CN113815488A - 电动汽车的能量分配方法、装置及车辆 - Google Patents

电动汽车的能量分配方法、装置及车辆 Download PDF

Info

Publication number
CN113815488A
CN113815488A CN202111166245.8A CN202111166245A CN113815488A CN 113815488 A CN113815488 A CN 113815488A CN 202111166245 A CN202111166245 A CN 202111166245A CN 113815488 A CN113815488 A CN 113815488A
Authority
CN
China
Prior art keywords
vehicle
energy consumption
current
energy
preset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111166245.8A
Other languages
English (en)
Other versions
CN113815488B (zh
Inventor
周伟
李素文
郭树星
谢宏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Human Horizons Shanghai New Energy Drive Technology Co Ltd
Original Assignee
Human Horizons Shanghai New Energy Drive Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Human Horizons Shanghai New Energy Drive Technology Co Ltd filed Critical Human Horizons Shanghai New Energy Drive Technology Co Ltd
Priority to CN202111166245.8A priority Critical patent/CN113815488B/zh
Publication of CN113815488A publication Critical patent/CN113815488A/zh
Application granted granted Critical
Publication of CN113815488B publication Critical patent/CN113815488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供了一种电动汽车的能量分配方法、装置及车辆,该方法包括获取车辆所处的当前环境信息和当前车辆运行状态;根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗;其中,所述基准能耗模型是根据在不同的车辆运行状态和环境信息下车辆的实际能耗进行修正得到;根据所述基准能耗和剩余能量,计算可行驶里程;根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率;根据所述目标最大允许放电功率,对车辆的耗能附件进行能量分配。本发明充分考虑车辆的当前运行状态和环境对车辆能耗的影响,及时调整整车的耗能附件的能量分配,促进目标里程的达成。

Description

电动汽车的能量分配方法、装置及车辆
技术领域
本发明涉及汽车技术领域,尤其涉及一种电动汽车的能量分配方法、装置及车辆。
背景技术
随着世界环保问题和能源危急的日益突出,具有节约燃油能源、废气排放量低、污染少、噪声低等的特点的新能源电动汽车成为人们追求的目标。目前,电动汽车的发展与普及面临着很多挑战,目前,电动汽车的发展与普及面临着很多挑战,尤其是电池技术的限制仍然使得续驶里程成为电动汽车发展的主要障碍。现有的整车能量分配策略,一般是指定一定的能量需求优先级,以固定的先后顺序去分配动力电池的能量,现有的整车能量分配策略虽然将整车功率的消耗限制在了动力电池的能力范围内,但是未能根据行车实际情况及时调整整车能量分配,会导致电动汽车的剩余里程数缩短。
发明内容
针对上述问题,本发明的目的在于提供一种电动汽车的能量分配方法、装置及车辆,其充分考虑车辆的当前运行状态和环境,及时调整整车的耗能附件的能量分配,提升车辆的续航里程,促进目标里程的达成。
第一方面,本发明实施例提供了一种电动汽车的能量分配方法,包括:
获取车辆所处的当前环境信息和当前车辆运行状态;
根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗;其中,所述基准能耗模型是根据在不同的车辆运行状态和环境信息下车辆的实际能耗进行修正得到;
根据所述基准能耗和剩余能量,计算可行驶里程;
根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率;
根据所述目标最大允许放电功率,对车辆的耗能附件进行能量分配。
作为上述方案的改进,所述根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率,包括:
计算所述可行驶里程和车辆当前的显示里程的里程差值;
根据所述里程差值、车辆的当前最大允许放电功率和当前车速,计算功耗降低值;
根据所述功耗降低值,计算车辆的目标最大允许放电功率。
作为上述方案的改进,所述根据所述里程差值、车辆的当前最大允许放电功率和当前车速,计算功耗降低值,包括:
根据公式
Figure BDA0003291377060000021
计算功耗降低值;
其中,s表示预设的第一修正系数,n表示预设的第二修正系数,m表示预设的第三修正系数,P表示当前最大允许放电功率,X表示里程差值,V表示车辆的当前车速。
作为上述方案的改进,所述基准能耗模型包括与车辆运行状态对应的基准能耗曲线、与环境信息对应的基准能耗矩阵;
则,所述方法还包括:
根据车辆在不同的车辆运行状态下的实际能耗对所述基准能耗曲线进行修正;
根据车辆在不同的环境信息下的实际能耗对所述基准能耗矩阵进行修正。
作为上述方案的改进,所述根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗,包括:
根据修正后的基准能耗曲线,获取车辆在当前车辆运行状态下的动态基准能耗;
根据修正后的基准能耗矩阵,获取车辆在当前环境信息下的静态基准能耗;
根据所述动态基准能耗和所述静态基准能耗,得到所述基准能耗。
作为上述方案的改进,所述方法还包括:
监测车辆所有耗能附件的总能耗,并根据所述总能耗,计算所述耗能附件消耗的第一里程;
当所述耗能附件的第一里程大于其预设的初始分配里程时,将车辆中无工作需求的耗能附件切换到省电模式,并对车辆中能耗大于预设的第一阈值的耗能附件进行功率限制。
作为上述方案的改进,所述方法还包括:
当所述可行驶里程小于车辆当前的显示里程,且车辆的雨刮处于自动状态时,检测车辆是否满足预设的雨刮控制条件;其中,所述雨刮控制条件包括:车辆处于静止状态且检测到车辆的驾驶员未目视前方;
当车辆满足所述雨刮控制条件,降低车辆的雨刮的工作频率。
作为上述方案的改进,所述方法还包括:
当所述可行驶里程小于车辆当前的显示里程,检测车辆是否满足预设的任意一个空调控制条件;其中,所述空调控制条件包括:车辆处于行车状态且车辆的车窗开启高度大于预设的高度阈值、或车辆处于非行车状态且车辆的车门开启角度大于预设的角度阈值;
当车辆满足所述空调控制条件,降低车辆的空调的输出功率。
第二方面,本发明实施例提供了一种电动汽车的能量分配装置,包括:
数据获取模块,用于获取车辆所处的当前环境信息和当前车辆运行状态;
基准能耗获取模块,用于根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗;其中,所述基准能耗模型是根据在不同的车辆运行状态和环境信息下车辆的实际能耗进行修正得到;
可行驶里程计算模块,用于根据所述基准能耗和剩余能量,计算可行驶里程;
能耗确定模块,用于根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率;
能量分配模块,用于根据所述目标最大允许放电功率,对车辆的耗能附件进行能量分配。
第三方面,本发明实施例提供了一种车辆,包括:
一个或多个处理器;
存储器,用于储存一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面中任一所述的电动汽车的能量分配方法。
相对于现有技术,本发明实施例的有益效果在于:基于车辆的实际能耗修正基准能耗,充分考虑车辆的当前运行状态和环境对车辆能耗的影响,并基于修正后的基准能耗和剩余能量来计算得到的可行驶里程和显示里程确定车辆的目标最大允许放电功率,来对车辆的耗能附件进行能量分配,能够基于车辆当前的行驶情况及时调整整车的耗能附件的能量分配,达到控制车辆最大消耗量,降低后续行程能耗目的,从而提升车辆的续航里程,促进显示里程达标。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种电动汽车的能量分配方法的流程图;
图2是本发明实施例提供一种电动汽车的能量分配装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供了一种电动汽车的能量分配方法,包括:
S11:获取车辆所处的当前环境信息和当前车辆运行状态;
其中,当前车辆运行状态包括车速、耗能附件的工作状态、踏板开度等行驶数据,当前环境信息包括路况、天气、风速、空气密度等。
S12:根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗;其中,所述基准能耗模型是根据在不同的车辆运行状态和环境信息下车辆的实际能耗进行修正得到;
S13:根据所述基准能耗和剩余能量,计算可行驶里程;
具体的,所述根据所述基准能耗和车辆的剩余能量,计算可行驶里程,包括:在车辆导航模式下,根据车辆的当前位置和预设的目的位置,获得车辆的导航路线,并对所述导航路线进行分段,得到若干个路段;其中,相邻的两个所述路段所属的路况不同;
根据基准能耗和车辆的当前剩余能量,得到估算里程;
对所述估算里程进行滤波处理;
根据车辆在当前时刻前的可行驶里程的变化规律,调整刷新时间和刷新步长;
根据调整后的刷新时间和刷新步长对滤波后的估算里程进行调整;
判断调整后的估算里程是否合理;
当判断出调整后的估算里程合理时,将调整后的估算里程作为可行驶里程。
具体的,所述判断调整后的估算里程是否合理,包括:
判断调整后的估算里程是否落在对应的里程区间内;其中,所述里程区间的上限是根据车辆的剩余能量、其在当前行驶状态和当前环境信息下最小能耗计算得到,所述里程区间的下限是根据车辆的剩余能量、其当前行驶状态下最大能耗计算得到;
若是,判断调整后的估算里程合理;
若否,判断调整后的估算里程不合理。
在本发明实施例中,由于估算里程会使用到行驶过程中的实际能耗,因此能耗波动范围比较大,此时计算出来的估算里程就会波动比较大,因此本发明通过进行一定的滤波控制,例如低通滤波控制和限幅滤波控制,去除一些干扰,同时依据实际行驶里程变化情况,去控制里程上升或下降的刷新步长及刷新时间,使里程的变化符合驾驶员的心里预期。最后根据剩余能力对估算里程进行合理性保护,防止里程计算过程中出现不正常的干扰导致里程不符合实际情况,例如剩余能量是50kwh,实际可行驶的里程会在150~280km之间,如果前面计算的里程不在这个范围内,那么就可能里程计算有问题。对于初步得到的估算里程,依次通过滤波控制、刷新控制、步长口控制以及根据剩余能量的里程保护,可以得到最终的可行驶里程。
S14:根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率;
S15:根据所述目标最大允许放电功率,对车辆的耗能附件进行能量分配。
在本发明实施例中,基于车辆的实际能耗修正基准能耗,充分考虑车辆的当前运行状态和环境对车辆能耗的影响,并基于修正后的基准能耗和剩余能量来计算得到的可行驶里程和显示里程确定车辆的目标最大允许放电功率,来对车辆的耗能附件进行能量分配,能够基于车辆当前的行驶情况及时调整整车的耗能附件的能量分配,达到控制车辆最大消耗量,降低能耗的目的,从而促进目标里程的达成,促进显示里程达标。
在一种可选的实施例中,所述根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率,包括:
计算所述可行驶里程和车辆当前的显示里程的里程差值;
根据所述里程差值、车辆的当前最大允许放电功率和当前车速,计算功耗降低值;
根据所述功耗降低值,计算车辆的目标最大允许放电功率。
具体的,计算当前最大允许放电功率与所述功耗降低值的差值,可以得到车辆的目标最大允许放电功率。
进一步,所述根据所述里程差值、车辆的当前最大允许放电功率和当前车速,计算功耗降低值,包括:
根据公式
Figure BDA0003291377060000071
计算功耗降低值;
其中,s表示预设的第一修正系数,n表示预设的第二修正系数,m表示预设的第三修正系数,P表示当前最大允许放电功率,X表示里程差值,V表示车辆的当前车速。
在本发明实施例中,基于可行驶里程和车辆当前的显示里程的里程差值来计算车辆的目标最大允许放电功率,可以进一步促进车辆里程达标,减少用户的里程焦虑。
在一种可选的实施例中,所述基准能耗模型包括与车辆运行状态对应的基准能耗曲线、与环境信息对应的基准能耗矩阵;
则,所述方法还包括:
根据车辆在不同的车辆运行状态下的实际能耗对所述基准能耗曲线进行修正;
根据车辆在不同的环境信息下的实际能耗对所述基准能耗矩阵进行修正。
进一步,所述根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗,包括:
根据修正后的基准能耗曲线,获取车辆在当前车辆运行状态下的动态基准能耗;
根据修正后的基准能耗矩阵,获取车辆在当前环境信息下的静态基准能耗;
根据所述动态基准能耗和所述静态基准能耗,得到所述基准能耗。
车辆在出厂是预先设定了基于车速的基准能耗曲线,用于表征在不同车速下,对应一个标准工况(例如沥青路况、无坡度、环境温度25度)的能耗,则每个不同车速就会有一个对应的能耗,在一个设定的车速范围就有一个对应的基准能耗曲线,即上述车辆运行状态对应的基准能耗曲线;车辆在后续行驶过程中,会监测不同车速下的实际能耗,然后采用该实际能耗去修正基准能耗曲线对应车速下的能耗,使得基准能耗曲线更加贴近车辆的实际情况,提升续航里程估算的精度。
车辆在出厂是预先设定了还设定了基于环境的基准能耗矩阵,用于表征车辆在静止状态,不同环境对应的能耗,同样的,后续会根据车辆实际所处环境进行能耗修正,例如同样是30度的天气,南方和北方可能对能耗的影响不同,所以会依据实际环境感知信息对应的实际能耗来进行修正。
本发明实施例通过综合当前车速下的动态能耗和当前环境信息的静态能耗的加和,作为基准能耗,用来估算车辆的可行驶里程,能充分考虑环境感知和用户驾驶特性,提升供精准续航,减少用户的里程焦虑。
在一种可选的实施例中,所述方法还包括:
监测车辆所有耗能附件的总能耗,并根据所述总能耗,计算所述耗能附件消耗的第一里程;
当所述耗能附件的第一里程大于其预设的初始分配里程时,将车辆中无工作需求的耗能附件切换到省电模式,并对车辆中能耗大于预设的第一阈值的耗能附件进行功率限制。
进一步,当所述耗能附件的第一里程大于等于其预设的初始分配里程时,保持所述耗能附件的当前工作状态。
在本发明实施例中,在车辆行驶过程中,耗能附件消耗可能过多,导致其消耗里程超过初始分配里程,因此,需要对车辆的耗能附件进行能耗监控,对当前无工作需求的耗能附件,主动控制其进入省电模式,对于高耗能的附件,限制其最大消耗功率,保证耗能附件的消耗里程不超过或尽量少超过初始分配里程。通过能量分配控制,耗能附件控制,来实现整车能耗的控制,从而节省能量,保证为里程目标提供更多的余量,以促进目标里程的达成,可以提升用户体验。
在一种可选的实施例中,所述方法还包括:
当所述可行驶里程小于车辆当前的显示里程,且车辆的雨刮处于自动状态时,检测车辆是否满足预设的雨刮控制条件;其中,所述雨刮控制条件包括:车辆处于静止状态且检测到车辆的驾驶员未目视前方;
当车辆满足所述雨刮控制条件,降低车辆的雨刮的工作频率。
在本发明实施例中,当所述可行驶里程小于车辆当前的显示里程,且雨刮状态为自动状态(Auto),在车辆静止且驾驶员未目视前方的情况下,将自动控制雨刮降低其工作频率,以节省电耗。对于雨天市区堵车的工况的行车场景,驾驶员在此情况下对前方视野无需求时,可以减少雨刮工作频率,有效降低能耗,促进里程目标达成。
其中,可通过车内摄像头对驾驶员进行脸部检测,来确定驾驶员是否目视前方;例如当在设定时段内连续检测到驾驶员的正脸信息,则确定驾驶员目视前方。
在一种可选的实施例中,所述方法还包括:
当所述可行驶里程小于车辆当前的显示里程,检测车辆是否满足预设的任意一个空调控制条件;其中,所述空调控制条件包括:车辆处于行车状态且车辆的车窗开启高度大于预设的高度阈值、或车辆处于非行车状态且车辆的车门开启角度大于预设的角度阈值;
当车辆满足所述空调控制条件,降低车辆的空调的输出功率。
在本发明实施例中,当所述可行驶里程小于车辆当前的显示里程,且车辆处于行车状态,车窗开启高度大于所述高度阈值,则此时为了节省能量适当降低空调的输出功率,如果此时为非行车状态,且车门开启角度大于所述角度阈值,同样出于能耗考虑适当降低空调的输出功率。通过控制空调的输出功率减少热交换所带来的能量损失,合理减少能耗,从而促进里程目标达成。
为了减少能耗,提升车辆的能量利用率,进一步促进车辆里程达标,在计算出车辆的可行驶里程后,以可行驶里程为车辆的目标里程,还可以进行能量回馈控制以及热管理过程,其中,能量回馈控制过程具体包括:
在车辆导航模式下,根据车辆的当前位置和预设的目的位置,获得车辆的导航路线,并对所述导航路线进行分段,得到若干个路段;其中,相邻的两个所述路段所属的路况不同;
所述路况,包括上坡路况、下坡路况、高速路况、城市路况等。
当所述可行驶里程小于等于车辆当前的显示里程时,在车辆行驶至当前路段时,根据其对应路况,从预设的多个制动回馈档位中选取一个制动回馈档位,以使得车辆在当前路段按照选取出的制动回馈档位进行能量回馈。
在本发明实施例中,在车辆开启导航的情况下,如果是长续航模式,则依据道路情况,自动调整能量回收状态,有效提高车辆在行驶过程中的能量回馈效率,减小能耗。
在一种可选的实施例中,所述在车辆行驶至当前路段时,根据其对应路况,从预设的多个制动回馈档位中选取一个制动回馈档位,以使得车辆在当前路段按照选取出的制动回馈档位进行能量回馈,包括:
在车辆行驶至当前路段时,根据当前路段的路况和预设的路况回馈表,从预设的多个制动回馈档位中选取一个制动回馈档位;其中,所述路况回馈表包括不同路况与不同制动回馈档位之间的对应关系,一个路况对应一个制动回馈档位;
根据选取的制动回馈档位,确定车辆的回馈减速度;
根据所述回馈减速度,确定车辆的回馈扭矩,以使得车辆在当前路段根据所述回馈扭矩进行制动回馈减速。
所述制动回馈档位包括弱回馈档位、中回馈档位以及强回馈档位;
其中,当处于所述弱回馈档位时,车辆的回馈减速度小于预设的第一速度阈值;
当处于所述中回馈档位时,车辆回馈减速度大于等于所述第一速度阈值且小于等于预设的第二速度阈值;
当处于所述强回馈档位时,车辆的回馈减速度大于第二速度阈值。
在本发明实施例中,对第一速度阈值和第二速度阈值不做具体的限定,可根据车辆具体情况进行设置,例如所述第一速度阈值为0.1g,所述第二速度阈值为0.2g。通过预先设定高速路况、上坡路况对应弱回馈档位,城市路况、下坡路况对应强回馈档位,则在车辆开启导航的情况下,如果是长续航模式,则依据道路情况,自动调整能量回收状态,例如在高速路况下,使用弱回馈将有利于车辆行驶更远的距离,而在城市工况,制动需求比较频繁,而强回馈设定将有效减少驾驶员踩制动的频率,能很好的将动能转化为电能,减少制动损耗,同样,在下坡路况,强回馈有利于将势能转化为电能,减少刹车消耗。在上坡路况,弱回馈设定将有效减少动能损失,利于减少能耗。
热管理过程具体包括:
在车辆导航模式下,根据车辆的当前位置和预设的目的位置,获得车辆的导航路线,并对所述导航路线进行分段,得到若干导航路段;其中,相邻的两个所述导航路段所属的路况不同;
根据车辆的下一导航路段对应的路况、当前环境信息以及当前车辆运行状态,从预设的热管理控制策略库中获取一热管理控制策略;
在下一导航路段采用所述热管理控制策略,对车辆的热管理系统进行相应控制。
在本发明实施例中,通过对导航路线进行分段以及监控车辆状态、环境信息,根据各导航路段的路况、环境信息以及车辆运行状态,得出最优热管理控制策略,实现分段式热管理控制,能有效节省能量,提升能量利用率,为目标里程的达成提供保障。
在一种可选的实施例中,所述热管理过程还包括:
根据预存的各种路况、环境信息以及车辆运行状态下热管理系统的工作模式,以及对应工作模式下的热管理能耗,采用机器学习算法挖掘出在任一路况和环境信息下热管理能耗最低对应的工作模式,作为任一路况和环境信息下的热管理控制策略;
将挖掘出的热管理控制策略存储到预设的热管理控制策略库中。
为了更好的挖掘出有效的热管理控制信息,对于各种路况,环境温度、风速、空气密度等环境信息以及车辆自身的热管理信息进行信息融合,并将信息融合后得到的结果采用机器学习算法进行挖掘出达到相同制冷/制热效果、且能耗最低的最优热管理控制策略,并将该热管理控制策略存储到预设的热管理控制策略库,为车辆后续的热管理提供最优的控制策略,确保达到相同制冷/制热效果时,能耗最低。
在一种可选的实施例中,所述根据车辆的下一导航路段对应的路况、当前环境信息以及当前车辆运行状态,从预设的热管理控制策略库中获取一热管理控制策略,包括:
根据下一导航路段对应的路况、当前环境信息以及当前车辆运行状态,对所述热管理控制策略库进行匹配搜索,获取对应所述下一导航路段对应的路况和当前环境信息的控制策略。
进一步,所述热管理控制策略包括热管理系统的风扇转速控制、目标水温控制、热管理系统的水泵转速控制、热管理系统的阀体控制,所述热管理控制策略还包括冷却模式控制、加热模式控制中的一种。
在一种可选的实施例中,当所述热管理策略包括冷却模式控制时,所述在下一导航路段采用所述热管理控制策略,对车辆的热管理系统进行相应控制,包括:
根据所述热管理控制策略,预测所述下一导航路段的路况的热管理能耗;
根据所述热管理能耗,对所述下一导航路段的路况进行冷却需求判断;
当所述冷却需求为预设的高冷却需求时,在下一导航路段采用所述热管理控制策略,对车辆的热管理系统进行冷却控制;
当所述冷却需求为预设的中冷却需求时,保持所述热管理系统当前的冷却状态;
当所述冷却需求为预设的低冷却需求时,上调所述热管理系统的冷却阈值。
在本发明实施例对车辆的冷却需求划分为高、中、低三个等级,并且一种路况对应一种冷区需求。在车辆开启导航的情况下,将导航路线进行分段,依据道路分段情况提前规划下一段路况的冷却需求,以提前规划下一路况的热管理控制策略,以实现达到目的地时热管理能耗最小,尽可能节省能量,为保证里程目标提供更多的余量。
在一种可选的实施例中,当所述热管理策略包括加热模式控制时,所述在下一导航路段采用所述热管理控制策略,对车辆的热管理系统进行相应控制,包括:
当车辆满足预设的电机回馈条件时,在下一导航路段采用所述热管理控制策略,对车辆的热管理系统进行加热控制;
其中,所述电机回馈条件包括:车辆的可行驶里程小于其当前的显示里程时,车辆的电池允许充电功率小于预设功率阈值且车辆处于油门松开状态。
在本发明实施例中,将车辆的可行驶里程与显示里程做对比,如果此时可行驶里程小于显示里程,且电池允许充电功率小于预设功率阈值且车辆处于油门松开状态时,说明电机有回馈需求,此时如果不做控制,电机就只能以很小的功率进行回馈或不回馈。为了优化能耗,本发明在确定电机有回馈需求时,依据电机的回馈需求,开启电池加热,以将回馈能量转化为给电池加热的能量,使电机提供更大的回馈力,减少制动损耗,同时给电池加热可以提升电池活性,增加电池可用能量,提升电池寿命。
相对与现有技术,本发明实施例的有益效果在于:
1、基于车辆的实际能耗修正基准能耗,充分考虑车辆的当前运行状态和环境对车辆能耗的影响,并基于修正后的基准能耗和剩余能量来计算得到的可行驶里程和显示里程确定车辆的目标最大允许放电功率,来对车辆的耗能附件进行能量分配,能够基于车辆当前的行驶情况及时调整整车的耗能附件的能量分配,达到控制车辆最大消耗量,降低后续行程能耗,提升能量利用率的目的,从而提升车辆的续航里程,促进显示里程达标。
2、在车辆行驶过程中,进行能量回馈和热管理控制,能进一步减少能耗,提升能量利用率,促进车辆里程达标;
3、基于计算出的可行驶里程,可对车辆进行能量分配、能量回馈以及热管理控制,同时通过车辆的能量分配、热管理控制,尽可能保证节省能量,通过能量回馈、耗能附件控制,可以减少能耗,从而提升车辆可行驶里程,实现了以里程为目标的闭环控制,从而实现车辆的精准续航控制,减少用户里程焦虑,提升用户体验。
实施例二
请参阅图2,本发明实施例提供了一种电动汽车的能量分配装置,包括:
数据获取模,1,用于获取车辆所处的当前环境信息和当前车辆运行状态;
基准能耗获取模块2,用于根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗;其中,所述基准能耗模型是根据在不同的车辆运行状态和环境信息下车辆的实际能耗进行修正得到;
可行驶里程计算模块3,用于根据所述基准能耗和剩余能量,计算可行驶里程;
能耗确定模块4,用于根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率;
能量分配模块5,用于根据所述目标最大允许放电功率,对车辆的耗能附件进行能量分配。
在一种可选的实施例中,所述能耗确定模块4包括:
里程差计算单元,用于计算所述可行驶里程和车辆当前的显示里程的里程差值;
功耗降低值计算单元,用于根据所述里程差值、车辆的当前最大允许放电功率和当前车速,计算功耗降低值;
最大允许放电功率计算单元,用于根据所述功耗降低值,计算车辆的目标最大允许放电功率。
进一步,根据公式
Figure BDA0003291377060000151
计算功耗降低值;
其中,s表示预设的第一修正系数,n表示预设的第二修正系数,m表示预设的第三修正系数,P表示当前最大允许放电功率,X表示里程差值,V表示车辆的当前车速。
进一步,所述基准能耗模型包括与车辆运行状态对应的基准能耗曲线、与环境信息对应的基准能耗矩阵;
则,所述装置还包括:
第一能耗修正模块,用于根据车辆在不同的车辆运行状态下的实际能耗对所述基准能耗曲线进行修正;
第二能耗修正模块,用于根据车辆在不同的环境信息下的实际能耗对所述基准能耗矩阵进行修正。
在一种可选的实施例中,所述基准能耗获取模块2包括:
第一能耗获取单元,用于根据修正后的基准能耗曲线,获取车辆在当前车辆运行状态下的动态基准能耗;
第二能耗获取单元,用于根据修正后的基准能耗矩阵,获取车辆在当前环境信息下的静态基准能耗;
基准能耗计算单元,用于根据所述动态基准能耗和所述静态基准能耗,得到所述基准能耗。
在一种可选的实施例中,所述装置还包括:
能耗监控模块,用于监测车辆所有耗能附件的总能耗,并根据所述总能耗,计算所述耗能附件消耗的第一里程;
附件控制模块,用于当所述耗能附件的第一里程大于其预设的初始分配里程时,将车辆中无工作需求的耗能附件切换到省电模式,并对车辆中能耗大于预设的第一阈值的耗能附件进行功率限制。
在一种可选的实施例中,所述装置还包括:
雨刮检测模块,用于当所述可行驶里程小于车辆当前的显示里程,且车辆的雨刮处于自动状态时,检测车辆是否满足预设的雨刮控制条件;其中,所述雨刮控制条件包括:车辆处于静止状态且检测到车辆的驾驶员未目视前方;
雨刮控制模块,用于当车辆满足所述雨刮控制条件,降低车辆的雨刮的工作频率。
在一种可选的实施例中,所述装置还包括:
空调检测模块,用于当所述可行驶里程小于车辆当前的显示里程,检测车辆是否满足预设的任意一个空调控制条件;其中,所述空调控制条件包括:车辆处于行车状态且车辆的车窗开启高度大于预设的高度阈值、或车辆处于非行车状态且车辆的车门开启角度大于预设的角度阈值;
空调控制模块,用于当车辆满足所述空调控制条件,降低车辆的空调的输出功率。
实施例三
本发明实施例提供了一种车辆,包括:
一个或多个处理器;
存储器,用于储存一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述实施例一中任一所述的电动汽车的能量分配方法。
所述处理器执行所述计算机程序时实现上述各个电动汽车的能量分配方法实施例中的步骤,例如图1所示的步骤S11-15。或者,所述处理器执行所述计算机程序时实现上述各装置实施例中各模块/单元的功能,例如数据获取模、基准能耗获取模块、可行驶里程计算模块、能耗确定模块以及能量分配模块。
示例性的,所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器中,并由所述处理器执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述电动汽车的能量分配装置/终端设备中的执行过程。例如,所述计算机程序可以被分割成数据获取模、基准能耗获取模块、可行驶里程计算模块、能耗确定模块以及能量分配模块,各模块具体功能如下:数据获取模,用于获取车辆所处的当前环境信息和当前车辆运行状态;基准能耗获取模块,用于根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗;其中,所述基准能耗模型是根据在不同的车辆运行状态和环境信息下车辆的实际能耗进行修正得到;可行驶里程计算模块,用于根据所述基准能耗和剩余能量,计算可行驶里程;能耗确定模块,用于根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率;能量分配模块,用于根据所述目标最大允许放电功率,对车辆的耗能附件进行能量分配。
所述处理器可以是整车控制器(Vehicle Control Unit,VCU)、中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(DigitalSignal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述设备的控制中心,利用各种接口和线路连接整个设备的各个部分。
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述设备的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(FlashCard)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种电动汽车的能量分配方法,其特征在于,包括:
获取车辆所处的当前环境信息和当前车辆运行状态;
根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗;其中,所述基准能耗模型是根据在不同的车辆运行状态和环境信息下车辆的实际能耗进行修正得到;
根据所述基准能耗和剩余能量,计算可行驶里程;
根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率;
根据所述目标最大允许放电功率,对车辆的耗能附件进行能量分配。
2.如权利要求1所述的电动汽车的能量分配方法,其特征在于,所述根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率,包括:
计算所述可行驶里程和车辆当前的显示里程的里程差值;
根据所述里程差值、车辆的当前最大允许放电功率和当前车速,计算功耗降低值;
根据所述功耗降低值,计算车辆的目标最大允许放电功率。
3.如权利要求2所述的电动汽车的能量分配方法,其特征在于,所述根据所述里程差值、车辆的当前最大允许放电功率和当前车速,计算功耗降低值,包括:
根据公式
Figure FDA0003291377050000011
计算功耗降低值;
其中,s表示预设的第一修正系数,n表示预设的第二修正系数,m表示预设的第三修正系数,P表示当前最大允许放电功率,X表示里程差值,V表示车辆的当前车速。
4.如权利要求1所述的电动汽车的能量分配方法,其特征在于,所述基准能耗模型包括与车辆运行状态对应的基准能耗曲线、与环境信息对应的基准能耗矩阵;
则,所述方法还包括:
根据车辆在不同的车辆运行状态下的实际能耗对所述基准能耗曲线进行修正;
根据车辆在不同的环境信息下的实际能耗对所述基准能耗矩阵进行修正。
5.如权利要求4所述的电动汽车的能量分配方法,其特征在于,所述根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗,包括:
根据修正后的基准能耗曲线,获取车辆在当前车辆运行状态下的动态基准能耗;
根据修正后的基准能耗矩阵,获取车辆在当前环境信息下的静态基准能耗;
根据所述动态基准能耗和所述静态基准能耗,得到所述基准能耗。
6.如权利要求1所述的电动汽车的能量分配方法,其特征在于,所述方法还包括:
监测车辆所有耗能附件的总能耗,并根据所述总能耗,计算所述耗能附件消耗的第一里程;
当所述耗能附件的第一里程大于其预设的初始分配里程时,将车辆中无工作需求的耗能附件切换到省电模式,并对车辆中能耗大于预设的第一阈值的耗能附件进行功率限制。
7.如权利要求1所述的电动汽车的能量分配方法,其特征在于,所述方法还包括:
当所述可行驶里程小于车辆当前的显示里程,且车辆的雨刮处于自动状态时,检测车辆是否满足预设的雨刮控制条件;其中,所述雨刮控制条件包括:车辆处于静止状态且检测到车辆的驾驶员未目视前方;
当车辆满足所述雨刮控制条件,降低车辆的雨刮的工作频率。
8.如权利要求1所述的电动汽车的能量分配方法,其特征在于,所述方法还包括:
当所述可行驶里程小于车辆当前的显示里程,检测车辆是否满足预设的任意一个空调控制条件;其中,所述空调控制条件包括:车辆处于行车状态且车辆的车窗开启高度大于预设的高度阈值、或车辆处于非行车状态且车辆的车门开启角度大于预设的角度阈值;
当车辆满足所述空调控制条件,降低车辆的空调的输出功率。
9.一种电动汽车的能量分配装置,其特征在于,包括:
数据获取模块,用于获取车辆所处的当前环境信息和当前车辆运行状态;
基准能耗获取模块,用于根据预设的基准能耗模型,获取车辆在当前车辆运行状态和所述当前环境信息下的基准能耗;其中,所述基准能耗模型是根据在不同的车辆运行状态和环境信息下车辆的实际能耗进行修正得到;
可行驶里程计算模块,用于根据所述基准能耗和剩余能量,计算可行驶里程;
能耗确定模块,用于根据所述可行驶里程和车辆当前的显示里程,确定车辆的目标最大允许放电功率;
能量分配模块,用于根据所述目标最大允许放电功率,对车辆的耗能附件进行能量分配。
10.一种车辆,其特征在于,包括:
一个或多个处理器;
存储器,用于储存一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1至8中任一所述的电动汽车的能量分配方法。
CN202111166245.8A 2021-09-30 2021-09-30 电动汽车的能量分配方法、装置及车辆 Active CN113815488B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111166245.8A CN113815488B (zh) 2021-09-30 2021-09-30 电动汽车的能量分配方法、装置及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111166245.8A CN113815488B (zh) 2021-09-30 2021-09-30 电动汽车的能量分配方法、装置及车辆

Publications (2)

Publication Number Publication Date
CN113815488A true CN113815488A (zh) 2021-12-21
CN113815488B CN113815488B (zh) 2023-07-14

Family

ID=78920020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111166245.8A Active CN113815488B (zh) 2021-09-30 2021-09-30 电动汽车的能量分配方法、装置及车辆

Country Status (1)

Country Link
CN (1) CN113815488B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663245A (zh) * 2022-12-09 2023-01-31 湖南隆深氢能科技有限公司 一种燃料电池能源控制系统及方法
CN117719344A (zh) * 2024-02-05 2024-03-19 徐州徐工汽车制造有限公司 电动搅拌车的监控方法、装置、电动搅拌车和存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163705A (ja) * 1994-12-07 1996-06-21 Nissan Motor Co Ltd 電気自動車のバッテリ残容量表示装置
JPH10336801A (ja) * 1997-05-29 1998-12-18 Nissan Motor Co Ltd 電気自動車のバッテリ残量表示装置
US20100019718A1 (en) * 2008-07-24 2010-01-28 General Electric Company Method and system for extending life of a vehicle energy storage device
JP2010188937A (ja) * 2009-02-19 2010-09-02 Toyota Motor Corp ハイブリッド車両
DE102009048821A1 (de) * 2009-10-09 2011-04-14 Conti Temic Microelectronic Gmbh Verfahren zur Reichweitenermittlung für Fahrzeuge, insbesondere Elektrofahrzeuge
JP2013158111A (ja) * 2012-01-27 2013-08-15 Toyota Motor Corp 少なくとも電動機を用いて走行可能な車両の電動走行可能距離表示装置
FR2995839A1 (fr) * 2012-09-24 2014-03-28 Renault Sa Systeme de gestion d'un prolongateur d'autonomie d'un vehicule a propulsion electrique
WO2014165197A1 (en) * 2013-03-13 2014-10-09 Gogoro, Inc. Apparatus, method and article for providing information regarding a vehicle via a mobile device
CN105467323A (zh) * 2015-03-19 2016-04-06 万向A一二三系统有限公司 一种电动汽车动力电池可行驶里程的检测方法
US20160254661A1 (en) * 2015-02-26 2016-09-01 Toyota Jidosha Kabushiki Kaisha Vehicle
US20180118033A1 (en) * 2016-10-27 2018-05-03 Hefei University Of Technology Method and device for on-line prediction of remaining driving mileage of electric vehicle
WO2018210034A1 (zh) * 2017-05-19 2018-11-22 蔚来汽车有限公司 电动汽车作为移动充电桩的补能方法、装置、系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08163705A (ja) * 1994-12-07 1996-06-21 Nissan Motor Co Ltd 電気自動車のバッテリ残容量表示装置
JPH10336801A (ja) * 1997-05-29 1998-12-18 Nissan Motor Co Ltd 電気自動車のバッテリ残量表示装置
US20100019718A1 (en) * 2008-07-24 2010-01-28 General Electric Company Method and system for extending life of a vehicle energy storage device
JP2010188937A (ja) * 2009-02-19 2010-09-02 Toyota Motor Corp ハイブリッド車両
DE102009048821A1 (de) * 2009-10-09 2011-04-14 Conti Temic Microelectronic Gmbh Verfahren zur Reichweitenermittlung für Fahrzeuge, insbesondere Elektrofahrzeuge
JP2013158111A (ja) * 2012-01-27 2013-08-15 Toyota Motor Corp 少なくとも電動機を用いて走行可能な車両の電動走行可能距離表示装置
FR2995839A1 (fr) * 2012-09-24 2014-03-28 Renault Sa Systeme de gestion d'un prolongateur d'autonomie d'un vehicule a propulsion electrique
WO2014165197A1 (en) * 2013-03-13 2014-10-09 Gogoro, Inc. Apparatus, method and article for providing information regarding a vehicle via a mobile device
US20160254661A1 (en) * 2015-02-26 2016-09-01 Toyota Jidosha Kabushiki Kaisha Vehicle
CN105467323A (zh) * 2015-03-19 2016-04-06 万向A一二三系统有限公司 一种电动汽车动力电池可行驶里程的检测方法
US20180118033A1 (en) * 2016-10-27 2018-05-03 Hefei University Of Technology Method and device for on-line prediction of remaining driving mileage of electric vehicle
WO2018210034A1 (zh) * 2017-05-19 2018-11-22 蔚来汽车有限公司 电动汽车作为移动充电桩的补能方法、装置、系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李礼夫;韦毅;龚定旺;佘红涛;: "纯电动汽车动力电池续驶里程与行驶工况分析", 机械设计与制造 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663245A (zh) * 2022-12-09 2023-01-31 湖南隆深氢能科技有限公司 一种燃料电池能源控制系统及方法
CN117719344A (zh) * 2024-02-05 2024-03-19 徐州徐工汽车制造有限公司 电动搅拌车的监控方法、装置、电动搅拌车和存储介质

Also Published As

Publication number Publication date
CN113815488B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN113844270B (zh) 电动汽车的显示里程更新方法、装置及车辆
CN113829835B (zh) 电动汽车的热管理方法及车辆
WO2022007689A1 (zh) 车辆的充电提醒方法、设备、程序、存储介质及车辆
CN113815488B (zh) 电动汽车的能量分配方法、装置及车辆
CN113815423B (zh) 电动汽车的能量回馈控制方法、装置及车辆
CN106004864B (zh) 一种车辆行驶控制方法及系统
CN111038215B (zh) 汽车热泵空调系统的控制方法、装置、存储介质及终端
CN114179678B (zh) 车辆续航辅助控制方法、系统、存储介质及车辆
CN112373319B (zh) 增程式车辆的动力系统控制方法、系统及车辆
DE102011116184A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
CN110936947A (zh) 一种混合动力汽车的控制方法、装置、设备及介质
CN105774797A (zh) 一种插电式并联混合动力汽车自适应控制方法
CN113829933B (zh) 电动汽车充电管理方法、装置及车辆
CN108734810B (zh) 一种基于车联网的纯电动汽车行驶工况预测方法
CN112959996A (zh) 车辆控制方法、装置及车辆
CN113459829B (zh) 一种基于路况预测的双电机电动汽车智能能量管理方法
CN116007648A (zh) 一种纯电动汽车充电路径规划导航方法及系统
CN115214613A (zh) 混动车辆并联驱动控制方法、装置、设备及存储介质
US20240053161A1 (en) Method for Predicting a Velocity Profile of a Vehicle
CN116572962B (zh) 滑行状态确定方法和装置、电子设备和存储介质
KR102347756B1 (ko) 하이브리드 차량의 난방 시 엔진 제어 방법
CN113370749B (zh) 一种车辆空调自动调节方法
US10124790B2 (en) Method performed by a control unit to control energy flows of a vehicle
CN112644454B (zh) 混合动力汽车的控制方法、汽车、车载终端及存储介质
CN114435358B (zh) 一种基于巡航的预见性空挡滑行控制系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant