CN113838948B - 一种降低管式perc电池划伤的工艺 - Google Patents

一种降低管式perc电池划伤的工艺 Download PDF

Info

Publication number
CN113838948B
CN113838948B CN202111137732.1A CN202111137732A CN113838948B CN 113838948 B CN113838948 B CN 113838948B CN 202111137732 A CN202111137732 A CN 202111137732A CN 113838948 B CN113838948 B CN 113838948B
Authority
CN
China
Prior art keywords
nitrogen
setting
temperature
valve
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111137732.1A
Other languages
English (en)
Other versions
CN113838948A (zh
Inventor
朱海荣
彭平
陈庆发
郭飞
陈磊
夏中高
李旭杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pingmei Longji New Energy Technology Co ltd
Original Assignee
Pingmei Longji New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pingmei Longji New Energy Technology Co ltd filed Critical Pingmei Longji New Energy Technology Co ltd
Priority to CN202111137732.1A priority Critical patent/CN113838948B/zh
Publication of CN113838948A publication Critical patent/CN113838948A/zh
Application granted granted Critical
Publication of CN113838948B publication Critical patent/CN113838948B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及太阳能电池制造领域,尤其涉及一种降低管式PERC电池划伤的工艺,包括以下步骤:开始、充氮、放舟、升温、预抽、主抽、检漏、抽真空、恒温、恒压、淀积、抽真空、清洗、恒温一、恒温二、充氮一、取舟、结束,利用此工艺无需设备改造与新增投入以及石墨舟改造,在原有镀背面氮化硅膜的管式PECVD设备上,通过调整抽空步压力及抽速,工艺温度、出舟前充氮步增加两步恒温,即为了缓慢回压,即可解决管式PECVD机台EL划伤比例偏高的问题;与现有工艺相比,本发明产生的EL划伤比例降低一半左右,可积极推动PERC电池的技术创新和规模化生产,具有较好的经济效益和社会效益。

Description

一种降低管式PERC电池划伤的工艺
技术领域
本发明涉及太阳能电池制造领域,尤其涉及一种降低管式PERC电池划伤的工艺。
背景技术
PERC(Passivated Emitter and Rear Cell)技术,即钝化发射极和背面电池,利用Al2O3等钝化材料对电池背面进行钝化,可以有效降低背表面复合,提高开路电压(Voc),增加背表面反射,提高短路电流(Isc),从而提升电池转换效率。双面PERC保持原先单面PERC的高转换效率,同时背面也可以发电,将双面PERC电池封装成双面双玻发电组件可显著地降低了光伏系统的度电成本,再次提升了PERC电池的竞争力。相对于常规电池,PERC电池仅增加两步工艺过程:背面沉积钝化膜和背面开槽,背面钝化膜的制备是PERC电池的核心工艺步骤。氧化铝(Al2O3)由于具备较高的电荷密度,可以对P型表面提供良好的钝化,目前被广泛应用于PERC电池量产的背面钝化材料。为了完全满足背面钝化条件,还需要在氧化铝表面覆一层氮化硅(SiNx)膜,以保护背部钝化膜并保证电池背面的光学性能,故PERC电池背面钝化多采Al2O3/SiNx双层结构。背钝化方面目前有PECVD和ALD(原子层沉积)两种技术路线,ALD因TMA耗量少、钝化质量高的优势在市场中占有较大份额,但需搭配PECVD设备同时使用,氧化铝和氮化硅需要分别沉积,在使用管式PECVD设备制备背面氮化硅膜的制程中,硅片通过三个卡点固定在石墨舟片上,硅片正面与石墨舟片接触,在抽真空、升温、充氮回常压工艺过程硅片因炉管内气压及热量变化会收缩或膨胀,硅片会与石墨舟片发生摩擦,硅片正面挨着石墨舟片导致产生划伤,严重影响产线良率。
发明内容
本发明的目的在于无需进行设备及石墨舟的改造,提供一种降低管式PERC电池划伤的工艺以提升电池生产的良率。
本发明是通过以下技术方案实现的:一种降低管式PERC电池划伤的工艺,包括以下步骤:开始、充氮、放舟、升温、预抽、主抽、检漏、抽真空、恒温、恒压、淀积、抽真空、清洗、恒温一、恒温二、充氮一、取舟、结束。
进一步地,所述开始、充氮、放舟、取舟和结束步骤的温度设定为490℃。
进一步地,所述升温、预抽、主抽、检漏、抽真空、恒温、恒压、淀积、抽真空、清洗、恒温一、恒温二和充氮一步骤的温度设定为450℃。
进一步地,所述预抽步骤的设定底压为60pa,时间为250s。
进一步地,所述主抽步骤的设定底压为0Pa,时间为40s。
进一步地,所述清洗步骤的氮气流量为10000sccm。
进一步地,所述恒温一步骤为:打开氮气恒流阀,氮气流量设定为5000sccm,压力为1200pa,时间为30s。
进一步地,所述恒温二步骤为:打开氮气恒流阀,氮气流量设定为30000sccm,压力为35000pa,时间为90s。
进一步地,所述充氮一的氮气流量设定为15000sccm,压力为常压。
本发明的有益效果在于:使用本发明所提供的工艺,无需设备改造与新增投入以及石墨舟改造,在原有镀背面氮化硅膜的管式PECVD设备上,通过调整抽空步压力及抽速,工艺温度、出舟前充氮步增加两步恒温,即为了缓慢回压,即可解决管式PECVD机台EL划伤比例偏高的问题;与现有工艺相比,本发明产生的EL划伤比例降低一半左右,可积极推动PERC电池的技术创新和规模化生产,具有较好的经济效益和社会效益。
具体实施方式
下面将结合发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
该降低管式PERC电池划伤的工艺,包括以下步骤:
开始:将插满ALD工序后硅片的石墨舟经自动化搬运至管式PECVD设备炉管,炉内温度设定为490℃;
充氮:炉管通入高纯氮气,氮气流量为5000sccm,直至炉管压力达到常压开启炉门,炉内温度设定为490℃;
放舟:将石墨舟由陶瓷桨送至炉管内部放于支撑机构,关闭炉门,炉内温度设定为490℃;
升温:通过加热控制系统对炉管进行加热,炉内温度设定为450℃;
预抽:打开预抽阀对内置石墨舟的炉管进行抽真空,设定底压为60pa,时间为250s,炉内温度设定为450℃;
主抽:打开主抽阀、预抽阀对内置石墨舟的炉管进行抽真空,设定底压为0pa,时间为40s,炉内温度设定为450℃;
检漏:检测炉管密封性;
抽真空:打开主抽阀、预抽阀对内置石墨舟的炉管进行抽真空,设定底压为0pa,时间为20s,炉内温度设定为450℃;
恒温:使炉管内部温度稳定在设定值450℃;
恒压:通入硅烷、氨气,使炉管压力稳定在设定值;
淀积:开启射频电源,电离硅烷、氨气在硅片表面沉积所需的氮化硅薄膜;
抽真空:关闭射频电源,停止硅烷、氨气通入,打开主抽阀、预抽阀将反应残留的尾气抽出炉管;
清洗:打开氮气恒流阀,氮气流量设定为10000sccm,稀释管路及炉管内的残留气体并由真空泵抽走;
恒温一:关闭主抽阀、预抽阀,打开氮气恒流阀,氮气流量设定为5000sccm,压力为1200pa,时间为30s;
恒温二:打开氮气恒流阀,氮气流量设定为30000sccm,压力为35000pa,时间为90s;
充氮一:打开氮气恒流阀、充氮阀,恒流阀支路氮气流量设定为15000sccm,压力为常压;
取舟:将石墨舟拉出炉管,炉内温度设定为490℃;
结束:炉内温度设定为490℃,工艺结束运行。
实施例2
开始:将插满ALD工序后硅片的石墨舟经自动化搬运至管式PECVD设备炉管,炉内温度设定为520℃;
充氮:炉管通入高纯氮气,氮气流量为5000sccm,直至炉管压力达到常压开启炉门,炉内温度设定为520℃;
放舟:将石墨舟由陶瓷桨送至炉管内部放于支撑机构,关闭炉门,炉内温度设定为520℃;
升温:通过加热控制系统对炉管进行加热,炉内温度设定为500℃;
预抽:打开预抽阀对内置石墨舟的炉管进行抽真空,设定底压为700pa,时间为100s,炉内温度设定为500℃;
主抽:打开主抽阀、预抽阀对内置石墨舟的炉管进行抽真空,设定底压为0pa,时间为100s,炉内温度设定为500℃;
检漏:检测炉管密封性;
抽真空:打开主抽阀、预抽阀对内置石墨舟的炉管进行抽真空,设定底压为0pa,时间为20s,炉内温度设定为500℃;
恒温:使炉管内部温度稳定在设定值500℃;
恒压:通入硅烷、氨气,使炉管压力稳定在设定值;
淀积:开启射频电源,电离硅烷、氨气在硅片表面沉积所需的氮化硅薄膜;
抽真空:关闭射频电源,停止硅烷、氨气通入,打开主抽阀、预抽阀将反应残留的尾气抽出炉管;
清洗:打开氮气恒流阀,氮气流量为设定为20000sccm,稀释管路及炉管内的残留气体并由真空泵抽走;
恒温一:关闭主抽阀、预抽阀,打开氮气恒流阀,氮气流量设定为20000sccm,压力为600pa,时间为20s;
充氮一:打开氮气恒流阀、充氮阀,恒流阀支路氮气流量设定为30000sccm,压力为常压;
取舟:将石墨舟拉出炉管,炉内温度设定为520℃;
结束:炉内温度设定为520℃,工艺结束运行。
实施例3
开始:将插满ALD工序后硅片的石墨舟经自动化搬运至管式PECVD设备炉管,炉内温度设定为500℃;
充氮:炉管通入高纯氮气,氮气流量为5000sccm,直至炉管压力达到常压开启炉门,炉内温度设定为500℃;
放舟:将石墨舟由陶瓷桨送至炉管内部放于支撑机构,关闭炉门,炉内温度设定为500℃;
升温:通过加热控制系统对炉管进行加热,炉内温度设定为480℃;
预抽:打开预抽阀对内置石墨舟的炉管进行抽真空,设定底压为700pa,时间为100s,炉内温度设定为480℃;
主抽:打开主抽阀、预抽阀对内置石墨舟的炉管进行抽真空,设定底压为0pa,时间为100s,炉内温度设定为480℃;
检漏:检测炉管密封性;
抽真空:打开主抽阀、预抽阀对内置石墨舟的炉管进行抽真空,设定底压为0pa,时间为20s,炉内温度设定为480℃;
恒温:使炉管内部温度稳定在设定值480℃;
恒压:通入硅烷、氨气,使炉管压力稳定在设定值;
淀积:开启射频电源,电离硅烷、氨气在硅片表面沉积所需的氮化硅薄膜;
抽真空:打开主抽阀、预抽阀将反应残留的尾气抽出炉管;
清洗:打开氮气恒流阀,氮气流量为设定为10000sccm,稀释管路及炉管内的残留气体并由真空泵抽走;
恒温二:关闭主抽阀、预抽阀,打开氮气恒流阀,氮气流量设定为20000sccm,压力为10000pa,时间为80s;
充氮一:打开氮气恒流阀、充氮阀,恒流阀支路氮气流量设定为30000sccm,压力为常压;
取舟:将石墨舟拉出炉管,炉内温度设定为500℃;
结束:炉内温度设定为500℃,工艺结束运行。
比对实验方法:各取前道工序的产品进行对比实验,
实验组:使用实施例1的方法进行生产;
对照组1:使用实施例2的方法进行生产;
对照组2:使用实施例3的方法进行生产。
统计方法:每组每次各生产1000片进行跟踪数据统计,经过丝网印刷后分别统计EL划伤比,实验次数8次。
经试验统计后得出如下数据:
次数 1 2 3 4 5 6 7 8 均值
实施例1 0.76% 0.53% 0.64% 0.45% 0.99% 0.47% 0.43% 0.63% 0.61%
实施例2 1.51% 1.02% 1.30% 0.92% 1.98% 0.95% 0.87% 1.21% 1.22%
实施例3 1.10% 0.72% 0.95% 0.71% 1.14% 0.62% 0.73% 0.88% 0.86%
通过8次跟踪显示采用实施例1划伤比远小于实施例2、3的划伤比,使用实施例1中所公开的制备工艺可以极大的提升电池生产良率。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种降低管式PERC电池划伤的工艺,其特征在于,包括以下步骤:开始、充氮、放舟、升温、预抽、主抽、检漏、抽真空、恒温、恒压、淀积、抽真空、清洗、恒温一、恒温二、充氮一、取舟、结束,具体为:
开始:将插满ALD工序后硅片的石墨舟经自动化搬运至管式PECVD设备炉管,炉内温度设定为490℃;
升温:通过加热控制系统对炉管进行加热,炉内温度设定为450℃;
预抽:打开预抽阀对内置石墨舟的炉管进行抽真空,设定底压为60pa,时间为250s,炉内温度设定为450℃;
主抽:打开主抽阀、预抽阀对内置石墨舟的炉管进行抽真空,设定底压为0pa,时间为40s,炉内温度设定为450℃;
恒压:通入硅烷、氨气,使炉管压力稳定在设定值;
淀积:开启射频电源,电离硅烷、氨气在硅片表面沉积所需的氮化硅薄膜;
抽真空:关闭射频电源,停止硅烷、氨气通入,打开主抽阀、预抽阀将反应残留的尾气抽出炉管;
清洗:打开氮气恒流阀,氮气流量设定为10000sccm,稀释管路及炉管内的残留气体并由真空泵抽走;
恒温一:关闭主抽阀、预抽阀,打开氮气恒流阀,氮气流量设定为5000sccm,压力为1200pa,时间为30s;
恒温二:打开氮气恒流阀,氮气流量设定为30000sccm,压力为35000pa,时间为90s;
充氮一:打开氮气恒流阀、充氮阀,恒流阀支路氮气流量设定为15000sccm,压力为常压;
所述开始、充氮、放舟、取舟和结束步骤的温度设定为490℃;
所述升温、预抽、主抽、检漏、抽真空、恒温、恒压、淀积、抽真空、清洗、恒温一、恒温二和充氮一步骤的温度设定为450℃。
CN202111137732.1A 2021-09-27 2021-09-27 一种降低管式perc电池划伤的工艺 Active CN113838948B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111137732.1A CN113838948B (zh) 2021-09-27 2021-09-27 一种降低管式perc电池划伤的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111137732.1A CN113838948B (zh) 2021-09-27 2021-09-27 一种降低管式perc电池划伤的工艺

Publications (2)

Publication Number Publication Date
CN113838948A CN113838948A (zh) 2021-12-24
CN113838948B true CN113838948B (zh) 2023-11-10

Family

ID=78970635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111137732.1A Active CN113838948B (zh) 2021-09-27 2021-09-27 一种降低管式perc电池划伤的工艺

Country Status (1)

Country Link
CN (1) CN113838948B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168860A (ja) * 1991-05-16 1994-06-14 Korea Electron & Telecommun Res Inst 半導体装置における基板の製造方法
KR20130114353A (ko) * 2012-04-09 2013-10-18 한국화학연구원 도가니 보호막 제조 방법
CN106637141A (zh) * 2017-01-20 2017-05-10 广东爱康太阳能科技有限公司 一种太阳能电池镀膜石墨舟片及石墨舟
CN110449409A (zh) * 2019-08-15 2019-11-15 平煤隆基新能源科技有限公司 一种避免pecvd工序中石墨舟印的处理工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6983653B2 (en) * 2002-12-13 2006-01-10 Denso Corporation Flow sensor having thin film portion and method for manufacturing the same
JP4309714B2 (ja) * 2003-08-27 2009-08-05 信越化学工業株式会社 静電吸着機能を有する加熱装置
EP2116637A3 (en) * 2008-05-07 2012-03-21 Covalent Materials Corporation Crucible for melting silicon and release agent used to the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168860A (ja) * 1991-05-16 1994-06-14 Korea Electron & Telecommun Res Inst 半導体装置における基板の製造方法
KR20130114353A (ko) * 2012-04-09 2013-10-18 한국화학연구원 도가니 보호막 제조 방법
CN106637141A (zh) * 2017-01-20 2017-05-10 广东爱康太阳能科技有限公司 一种太阳能电池镀膜石墨舟片及石墨舟
CN110449409A (zh) * 2019-08-15 2019-11-15 平煤隆基新能源科技有限公司 一种避免pecvd工序中石墨舟印的处理工艺

Also Published As

Publication number Publication date
CN113838948A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
CN107681018B (zh) 一种太阳能电池片的低压氧化工艺
CN110735130B (zh) 制备背面钝化膜的管式pecvd设备及方法
CN110106493B (zh) 利用管式pecvd设备制备背面钝化膜的方法
CN103160803A (zh) 石墨舟预处理方法
CN102856174A (zh) 氮化硅的膜制备方法、具有氮化硅膜的太阳能电池片及其制备方法
CN113782639A (zh) 一种降低晶硅太阳能电池el绕镀脏污的pecvd工艺
CN113611756A (zh) 一种N型TOPCon电池及其制备方法
CN116190498B (zh) 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池
CN109742195B (zh) 一种改善多晶rie黑硅电池边缘发白石墨舟饱和工艺
CN113838948B (zh) 一种降低管式perc电池划伤的工艺
CN114823969A (zh) 一种提升钝化接触结构性能的低温氢等离子体辅助退火方法和TOPCon太阳能电池
CN109103093A (zh) 一种太阳能多晶电池片的镀膜工艺
CN106435522A (zh) 晶硅太阳电池氧化铝钝化膜的pecvd沉积工艺
CN104701390A (zh) 太阳能电池背面钝化方法
CN108767056B (zh) 一种增强太阳能电池氢钝化能力的富氢pecvd工艺方法
CN112030143A (zh) 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法
CN106601588A (zh) 一种氧化硅钝化层的制备方法
Bin Mohd Zulkifly et al. Impact of bilayer structures on the surface passivation quality of high‐rate‐sputtered hydrogenated amorphous silicon for silicon heterojunction solar cells
CN214193447U (zh) 光伏电池双向进气钝化沉积装置
CN110707160B (zh) 一种管式直接PECVD制备太阳电池SiC减反射膜的方法
CN115838915A (zh) 一种单晶硅电池pecvd镀膜工艺
CN211828778U (zh) 一种perc电池背面复合钝化膜
CN112018217A (zh) 硅异质结太阳能电池的制备方法及其太阳能电池
CN219040488U (zh) 一种perc电池背面复合钝化膜和perc电池
CN114921771B (zh) 一种改善晶硅氧化铝绕镀的pecvd工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant