射功率P除以目标衰减系数Wmin,得到调整后的第一电磁波信号的发射功率Q,即按照衰减程度最大的子区域的遮挡衰减系数来放大第一电磁波信号的发射功率,能够使得调整后,衰减程度最大的子区域反射的第二电磁波信号能够达到该子区域目标电磁波信号的强度,其余衰减程度没有那么大的子区域反射的第二电磁波信号因此也能达到对应子区域目标电磁波信号的强度,从而能够保证空调器对所有子区域都具有良好和准确的检测效果。
第二方面,本发明的另一实施例提供了一种运行控制装置,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器;所述存储器存储有可被所述至少一个控制处理器执行的指令,所述指令被所述至少一个控制处理器执行,以使所述至少一个控制处理器能够执行如上所述的控制方法。
根据本发明实施例的运行控制装置,至少具有如下有益效果:由于运行控制装置能够执行上述第一方面的控制方法,因此,空调安装完成后,面板遮盖电磁波发射器和电磁波接收器,对电磁波信号产生衰减作用,空调器通过控制电磁波发射器发出第一电磁波信号,获取由电磁波接收器所接收的第二电磁波信号,然后根据第二电磁波信号与预存的第三电磁波信号来调整第一电磁波信号的发射功率,从而能够弥补面板和实际安装场景对第一电磁波信号产生的衰减作用,经过调整第一电磁波信号的发射功率后能够有效保证空调器的检测效果,避免空调器无法正常检测到目标。
第三方面,本发明的另一实施例提供了一种空调器,包括如上所述的运行控制装置。
根据本发明实施例的空调器,至少具有如下有益效果:由于空调器包括有上述第二方面的运行控制装置,因此,空调安装完成后,面板遮盖电磁波发射器和电磁波接收器,对电磁波信号产生衰减作用,空调器通过控制电磁波发射器发出第一电磁波信号,获取由电磁波接收器所接收的第二电磁波信号,然后根据第二电磁波信号与预存的第三电磁波信号来调整第一电磁波信号的发射功率,从而能够弥补面板和实际安装场景对第一电磁波信号产生的衰减作用,经过调整第一电磁波信号的发射功率后能够有效保证空调器的检测效果,避免空调器无法正常检测到目标。
第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上所述的控制方法。
附图说明
下面结合附图和实施例对本发明进一步地说明;
图1为本发明一个实施例提供的运行控制装置的示意图;
图2为本发明实施例一提供的空调器的控制方法的流程图;
图3为本发明实施例二提供的空调器的控制方法的流程图;
图4为本发明实施例三提供的空调器的控制方法的流程图;
图5为本发明一个实施例提供的第一电磁波信号的覆盖区域划分示意图;
图6为本发明实施例四提供的空调器的控制方法的流程图。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
本发明实施例提供一种空调器的控制方法、运行控制装置及空调器,能够对电磁波信号的发射功率进行调整,从而保证检测效果。
下面结合附图,对本发明实施例作进一步阐述。
如图1所示,图1是本发明一个实施例提供的用于执行空调器的控制方法的运行控制装置100的示意图。本发明实施例的运行控制装置100可以内置于空调器中,包括一个或多个控制处理器110和存储器120,图1中以一个控制处理器110及一个存储器120为例。
控制处理器110和存储器120可以通过总线或者其他方式连接,图1中以通过总线连接为例。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器120可选包括相对于控制处理器110远程设置的存储器120,这些远程存储器可以通过网络连接至该运行控制装置100。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解,图1中示出的装置结构并不构成对运行控制装置100的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在图1所示的运行控制装置100中,控制处理器110可以用于调用存储器120中储存的运行控制程序,以实现空调器的控制方法。
基于上述运行控制装置100的硬件结构,提出本发明的空调器的控制方法的各个实施例。
本发明第一方面实施例提供一种空调器的控制方法,空调器包括电磁波发射器、电磁波接收器和面板,面板遮盖电磁波发射器和电磁波接收器,参照图2,控制方法包括以下步骤:
步骤S100:控制电磁波发射器发出第一电磁波信号;
步骤S200:获取由电磁波接收器所接收的第二电磁波信号,其中,第二电磁波信号由第一电磁波信号经反射后形成;
步骤S300:根据第二电磁波信号与预存的第三电磁波信号调整第一电磁波信号的发射功率。
空调安装完成后,面板遮盖电磁波发射器和电磁波接收器,对电磁波信号产生衰减作用,空调器通过控制电磁波发射器发出第一电磁波信号,获取由电磁波接收器所接收的第二电磁波信号,然后根据第二电磁波信号与预存的第三电磁波信号来调整第一电磁波信号的发射功率,从而能够弥补面板和实际安装场景对第一电磁波信号产生的衰减作用,经过调整第一电磁波信号的发射功率后能够有效保证空调器的检测效果,避免空调器无法正常检测到目标。
其中,预存的第三电磁波信号是在电磁波发射器和电磁波接收器没有被面板遮盖的场景下,电磁波发射器以固定发射功率发射电磁波信号,电磁波接收器接收到的经反射后电磁波信号。该固定发射功率为经验实测值,是结合具体的电磁波发射器和电磁波接收器型号在标准场景下经过多次测量实验得出的。该测量实验应当在一台空调器的硬件配置确定下来之后进行,预存的第三电磁波信号应当是在一台空调器生产完成后并在出厂前就存储在空调器的存储器中。
另外,电磁波发射器可以为毫米波发射器,相应地电磁波接收器为毫米波接收器。毫米波相对于其他频率的电磁波具有较好的穿透性和抗干扰能力,在空调面板的遮挡下不会产生大幅衰减,不会造成不必要的资源浪费。
参照图3,在一实施例中,步骤S300包括但不限于有以下步骤:
步骤S310:根据第二电磁波信号与预存的第三电磁波信号得到遮挡衰减系数;
步骤S320:根据遮挡衰减系数调整第一电磁波信号的发射功率。
在本实施例中,遮挡衰减系数由第二电磁波信号与预存的第三电磁波信号计算得出,第二电磁波信号为衰减后电磁波信号,预存的第三电磁波信号为目标电磁波信号,根据这两个电磁波信号得到的遮挡衰减系数体现出了面板以及实际安装场景对电磁波信号的衰减作用,根据该遮挡衰减系数来调整第一电磁波信号的发射功率,使得调整后发出的第一电磁波信号能够保证空调器具有良好和准确的检测效果。
参照图4,在一实施例中,步骤S200包括但不限于有以下步骤:
步骤S210:确定第一电磁波信号的覆盖区域;
步骤S220:将覆盖区域划分为多个子区域,获取由电磁波接收器在各个子区域所接收的多个第二电磁波信号。
在本实施例中,将第一电磁波信号的覆盖区域划分为多个子区域,能够获取多个对应各个子区域的第二电磁波信号,从而能够获得多组数据来分别体现各个子区域的电磁波信号衰减程度,从而能够根据多组数据对第一电磁波信号的发射功率作出更加准确的调整,进一步保障空调器的检测效果。
其中,参照图5,第一电磁波信号的覆盖区域为以电磁波接收器的投影点a为圆心的圆形区域,覆盖区域的半径为第一长度,示例性地,在本实施例中第一长度设定为6米,覆盖区域被自身的两条相交的直径划分为A、B、C、D四个大区域,每个大区域又被覆盖区域的三条半径均匀划分为四个小区域,分别为A0区、A1区、A2区、A3区、B0区、AB1区、B2区、B3区、C0区、C1区、C2区、C3区、D0区、D1区、D2区、D3区,每个小区域均呈扇形,每个小区域再被以电磁波接收器的投影点a为圆心、半径分别为1.5米、3米、4.5米的三个原划分为四个子区域,例如,A0区被划分为A00、A01、A02、A03四个子区域,A1区被划分为A10、A11、A12、A13四个子区域,以此类推。如此能够将第一电磁波信号的覆盖区域比较合理的划分开。
基于此,各个子区域所接收的第二电磁波信号,记为R-n,其中n为各个子区域的标号,则各个子区域对应的第二电磁波信号如下:
00 01 02 03 ...... 30 31 32 33
A R-A00 R-A01 R-A02 R-A03 ...... R-A30 R-A31 R-A32 R-A33
B R-B00 R-B01 R-B02 R-B03 ...... R-B30 R-B31 R-B32 R-B33
C R-C00 R-C01 R-C02 R-C03 ...... R-C30 R-C31 R-C32 R-C33
D R-D00 R-D01 R-D02 R-D03 ...... R-D30 R-D31 R-D32 R-D33
在一实施例中,步骤S310具体包括:
根据由电磁波接收器在各个子区域所接收到的多个第二电磁波信号,以及与各个子区域一一对应的多个预存的第三电磁波信号,分别得到与各个子区域一一对应的多个遮挡衰减系数。
在本实施例中,一个子区域的遮挡衰减系数由对应该子区域的第二电磁波信号与对应该子区域的预存的第三电磁波信号计算得出,根据这两个电磁波信号得到的遮挡衰减系数体现出了面板以及实际安装场景对该子区域电磁波信号的衰减作用,多个遮挡衰减系数能够分别体现各个子区域的电磁波信号衰减程度,从而能够根据多个遮挡衰减系数对第一电磁波信号的发射功率作出更加准确的调整,进一步保障空调器的检测效果。
具体地,与各个子区域一一对应的多个预存的第三电磁波信号,记为S-n,其中n为各个子区域的标号,则各个子区域对应的预存的第三电磁波信号如下:
00 01 02 03 ...... 30 31 32 33
A S-A00 S-A01 S-A02 S-A03 ...... S-A30 S-A31 S-A32 S-A33
B S-B00 S-B01 S-B02 S-B03 ...... S-B30 S-B31 S-B32 S-B33
C S-C00 S-C01 S-C02 S-C03 ...... S-C30 S-C31 S-C32 S-C33
D S-D00 S-D01 S-D02 S-D03 ...... S-D30 S-D31 S-D32 S-D33
进一步,与各个子区域一一对应的多个遮挡衰减系数,记为W-n,其中n为各个子区域的标号,遮挡衰减系数W-n由公式W-n=R-n/S-n计算得出,则各个子区域对应的遮挡衰减系数W-n如下:
00 01 02 03 ...... 30 31 32 33
A W-A00 W-A01 W-A02 W-A03 ...... W-A30 W-A31 W-A32 W-A33
B W-B00 W-B01 W-B02 W-B03 ...... W-B30 W-B31 W-B32 W-B33
C W-C00 W-C01 W-C02 W-C03 ...... W-C30 W-C31 W-C32 W-C33
D W-D00 W-D01 W-D02 W-D03 ...... W-D30 W-D31 W-D32 W-D33
遮挡衰减系数W-n表征着面板以及实际安装场景对电磁波信号的衰减程度,遮挡衰减系数W-n的数值越大则代表衰减程度越小,遮挡衰减系数W-n的数值越小则代表衰减程度越大。
参照图6,在一实施例中,步骤S320具体包括:
步骤S321:在多个遮挡衰减系数W-n中确定对应为衰减程度最大的一个作为目标衰减系数;
步骤S322:根据目标衰减系数调整第一电磁波信号的发射功率。
具体地,目标衰减系数记为Wmin,为各个子区域对应的遮挡衰减系数W-n中对应数值最小的一个,也即对应衰减程度越大的一个。
具体地,根据如下公式调整第一电磁波信号的发射功率:
Q=P/Wmin;
其中,Q为经过调整后的第一电磁波信号的发射功率,P为未经过调整的第一电磁波信号的发射功率,Wmin为目标衰减系数。
在本实施例中,将调整前的第一电磁波信号的发射功率P除以目标衰减系数Wmin,得到调整后的第一电磁波信号的发射功率Q,即按照衰减程度最大的子区域的遮挡衰减系数来放大第一电磁波信号的发射功率,能够使得调整后,衰减程度最大的子区域反射的第二电磁波信号能够达到该子区域目标电磁波信号的强度,其余衰减程度没有那么大的子区域反射的第二电磁波信号因此也能达到对应子区域目标电磁波信号的强度,从而能够保证空调器对所有子区域都具有良好和准确的检测效果。
本发明的另一方面实施例提供一种空调器,包括如图1所述的运行控制装置。由于本实施例的空调器包括有上述的运行控制装置,因此,空调安装完成后,面板遮盖电磁波发射器和电磁波接收器,对电磁波信号产生衰减作用,空调器通过控制电磁波发射器发出第一电磁波信号,获取由电磁波接收器所接收的第二电磁波信号,然后根据第二电磁波信号与预存的第三电磁波信号来调整第一电磁波信号的发射功率,从而能够弥补面板和实际安装场景对第一电磁波信号产生的衰减作用,经过调整第一电磁波信号的发射功率后能够有效保证空调器的检测效果,避免空调器无法正常检测到目标。
此外,本发明的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器110执行,例如,被图1中的一个控制处理器110执行,可使得上述一个或多个控制处理器110执行上述方法实施例中的空调控制方法,例如,执行以上描述的图2中的方法步骤S100至S300、图3中的方法步骤S310和S320、图4中的方法步骤S210和S220、图6中的方法步骤S321和S322。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (10)

1.一种空调器的控制方法,其特征在于,所述空调器包括电磁波发射器、电磁波接收器和面板,所述面板遮盖所述电磁波发射器和所述电磁波接收器,所述控制方法包括:
控制所述电磁波发射器发出第一电磁波信号;
获取由所述电磁波接收器所接收的第二电磁波信号,其中,所述第二电磁波信号由所述第一电磁波信号经反射后形成;
根据所述第二电磁波信号与预存的第三电磁波信号调整所述第一电磁波信号的发射功率。
2.根据权利要求1所述的控制方法,其特征在于,所述根据所述第二电磁波信号与预存的第三电磁波信号调整所述第一电磁波信号的发射功率,包括:
根据所述第二电磁波信号与预存的第三电磁波信号得到遮挡衰减系数;
根据所述遮挡衰减系数调整所述第一电磁波信号的发射功率。
3.根据权利要求2所述的控制方法,其特征在于,所述获取由所述电磁波接收器所接收的第二电磁波信号,包括:
确定所述第一电磁波信号的覆盖区域;
将所述覆盖区域划分为多个子区域,获取由所述电磁波接收器在各个所述子区域所接收的多个第二电磁波信号。
4.根据权利要求3所述的控制方法,其特征在于,所述根据所述第二电磁波信号与预存的第三电磁波信号得到遮挡衰减系数,包括:
根据由所述电磁波接收器在各个所述子区域所接收到的多个所述第二电磁波信号,以及与各个所述子区域一一对应的多个预存的第三电磁波信号,分别得到与各个所述子区域一一对应的多个遮挡衰减系数。
5.根据权利要求4所述的控制方法,其特征在于,所述根据所述遮挡衰减系数调整所述第一电磁波信号的发射功率,包括:
在多个所述遮挡衰减系数中确定对应为衰减程度最大的一个作为目标衰减系数;
根据所述目标衰减系数调整所述第一电磁波信号的发射功率。
6.根据权利要求2至5任意一项所述的控制方法,其特征在于,所述遮挡衰减系数由以下公式得到:
W-n=R-n/S-n
其中,W-n为所述遮挡衰减系数,R-n为所述第二电磁波信号,S-n为所述第三电磁波信号。
7.根据权利要求5所述的控制方法,其特征在于,所述根据所述目标衰减系数调整所述第一电磁波信号的发射功率,包括,
根据如下公式调整所述第一电磁波信号的发射功率:
Q=P/Wmin
其中,Q为经过调整后的第一电磁波信号的发射功率,P为未经过调整的第一电磁波信号的发射功率,Wmin为所述目标衰减系数。
8.一种运行控制装置,其特征在于,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器;所述存储器存储有可被所述至少一个控制处理器执行的指令,所述指令被所述至少一个控制处理器执行,以使所述至少一个控制处理器能够执行如权利要求1至7任一项所述的控制方法。
9.一种空调器,其特征在于:如权利要求8所述的运行控制装置。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1至7任一项所述的控制方法。
CN202010601461.XA 2020-06-28 2020-06-28 空调器的控制方法、运行控制装置及空调器 Pending CN113847716A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010601461.XA CN113847716A (zh) 2020-06-28 2020-06-28 空调器的控制方法、运行控制装置及空调器
PCT/CN2020/105356 WO2022000670A1 (zh) 2020-06-28 2020-07-29 空调器的控制方法、运行控制装置及空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010601461.XA CN113847716A (zh) 2020-06-28 2020-06-28 空调器的控制方法、运行控制装置及空调器

Publications (1)

Publication Number Publication Date
CN113847716A true CN113847716A (zh) 2021-12-28

Family

ID=78972673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010601461.XA Pending CN113847716A (zh) 2020-06-28 2020-06-28 空调器的控制方法、运行控制装置及空调器

Country Status (2)

Country Link
CN (1) CN113847716A (zh)
WO (1) WO2022000670A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193289A (ja) * 2007-02-02 2008-08-21 Sony Ericsson Mobilecommunications Japan Inc 電波増幅器および無線lanアクセスポイント
CN107561546A (zh) * 2017-08-22 2018-01-09 广东美的制冷设备有限公司 红外检测方法、红外检测装置及空调器
CN109799492A (zh) * 2019-02-27 2019-05-24 珠海格力电器股份有限公司 一种调整微波雷达设备的输出功率的方法及装置
CN110613457A (zh) * 2019-08-23 2019-12-27 珠海格力电器股份有限公司 一种检测方法及装置
CN111198360A (zh) * 2018-11-19 2020-05-26 深圳市速腾聚创科技有限公司 激光雷达及其控制方法
CN210861574U (zh) * 2019-07-05 2020-06-26 珠海格力电器股份有限公司 一种空调室内机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203116227U (zh) * 2013-01-23 2013-08-07 深圳先进技术研究院 智能空调器
JP7041351B2 (ja) * 2018-05-30 2022-03-24 ダイキン工業株式会社 検出装置、見守りシステムおよび空調システム
CN109699065A (zh) * 2019-01-31 2019-04-30 北京小米移动软件有限公司 功率调整方法、装置、智能开关和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193289A (ja) * 2007-02-02 2008-08-21 Sony Ericsson Mobilecommunications Japan Inc 電波増幅器および無線lanアクセスポイント
CN107561546A (zh) * 2017-08-22 2018-01-09 广东美的制冷设备有限公司 红外检测方法、红外检测装置及空调器
CN111198360A (zh) * 2018-11-19 2020-05-26 深圳市速腾聚创科技有限公司 激光雷达及其控制方法
CN109799492A (zh) * 2019-02-27 2019-05-24 珠海格力电器股份有限公司 一种调整微波雷达设备的输出功率的方法及装置
CN210861574U (zh) * 2019-07-05 2020-06-26 珠海格力电器股份有限公司 一种空调室内机
CN110613457A (zh) * 2019-08-23 2019-12-27 珠海格力电器股份有限公司 一种检测方法及装置

Also Published As

Publication number Publication date
WO2022000670A1 (zh) 2022-01-06

Similar Documents

Publication Publication Date Title
US20240121020A1 (en) Identifying signal interference sources
US9622161B1 (en) Systems and methods for obtaining available channels for fast channel switching
US20200382227A1 (en) System and methods of detecting human presence in the vicinity of a radio frequency receiver system
US20100237998A1 (en) Adaptive communication in an electronic toll collection system
CN110057039B (zh) 空调器及其控制方法、终端和计算机可读存储介质
EP3729857A1 (en) Radio coverage map generation
JPWO2018216088A1 (ja) 人位置検知装置、人位置検知システム、人位置検知方法及びプログラム
CN113847716A (zh) 空调器的控制方法、运行控制装置及空调器
CN108761473A (zh) 空调器的房间大小检测方法、空调器和计算机存储介质
CN109799492B (zh) 一种调整微波雷达设备的输出功率的方法及装置
EP3871003A1 (en) Radar sensor and robot using the same
JP2588298B2 (ja) レーダの多重反射による偽像処理装置
CN116930857B (zh) 标签定位方法、装置、存储介质以及电子设备
CN112748394B (zh) 一种输出模式生成方法、传感器系统及传感器设备
CN110794097A (zh) 食品检测方法、装置及食品检测设备
CN216013656U (zh) 一种数字式超声波传感器标定装置
KR102483734B1 (ko) 비콘신호 중복수신 방지 기능이 적용된 이동체 감지 장치
EP4029354B1 (en) Determining an alternative position for a lighting device for improving an auxiliary function
EP4095547A1 (en) Defining a protected region for a radar detector
CN110235075A (zh) 一种工厂置物车的自动行驶方法及装置
CN114019464A (zh) 一种雷达安装角度的校正方法、装置及校正设备
US20200033465A1 (en) Optimized capturing window in a distance measuring system
CN113687350A (zh) 一种跌倒检测方法、装置、电子设备及存储介质
CN110202571A (zh) 一种设置传感器地址的方法、装置、设备及存储介质
CN116634445A (zh) 基于频谱共享系统的通信方法及频谱共享系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination