CN113816383A - 一种提高多晶硅还原炉能效的高纯石英质硅芯 - Google Patents

一种提高多晶硅还原炉能效的高纯石英质硅芯 Download PDF

Info

Publication number
CN113816383A
CN113816383A CN202111339544.7A CN202111339544A CN113816383A CN 113816383 A CN113816383 A CN 113816383A CN 202111339544 A CN202111339544 A CN 202111339544A CN 113816383 A CN113816383 A CN 113816383A
Authority
CN
China
Prior art keywords
silicon core
purity
silicon
quartz
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111339544.7A
Other languages
English (en)
Inventor
聂陟枫
王亚君
王晨
郭崎均
宋玉敏
郭婷婷
王海
谢刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University
Original Assignee
Kunming University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University filed Critical Kunming University
Priority to CN202111339544.7A priority Critical patent/CN113816383A/zh
Publication of CN113816383A publication Critical patent/CN113816383A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种提高多晶硅还原炉能效的高纯石英质硅芯,本发明将硅芯设置成空心结构且以高纯石英质材料制得,所述高纯石英质硅芯为空心硅芯,所述高纯石英质硅芯替代原多晶硅还原炉内的实心硅芯,所述高纯石英质硅芯以纯度为99.99%以上的高纯度结晶石英为原料,使用胶体处理方法制得;本发明有效克服了传统实心硅芯直径小、沉积面积受限的弊端,大幅度提高了多晶硅化学气相沉积速度,提升了多晶硅还原炉能效。

Description

一种提高多晶硅还原炉能效的高纯石英质硅芯
技术领域
本发明涉及一种提高多晶硅还原炉能效的高纯石英质硅芯,属于多晶硅生产技术领域。
背景技术
目前,世界上生产多晶硅的主要方法是改良西门子法,产量占当今世界总产量的70%。随着我国把碳达峰、碳中和纳入生态文明建设整体布局,对工业领域的“节能降耗”提出了更高的要求。因此,提高多晶硅还原炉能效是提升改良西门子法多晶硅生产竞争力的关键。改良西门子法多晶硅工艺原理是采用化学气相沉积(CVD)技术,在电加热(1100℃左右)的高纯硅芯上用高纯氢还原高纯三氯氢硅,生成多晶硅沉积在硅芯上。硅芯作为多晶硅生产过程中的沉积载体,随着化学气相沉积过程的进行,载体表面的沉积量越来越多,使较细直径的硅芯逐渐变粗为硅棒,在还原反应结束后,硅沉积在硅芯周围,硅芯和硅通过破碎一起作为多晶硅的原料使用。因此,硅芯是作为多晶硅生产过程中十分重要的沉积载体。载体材料的发展有三个阶段。第一个阶段采用的是钼丝或钽管,虽然简单方便,但是在高温下金属原子的扩散,严重影响多晶硅的纯度和品质;第二阶段是区熔法硅芯炉拉制圆硅芯,借助多晶硅半导体随温度升高电阻降低的负阻效应,硅芯在加热或高压击穿的条件下成为热载体后在还原炉内进行化学气相沉积生长多晶硅,生产的多晶硅质量明显提高;第三个阶段是线切割方形硅芯,该法使用专用的硅芯切割机,将高纯的多晶硅棒或单晶硅棒切成一定规格的细长方条方形硅芯。国内一般利用直拉法拉制硅棒,然后切割直拉硅棒,获得切割硅芯,该方法生产效率比区熔法硅芯炉拉制圆硅芯更高,但是切割硅棒拉制后需采用专门金刚线切割机床进行切割,切割效率低,硅料切割过程中损耗大,切割冷却水中需添加有机润滑剂,环保处理成本高。
发明内容
本发明的目的在于提供了一种提高多晶硅还原炉能效的高纯石英质硅芯,本发明将硅芯设置成空心结构且以高纯石英质材料制得,有效克服了传统实心硅芯直径小、沉积面积受限的弊端,大幅度提高了多晶硅化学气相沉积速度,提升了多晶硅还原炉能效。
本发明的技术方案如下:所述高纯石英质硅芯为空心硅芯,所述高纯石英质硅芯替代原多晶硅还原炉内的实心硅芯,所述高纯石英质硅芯以纯度为99.99%以上的高纯度结晶石英为原料,使用胶体处理方法制得。具体制备步骤如下:
(1)将未加工的纯度在99.99%以上的高纯度结晶石英研磨至颗粒粒径为50 nm~300 μm,然后再将研磨后的石英颗粒分散到胶体溶液中;
(2)再将分散到胶体溶液后的石英颗粒模制成硅芯型材,然后经干燥、烧结和退火处理;
(3)将处理好的硅芯型材进行机械加工或结构修改,从而得到高纯石英质硅芯。
所述空心硅芯为管状结构。即中空管状硅芯,管状硅芯外形为空心圆柱体状。管状硅芯半径为10 mm、20 mm、30 mm、40 mm或50 mm,管状硅芯沉积厚度为10 mm、20 mm、30 mm、40 mm或50 mm。
所述空心硅芯为方状、十字架状或四角星状结构。在磨制中改变形状以满足现有多晶硅还原炉的要求。
本发明的特点是:本发明以高纯度结晶石英(纯度99.99%以上)为原料,经研磨、制浆、成坯、烧成、冷加工等一系列工序制备而成高纯石英质空心硅芯,其工艺更为简单且成品率高,损耗小,环保处理成本低。对于管状结构,在相同沉积厚度,不同空心管半径下,管状硅芯初始半径越大,其内部温度梯度越小。
与现有技术相比,本发明的有益效果是:
(1)本发明采用高纯石英质空心硅芯,不含任何金属元素,不会影响多晶硅的纯度和品质。
(2)本发明的硅芯沉积面积增大,多晶硅沉积速率及还原炉运行效率提升。
(3)本发明在相同沉积厚度下,大直径高纯石英质管状硅芯内部温度梯度越小,硅芯不易融化而发生倒棒风险。
(4)本发明采用高纯石英质管状硅芯用料少、制备工艺简单、成品率高且表面积大,可大幅度提高多晶硅化学气相沉积速度,从而增大还原炉单炉产量,降低单位多晶硅产品能耗。
附图说明
图1为本发明多晶硅还原炉用高纯石英质管状空心硅芯结构示意图;
图2为12对棒多晶硅还原炉用高纯石英质管状硅芯,空心管初始半径为50 mm条件下,内环硅棒在不同沉积厚度温度分布情形图;
图3为12对棒多晶硅还原炉用高纯石英质管状硅芯,空心管初始半径为50 mm条件下,外环硅棒在不同沉积厚度温度分布情形图;
图4为12对棒多晶硅还原炉用高纯石英质管状硅芯,沉积厚度为60 mm条件下,内环硅棒不同空心管初始半径温度分布情形图;
图5为12对棒多晶硅还原炉用高纯石英质管状硅芯,沉积厚度为60 mm条件下,外环硅棒不同空心管初始半径温度分布情形图;
图6为12对棒多晶硅还原炉采用传统实心硅芯和不同初始半径的高纯石英质管状硅芯的每公斤多晶硅产品能耗图;
图7为本发明多晶硅还原炉用高纯石英质方状空心硅芯结构示意图;
图8为本发明多晶硅还原炉用高纯石英质十字架状空心硅芯结构示意图;
图9为本发明多晶硅还原炉用高纯石英质四角星状空心硅芯结构示意图。
具体实施方式
下面结合附图和具体实施方式,对本发明作进一步说明。
实施例1:在制造多晶硅的CVD反应器中,使用高纯石英质管状空心硅芯代替传统的实心硅芯。以纯度99.99%以上的高纯度结晶石英为原料,使用胶体处理方法制得,具体步骤如下:
(1)将未加工的纯度在99.99%以上的高纯度结晶石英研磨至颗粒粒径为50 nm~300 μm,然后再将研磨后的石英颗粒分散到胶体溶液中;
(2)再将分散到胶体溶液后的石英颗粒模制成中空的管状硅芯型材,然后经干燥、烧结和退火处理;
(3)将处理好的硅芯型材进行机械加工或结构修改,从而得到高纯石英质硅芯。
制备的空心管状硅芯如图1所示,其形状为中空管状。所述管状硅芯高纯石英质圆柱体状,该管状硅芯产生的沉积表面积比实心硅棒大。将本实施例制备的管状硅芯用于12对棒多晶硅还原炉,硅芯高度为2400 mm,硅芯表面温度为1100 ℃,进料温度为120 ℃,还原炉夹套循环水温度为100 ℃,运行压力为0.5 MPa,SiHCl3进料气体流量为1015 kg/h,进料配比为H2/SiHCl3=3:1(体积比),进行三氯氢硅氢还原反应。
对比管状硅芯在不同沉积厚度内、外环硅棒内部温度的分布情形,如附图2、3所示。安装空心管初始半径为50 mm高纯石英质管状硅芯,沉积厚度在10 mm、20 mm、30 mm、40mm和50 mm的内、外环硅棒内部温度分布情形。可以得到,内环高纯石英质管状硅芯温度梯度是先增大后降低,外环高纯石英质管状硅芯温度梯度则是随着沉积厚度增加一直增大,因此沉积面积增大,硅沉积速率及还原炉运行效率提升。且内环高纯石英质管状硅芯在沉积厚度达到50mm左右时,温度梯度达最大值。
实施例2:本实施例硅芯及制备方法同实施例1,不同之处在于,本实施例对比管状硅芯在相同沉积厚度,不同空心管初始半径条件下,内、外环硅棒内部温度分布情形,如附图4、5所示。在沉积厚度都为60 mm的条件下,空心管初始半径为10 mm、20 mm、30 mm和40mm的管状硅芯,对比管状硅棒内部温度梯度。当空心管初始半径为40 mm时,其内部温度梯度最小。因此,相同沉积厚度下,大直径高纯石英质管状硅芯内部温度梯度越小,且硅芯不易融化而发生倒棒风险。
实施例3:本实施例硅芯及制备方法同实施例1,不同之处在于,本实施例对比传统实心硅芯和不同初始半径的高纯石英质管状硅芯的每公斤多晶硅产品能耗,如附图6所示。采用传统实心硅芯,由于硅棒内部温度梯度限制,硅棒最终沉积半径为7 cm。采用高纯石英质管状硅芯,其最终沉积半径可达7 cm。对比传统实心硅芯和不同初始半径的高纯石英质管状硅芯的每公斤多晶硅产品能耗,可以发现,采用传统实心硅芯,其单位多晶硅产品能耗为55.1 kWh/kg,初始半径为20 mm、30 mm、40 mm和50 mm的高纯石英质管状硅芯的单位多晶硅产品能耗分别为42.2 kWh/kg、40.6 kWh/kg、38.9 kWh/kg和37.1 kWh/kg,分别节能23%、26%、29%和33%,节能效果显著,提高了多晶硅还原炉能效。
实施例4:本实施例硅芯为空心方状结构,如附图7所示。
实施例5:本实施例硅芯为空心十字架状结构,如附图8所示。
实施例6:本实施例硅芯为空心四角星状结构,如附图9所示。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以再不脱离本发明精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (5)

1.一种提高多晶硅还原炉能效的高纯石英质硅芯,其特征在于,所述高纯石英质硅芯为空心硅芯,所述高纯石英质空心硅芯替代原多晶硅还原炉内的实心硅芯,所述高纯石英质硅芯以纯度为99.99%以上的高纯度结晶石英为原料,使用胶体处理方法制得。
2.根据权利要求1所述的提高多晶硅还原炉能效的高纯石英质硅芯,其特征在于:具体制备步骤如下:
将未加工的纯度在99.99%以上的高纯度结晶石英研磨至颗粒粒径为50 nm~300 μm,然后再将研磨后的石英颗粒分散到胶体溶液中;
再将分散到胶体溶液后的石英颗粒模制成硅芯型材,然后经干燥、烧结和退火处理;
将处理好的硅芯型材进行机械加工或结构修改,从而得到高纯石英质硅芯。
3.根据权利要求1所述的提高多晶硅还原炉能效的高纯石英质硅芯,其特征在于:所述空心硅芯为管状结构。
4.根据权利要求3所述的提高多晶硅还原炉能效的高纯石英质硅芯,其特征在于:管状硅芯半径为10 mm、20 mm、30 mm、40 mm或50 mm,管状硅芯沉积厚度为10 mm、20 mm、30 mm、40 mm或50 mm。
5.根据权利要求1所述的提高多晶硅还原炉能效的高纯石英质硅芯,其特征在于:所述空心硅芯为方状、十字架状或四角星状结构。
CN202111339544.7A 2021-11-12 2021-11-12 一种提高多晶硅还原炉能效的高纯石英质硅芯 Pending CN113816383A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111339544.7A CN113816383A (zh) 2021-11-12 2021-11-12 一种提高多晶硅还原炉能效的高纯石英质硅芯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111339544.7A CN113816383A (zh) 2021-11-12 2021-11-12 一种提高多晶硅还原炉能效的高纯石英质硅芯

Publications (1)

Publication Number Publication Date
CN113816383A true CN113816383A (zh) 2021-12-21

Family

ID=78919530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111339544.7A Pending CN113816383A (zh) 2021-11-12 2021-11-12 一种提高多晶硅还原炉能效的高纯石英质硅芯

Country Status (1)

Country Link
CN (1) CN113816383A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159215A (zh) * 2011-12-09 2013-06-19 洛阳金诺机械工程有限公司 一种空心硅芯的拉制方法
CN105417542A (zh) * 2016-01-06 2016-03-23 洛阳金诺机械工程有限公司 一种空心硅芯及其硅芯组件
CN113443903A (zh) * 2021-07-20 2021-09-28 烟台核晶陶瓷新材料有限公司 超大尺寸长方体熔融石英坩埚的制备方法及其用于生产空心方硅芯的方法
CN113526510A (zh) * 2021-08-17 2021-10-22 昆明学院 一种降低多晶硅还原炉辐射热损失的方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159215A (zh) * 2011-12-09 2013-06-19 洛阳金诺机械工程有限公司 一种空心硅芯的拉制方法
CN105417542A (zh) * 2016-01-06 2016-03-23 洛阳金诺机械工程有限公司 一种空心硅芯及其硅芯组件
CN113443903A (zh) * 2021-07-20 2021-09-28 烟台核晶陶瓷新材料有限公司 超大尺寸长方体熔融石英坩埚的制备方法及其用于生产空心方硅芯的方法
CN113526510A (zh) * 2021-08-17 2021-10-22 昆明学院 一种降低多晶硅还原炉辐射热损失的方法和应用

Similar Documents

Publication Publication Date Title
CN101870471B (zh) 高效大型多晶硅还原炉
CN201512418U (zh) 多晶硅还原炉
CN201665729U (zh) 一种用于拉制具有曲面形状硅薄壳的装置
CN114212794B (zh) 制备电子级方硅芯的原生多晶硅棒的生产方法
CN106283180A (zh) 多晶硅的制造方法以及单晶硅的制造方法
CN201232028Y (zh) 进气管喷嘴可调节的多晶硅还原炉
CN201746331U (zh) 多晶硅还原炉
CN201665536U (zh) 一种适用于西门子工艺生产多晶硅的还原炉
CN113816383A (zh) 一种提高多晶硅还原炉能效的高纯石英质硅芯
CN109133066B (zh) 一种电子级多晶硅还原炉底盘及还原炉
CN103172381A (zh) 冷壁流化床的制备方法及其应用
WO2018076139A1 (zh) 多晶硅的制造方法以及单晶硅的制造方法
CN211367806U (zh) 一种新型石英坩埚
CN214141602U (zh) 一种56对棒多晶硅还原炉底盘
CN201214631Y (zh) 多晶硅还原炉
CN101830467B (zh) 一种多晶硅分解炉
CN217555822U (zh) 一种48对棒多晶硅还原炉底盘
CN201560248U (zh) 单晶炉用石墨坩埚
CN201648567U (zh) 一种多晶硅分解炉
CN110923807A (zh) 提高单晶硅品质的热场及方法
CN103172067B (zh) 冷壁流化床及其应用
CN201525754U (zh) 多晶硅实验还原炉
CN204251760U (zh) 直拉硅单晶热场
CN201990494U (zh) 一种节能型多晶硅还原炉
CN201678457U (zh) 一种用于多晶硅分解炉的导热油硅芯夹套装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211221