CN113777142A - 一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用 - Google Patents

一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用 Download PDF

Info

Publication number
CN113777142A
CN113777142A CN202111084124.9A CN202111084124A CN113777142A CN 113777142 A CN113777142 A CN 113777142A CN 202111084124 A CN202111084124 A CN 202111084124A CN 113777142 A CN113777142 A CN 113777142A
Authority
CN
China
Prior art keywords
doped diamond
carbon material
substrate
metal
integrated sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111084124.9A
Other languages
English (en)
Other versions
CN113777142B (zh
Inventor
魏秋平
施海平
施应洁
施帅
施振
周科朝
谭际麟
王宝峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Xinfeng Technology Co ltd
Original Assignee
Hunan Xinfeng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Xinfeng Technology Co ltd filed Critical Hunan Xinfeng Technology Co ltd
Priority to CN202111084124.9A priority Critical patent/CN113777142B/zh
Publication of CN113777142A publication Critical patent/CN113777142A/zh
Application granted granted Critical
Publication of CN113777142B publication Critical patent/CN113777142B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用,包括工作电极、对电极、参比电极,基底,所述工作电极由至少一颗掺杂金刚石颗粒组成,所述掺杂金刚石颗粒由内至外包含载体颗粒、包覆层,修饰层,所述载体颗粒为含硼金刚石颗粒或纯金刚石颗粒,所述包覆层为掺杂金刚石薄膜,其中掺杂元素选自为硼、氮、磷中的一种或多种,所述修饰层选自碳材料修饰或金属修饰中的至少一种;本发明提供的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器,可在基底上设置多个工作电极,任意一个工作电极可以通过不同的修饰方式实现多种电活性物质的检测,且具有良好的线性响应,检测灵敏度高。

Description

一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制 备方法和应用
技术领域
本发明属于金刚石电极制备技术领域,具体涉及一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用。
背景技术
人造金刚石是一种超硬材料,然而其他方面的应用非常少,将其进行硼掺杂后,可以大幅降低金刚石的电阻。目前对于硼掺杂的金刚石主要有单晶、聚晶的含硼金刚石颗粒,以及掺硼金刚石薄膜,其中含硼金金刚石颗粒主要通过高温高压法制备,该方法制备的颗粒主要为单晶金刚石,存在B浓度分布不均匀、B浓度低的问题,此外,因为在制备过程中需要Ni、Fe等金属作为触媒,因此制备的颗粒电极含有较多的金属杂质,一定程度上影响了BDD颗粒质量。
而掺杂金刚石(BDD)薄膜虽然凭借其所具备的宽电势窗口,良好的化学稳定性及表面弱吸附性等优势,现有BDD材料多以金属或硅片为基体,但是作为BDD的衬底材料,却存在一些致命的缺陷。金属基体具有强度高、韧性好、可塑性强的优点,但是作为电极的基体却存在耐腐蚀性差和热膨胀系数高的问题。而且现有的掺杂金刚石(BDD)电极还存在着电催化活性低、选择性及灵敏性差、难以大规模生产等缺点,从而限制了其应用,另外目前的基于掺杂金刚石(BDD)电极的传感器仅能检测单一的物质。
发明内容
针对现有技术的不足,本发明的目的在于提供一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法及其制备方法和应用。
为了实现上述目的,本发明采用如下技术方案。
本发明一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器,包括工作电极、对电极、参比电极,基底,所述工作电极由至少一颗掺杂金刚石颗粒组成,所述掺杂金刚石颗粒由内至外包含载体颗粒、包覆层,修饰层,所述载体颗粒为含硼金刚石颗粒或纯金刚石颗粒,所述包覆层为掺杂金刚石薄膜,其中掺杂元素选自为硼、氮、磷中的一种或多种,优选为硼,所述修饰层选自碳材料修饰或金属修饰中的至少一种。
本发明提供的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器,可在基底上设置多个工作电极,任意一个工作电极可以通过不同的修饰方式实现多种电活性物质的检测。
优选的方案,所述载体颗粒为单晶结构,所述掺杂金刚石薄膜为多晶结构。
发明人发现,以单晶结构的含硼金刚石颗粒或金刚石颗粒为载体颗粒,再于其表面沉积多晶结构的掺杂金刚石薄膜,可以大幅的提升含硼金刚石颗粒或金刚石颗粒的导电性能。
在本发明,所用载体颗粒即可以是天然的,也可以是人工合成的,优选为通过高温高压制备,降低成本。
优选的方案,所述掺杂金刚石薄膜中掺杂元素的浓度>1021cm-3,优选为1021cm-3~1022cm-3
当掺杂金刚石薄膜的含量控制于上述范围时,最终所得掺杂金刚石颗粒的性能最优,这是由于当掺杂浓度大于1018cm-3时,绝缘的金刚石具有半导体性质,当大于1021cm-3时,可获得类金属性质,然而过多由于掺杂元素和金刚石的晶格系数不同,因此过多的掺杂会导致金刚石晶格被破坏,产生杂质相(如sp2)),从而导致金刚石的一些优良性质如高硬度、高强度、惰性表面的丧失,而将掺杂金刚石薄膜中掺杂浓度控制在上述范围内,将与载体颗粒的协同下获得最优的性能。
优选的方案,所述掺杂金刚石薄膜的掺杂方式包含恒定掺杂、多层变化掺杂、梯度掺杂的一种或多种组合。
优选的方案,所述载体颗粒的颗粒尺寸为100nm-500μm,优选为100nm-300μm,进一步优选为100nm-100μm,所述掺杂金刚石薄膜的厚度为5μm-20μm。
发明人发现,将掺杂金刚石薄膜的厚度设置在上述范围内,可以获得完全均匀包覆,性能最为优异的掺杂金刚石颗粒。
优选的方案,所述掺杂金刚石薄膜为多孔结构的掺杂金刚石薄膜,所述掺杂金刚石薄膜中孔洞的孔径为10nm-200nm。
在掺杂金刚石薄膜表面设置微孔可以进一步提高颗粒的比表面积,提高其性能。
在本发明中,对多孔的设置没有过多的限制,如采用现有技术中的金属刻蚀处理、高温气氛刻蚀处理、等离子体刻蚀均可以。
优选的方案,所述碳材料修饰中的碳材料选自微晶石墨、碳纳米管,碳纳米纤维,石墨烯中的至少一种,所述金属修饰中的金属选自铁、铜、铂、银、金中的至少一种。
优选的方案,所述的参比电极为Ag/AgCl,对电极为Au纳米颗粒。
在本发明中,工作电极通过导电银胶或金属焊与基底上的Au纳米颗粒连接,并使用环氧树脂作为导电胶涂在电极边缘进行固定。
优选的方案,所述基底的材料选自硅和锗半导体、聚酰亚胺(PI),聚二甲基硅氧烷(PDMS),聚对苯二甲酸乙二醇酯(PET)中的一种。
本发明一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器的制备方法,包括如下步骤:
步骤一掺杂金刚石颗粒的制备
先将载体颗粒表面种植纳米金刚石籽晶,然后将种植有金刚石籽晶的载体颗粒进行化学气相沉积生长掺杂金刚石薄膜,在掺杂金刚石薄膜表面设置碳材料修饰层和/或金属修饰层即得掺杂金刚石颗粒;
步骤二传感器的组装
先将基底于UV光下下暴露处理,并通过掩膜构造基底表面的电极布局,然后采用化学镀,将Au纳米颗粒沉积于基底表面,然后将银浆涂在基底表面,加热处理,再将涂覆有银浆的基底浸入含氯离子的溶液中,在基底表面形成Ag/AgCl参比电极,最后将至少一颗掺杂金刚石颗粒固定于基底上,并与Au纳米颗粒连接即得集成传感器。
在本发明的,步骤一中,掺杂金刚石颗粒的制备过程中,由于载体颗粒与掺杂金刚石薄膜具有相似的结构,容易形核,采用常规化学气相沉积手段即可生长出优异的掺硼金刚石薄膜,不过发明人发现,每生长3-6h,即降温,将载体颗粒取出,再升温至目标温度,分多次生长,可以对载体颗粒形成更好的包覆,最终所得掺杂金刚石颗粒的性能最优。
优选的方案,步骤一中,所述将载体颗粒表面种植纳米金刚石籽晶的过程为:将载体颗粒浸入含纳米金刚石的悬浊液中超声震荡≥30min,最后清洗、烘干即得,所述含纳米金刚石的悬浊液中,纳米金刚石的质量分数为0.01-0.1wt%。
优选的方案,步骤一中,所述化学气相沉积生长掺杂金刚石薄膜的工艺过程为:通过气体的质量流量比为氢气:甲烷:掺杂气源=98:2:0.3-0.6,生长压力为2-5Kpa,生长温度为800-850℃,生长次数为2-6次,优选为5次,每生长一次,将载体颗粒取出,摇晃载体颗粒后,再继续生长,单次生长的时间为3-6h,所述掺杂气源选自氨气、磷化氢、硼烷中的至少一种;
进一步的优选,所述化学气相沉积为热丝化学气相沉积,热丝的温度为2500-2700℃。
优选的方案,步骤一中,所述碳材料修饰层的设置过程为:先采用磁控溅射法在掺杂金刚石薄膜表面沉积金属镍层;所述金属镍层的厚度为2-22nm;然后将覆盖有金属镍层的掺杂金刚石颗粒进行热催化于掺杂金刚石薄膜表面生长出碳材料,形成碳材料修饰层;所述碳材料包括微晶石墨,碳纳米管,碳纳米纤维,石墨烯中的一种或多种。
进一步的优选,所述磁控溅射的工艺为:采用纯度≥99.99%的镍靶,基底与靶材间距为10-12cm,采取氩气气氛,沉积气压为0.4-0.6Pa,溅射功率为150W,沉积时间为60s。
进一步的优选,当碳材料选自微晶石墨时,所述热催化的工艺为:通入97-100sccm的氢气,热催化温度为750-800℃,热催化气压为9-11kPa,热催化时间为1-1.2h,升温速率为18-22℃/min,降温速率为18-22℃/min;
当碳材料选自碳纳米管时,所述热催化的工艺为:通入28.5sccm的氢气,1.5-2.0sccm的甲烷,热催化温度为750-800℃,热催化气压为10kPa,热催化时间为35-40min,升温速率为195-205℃/min,降温速率为195-205℃/min;
当碳材料选自碳纳米纤维时,所述热催化的工艺为:通入28.5sccm的氢气,1.5-2.0sccm的甲烷,热催化温度为950-1000℃,热催化气压为10kPa,热催化时间为30-40min,升温速率为195-205℃/min,降温速率为195-205℃/min;
当碳材料选自石墨烯时,所述热催化的工艺为:通入98sccm的氢气,热催化温度为750-800℃,热催化气压为10kPa,热催化时间为5min,升温速率为195-205℃/min,降温速率为195-205℃/min。
优选的方案,步骤一中,所述金属修饰层的设置过程为:采用磁控溅射法在掺杂金刚石薄膜表面沉积金属层;所述金属层的厚度为2-22nm;所述磁控溅射的工艺为:靶材的纯度≥99.9%,靶材选自铁、铜、铂、银、金中的至少一种,基底与靶材间距为10-15cm,采取氩气气氛,沉积气压为0.6-2Pa,溅射功率为150-300W,沉积时间为60-120s;将溅射后的掺杂金刚石颗粒置于热管式炉进行热处理,使金属层球化为纳米颗粒团簇,晶粒尺寸20-500nm,气压维持在15-20kpa,热处理的温度为900℃,热处理的时间为4-5h,通入气氛的质量流量比为H2:Ar=1.5-3。
优选的方案,步骤二中,将Au纳米颗粒沉积于基底表面的过程为:将设置好电极布局的基底采用含有乙二胺(0.4M)和EDC(50mM)的胺化溶液中胺化180min,与先于阴暗条件下使用HAuCl4(1mM)溶液处理基底80-200min,再使用NaBH4(0.1M)溶液处理PET基底5-50min,然后将基底置于KSCN(0.5M)溶液中超声处理1h,再将基底含有0.125M Na2SO3、0.6M甲醛和8mM Na3Au(SO3)2的镀Au溶液中120min,用去离子水冲洗并用N2干燥基底。
优选的方案,步骤二中,加热处理的温度为60min,温度为60℃的。
优选的方案,步骤二中,将涂覆有银浆的基底浸入30μL0.1M FeCl3溶液中60s,在基底表面形成Ag/AgCl参比电极。
本发明还提供一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器的应用,将碳材料/金属修饰的掺杂金刚石颗粒集成传感器用于电化学检测。
在实际应用过程中,当所述工作电极为单一颗粒时,可实现单种活性分子的检测,如修饰Au检测-DA分子,当所述工作电极为多颗具有不同修饰物的掺杂金刚石颗粒,可同时实现多种活性分子的检测,如同时搭载Ni修饰的掺杂金刚石颗粒、Au修饰的掺杂金刚石颗粒可同时实现葡萄糖及多巴胺的检测。
有益效果
本发明提供的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器,可在基底上设置多个工作电极,任意一个工作电极可以通过不同的修饰方式实现多种电活性物质的检测,且具有良好的线性响应,检测灵敏度高,
本发明首创的以高温高压合成的单晶结构的金刚石颗粒或含硼金刚石颗粒作为载体颗粒,在其表面生长多晶的掺杂金刚石薄膜,最终所得掺杂金刚石颗粒具有优异的导电性,具有高的比表面积且对环境无毒理性、信噪比高。此外,因为而商业的颗粒电极由Fe、Ni等杂质,容易吸附物质。而生产的多晶薄膜成分主要为sp3饱和结构的金刚石相,因此表面具有化学惰性,且不容易吸附其它物质。
本发明在生长过程中采用的是气相沉积的方式,以掺硼金刚石薄膜为例,气相沉积制备多晶金刚石是通过将甲烷(CH4)、乙炔等碳氢化合物、氢气(H2)与硼烷等通入到反应室中,气体浓度可调,且比例均匀,因此气相沉积的方法制备的掺硼金刚石薄膜掺B均匀性较高,且容易实现高掺杂薄膜的制备,本发明通过采用多次生长的方式,且有效控制晶型结构以及薄膜的厚度,及掺杂量,最终使所得掺杂金刚石颗粒的性能最为优异。
本发明的制备方法简单可控,所用载体颗粒为已商业化的高温高压合成的单晶结构的金刚石颗粒或含硼金刚石颗粒作为载体颗粒,价格低廉,成本低。
附图说明
图1实施例1所制备的掺硼金刚石颗粒的微观结构图,其中图1(a)为单晶结构的含硼刚石包覆了多晶掺B金刚石薄膜后的SEM图。(b)多晶掺硼金刚石薄膜的放大图。(c)为多晶金刚石薄膜的拉曼图谱。
图2实施例2所制备的掺硼金刚石颗粒的微观结构图,其中图1(a)为单晶结构的含硼刚石包覆了多晶掺B金刚石薄膜后的SEM图。(b)多晶掺硼金刚石薄膜的放大图。(c)为多晶金刚石薄膜的拉曼图谱。
图3为对比例的所制备的掺硼金刚石颗粒的微观结构图。
图4传感器的示意图,图中,1、掺杂金刚石颗粒,2、Au纳米颗粒;3、Ag/AgCl;4、基底。
图5Ni修饰掺杂金刚石颗粒示意图(蓝色圆点为Ni),
图6Au修饰颗粒BDD电极(黄色圆点为Au)。
具体实施方式
实施例1
掺硼金刚石颗粒的制备
(1)先将平均粒径为150μm的含硼金刚石颗粒清洗。
(2)浸入含纳米金刚石的悬浊液中超声震荡30min,清洗并烘干。放入所述含纳米金刚石的悬浊液中,纳米金刚石的质量分数为0.01wt%。
(3)采用热丝CVD沉积硼掺杂金刚石膜,沉积工艺参数:热丝距离6mm,生长温度为800-850℃,热丝温度2200℃,沉积压强3KPa,通过控制沉积时间得到金刚石膜厚度50μm;所述化学气相沉积时,通过气体的质量流量比为氢气:甲烷:硼烷=98:2:0.3,生长压力为2Kpa,生长次数为2次,每生长一次,将载体颗粒取出,摇晃载体颗粒后,再继续生长,单次生长的时间为6h,
图1(a)为单晶掺B金刚石包覆多晶掺B金刚石薄膜后的SEM图。(b)多晶薄膜的放大图。(c)为多晶金刚石薄膜的拉曼峰具有较高的掺B度,出现典型的B峰(479cm-1和1200cm-1),石墨相较少(G峰:1530cm-1),且B浓度经过拟合大于1021cm-1,显示其为重掺B材料。
Au修饰掺硼金刚石颗粒的制备
采用磁控溅射法在掺硼金刚石层表面沉积金属Au层;所述金属Au层的厚度为2-22nm;所述磁控溅射的工艺为:采用纯度≥99.99%的Au靶,基底与靶材间距为10-15cm,采取氩气气氛,沉积气压为0.6Pa,溅射功率为150W,沉积时间为60s。
将的溅射后的电极置于热管式炉进行热处理,使金属Au层球化为纳米颗粒团簇,晶粒尺寸20-500nm,气压维持在15kpa,热处理的温度为900℃,热处理的时间为4h,通入气氛的质量流量比为H2:Ar=1.5。
传感器的组装
(1)将一块表面洁净的PET薄板(5cm×5cm,0.05-0.5mm厚)作为柔性基底在9mW/cm2的UV光(254nm)下暴露处理240min,并通过掩膜构造基底表面的电极布局。
(2)在含有乙二胺(0.4M)和EDC(50mM)的胺化溶液中胺化基底180min。
(3)分别使用HAuCl4(1mM)和NaBH4(0.1M)溶液处理PET基底来吸附Au纳米颗粒。前者处理时间为80-200min,实验环境为阴暗条件;后者处理时间为5-50min。
(4)在KSCN(0.5M)溶液中超声处理1h,以消除非特异性吸附。
(5)将活化的PET基底放入含有0.125M Na2SO3、0.6M甲醛和8mM Na3Au(SO3)2的镀Au溶液中约120min。
(6)用去离子水冲洗并用N2干燥基底后,将银浆涂在参比电极上,为后续制备Ag/AgCl参比电极作准备。
(7)制备好的基底在使用前,在60℃的条件下加热约60min。
上述每一个过程结束后需用去离子水冲洗并用N2干燥
将涂有Ag的电极浸入30μL0.1M FeCl3溶液中60s,制备Ag/AgCl参比电极。
将含金修饰层的掺杂金刚石颗粒通过导电银胶或金属电焊与基底上的Au连接,并使用环氧树脂作为导电胶涂在电极边缘进行固定即得。
本实施例所得经过Au修饰的掺硼金刚石颗粒微电极的电化学电势窗口高达3.3V;用多巴胺检测:在0.05-100μM浓度范围内具有良好的线性响应,检测灵敏度高达135μA·μM-1·cm-2。本实施例所得经过Ni修饰的掺硼金刚石颗粒微电极用葡萄糖检测:在0.05-13μM浓度范围内具有良好的线性响应,检测灵敏度高达330μA·μM-1·cm-2。
实施例2
(1)先将平均粒径为300μm的含硼金刚石颗粒清洗。
(2)浸入含纳米金刚石的悬浊液中超声震荡30min,清洗并烘干。放入所述含纳米金刚石的悬浊液中,纳米金刚石的质量分数为0.1wt%。
(3)采用热丝CVD沉积硼掺杂金刚石膜,沉积工艺参数:热丝距离6mm,生长温度为800-850℃,热丝温度2200℃,沉积压强4KPa,气体比例氢气:甲烷:硼烷=98:2:0.5,通过控制沉积时间得到金刚石膜厚度10μm;生长次数为4次,每生长一次,将载体颗粒取出,摇晃载体颗粒后,再继续生长,单次生长的时间为4h,
图2(a)为单晶掺B金刚石包覆多晶掺B金刚石薄膜后的SEM图。(b)多晶薄膜的放大图。(c)为多晶金刚石薄膜的拉曼峰,在该峰重出现典型的B峰(479cm-1和1200cm-1),石墨相较少(G峰:1530cm-1),且B浓度经过拟合大于1021cm-1,显示其为重掺B材料。
Au修饰掺硼金刚石颗粒的制备
采用磁控溅射法在掺硼金刚石层表面沉积金属Au层;所述金属Au层的厚度为2-22nm;所述磁控溅射的工艺为:采用纯度≥99.99%的Au靶,基底与靶材间距为10-15cm,采取氩气气氛,沉积气压为0.6Pa,溅射功率为150W,沉积时间为60s。
将的溅射后的电极置于热管式炉进行热处理,使金属Au层球化为纳米颗粒团簇,晶粒尺寸20-500nm,气压维持在15kpa,热处理的温度为900℃,热处理的时间为4h,通入气氛的质量流量比为H2:Ar=1.5。
Ni修饰掺硼金刚石颗粒的制备
采用磁控溅射法在掺硼金刚石层表面沉积金属Au层;所述金属Ni层的厚度为2-22nm;所述磁控溅射的工艺为:采用纯度≥99.99%的Ni靶,基底与靶材间距为13cm,采取氩气气氛,沉积气压为0.7Pa,溅射功率为200W,沉积时间为30s。
将的溅射后的电极置于热管式炉进行热处理,使金属Au层球化为纳米颗粒团簇,晶粒尺寸20-500nm,气压维持在10kpa,热处理的温度为900℃,热处理的时间为4h,通入气氛的质量流量比为H2:Ar=1.5。
传感器的组装
(1)将一块表面洁净的PET薄板(5cm×5cm,0.05-0.5mm厚)作为柔性基底在9mW/cm2的UV光(254nm)下暴露处理240min,并通过掩膜构造基底表面的电极布局。
(2)在含有乙二胺(0.4M)和EDC(50mM)的胺化溶液中胺化基底180min。
(3)分别使用HAuCl4(1mM)和NaBH4(0.1M)溶液处理PET基底来吸附Au纳米颗粒。前者处理时间为80-200min,实验环境为阴暗条件;后者处理时间为5-50min。
(4)在KSCN(0.5M)溶液中超声处理1h,以消除非特异性吸附。
(5)将活化的PET基底放入含有0.125M Na2SO3、0.6M甲醛和8mM Na3Au(SO3)2的镀Au溶液中约120min。
(6)用去离子水冲洗并用N2干燥基底后,将银浆涂在参比电极上,为后续制备Ag/AgCl参比电极作准备。
(7)制备好的基底在使用前,在60℃的条件下加热约60min。
上述每一个过程结束后需用去离子水冲洗并用N2干燥
将涂有Ag的电极浸入30μL0.1M FeCl3溶液中60s,制备Ag/AgCl参比电极。
将含金修饰层的掺杂金刚石颗粒以及含镍修饰层的掺杂金刚石颗粒通过导电银胶或金属电焊与基底上的Au连接,并使用环氧树脂作为导电胶涂在电极边缘进行固定。
本实施例所得经过Au修饰的掺硼金刚石颗粒微电极的电化学电势窗口高达3.2V;用多巴胺检测:在0.1-120μM浓度范围内具有良好的线性响应,检测灵敏度高达140μA·μM-1·cm-2。本实施例所得经过Ni修饰的掺硼金刚石颗粒微电极用葡萄糖检测:在0.05-18μM浓度范围内具有良好的线性响应,检测灵敏度高达210μA·μM-1·cm-2。
实施例3
(1)先将平均粒径为300μm的含硼金刚石颗粒清洗。
(2)浸入含纳米金刚石的悬浊液中超声震荡30min,清洗并烘干。放入所述含纳米金刚石的悬浊液中,纳米金刚石的质量分数为0.1wt%。
(3)采用热丝CVD沉积硼掺杂金刚石膜,沉积工艺参数:热丝距离6mm,生长温度为800-850℃,热丝温度2200℃,沉积压强4KPa,气体比例氢气:甲烷:硼烷=98:2:0.6,通过控制沉积时间得到金刚石膜厚度10μm;生长次数为5次,每生长一次,将载体颗粒取出,摇晃载体颗粒后,再继续生长,单次生长的时间为3h。
碳修饰掺硼金刚石颗粒的制备
采取磁控溅射方式在掺硼金刚石表面沉积镍层,在所述沉积过程中,采取纯度为99.99%的高纯镍靶,基底与靶材间距为10cm,采取氩气气氛,沉积气压为0.5Pa,溅射功率为150W,沉积时间为60s,镍层沉积厚度为20-22nm。
步骤四、微晶石墨相催化。在微晶石墨的催化过程中,通入98sccm的氢气,热催化温度为800℃,热催化气压为10kPa,热催化时间为1h,升温速率为20℃/min,降温速率为20℃/min。
传感器的组装
(1)将一块表面洁净的PET薄板(5cm×5cm,0.05-0.5mm厚)作为柔性基底在9mW/cm2的UV光(254nm)下暴露处理240min,并通过掩膜构造基底表面的电极布局。
(2)在含有乙二胺(0.4M)和EDC(50mM)的胺化溶液中胺化基底180min。
(3)分别使用HAuCl4(1mM)和NaBH4(0.1M)溶液处理PET基底来吸附Au纳米颗粒。前者处理时间为80-200min,实验环境为阴暗条件;后者处理时间为5-50min。
(4)在KSCN(0.5M)溶液中超声处理1h,以消除非特异性吸附。
(5)将活化的PET基底放入含有0.125M Na2SO3、0.6M甲醛和8mM Na3Au(SO3)2的镀Au溶液中约120min。
(6)用去离子水冲洗并用N2干燥基底后,将银浆涂在参比电极上,为后续制备Ag/AgCl参比电极作准备。
(7)制备好的基底在使用前,在60℃的条件下加热约60min。
上述每一个过程结束后需用去离子水冲洗并用N2干燥
将涂有Ag的电极浸入30μL0.1M FeCl3溶液中60s,制备Ag/AgCl参比电极。
将碳修饰掺硼金刚石颗粒通过导电银胶或金属电焊与基底上的Au连接,并使用环氧树脂作为导电胶涂在电极边缘进行固定。
本实施例所得经过Au修饰的掺硼金刚石颗粒微电极的电化学电势窗口高达3.3V;用多巴胺检测:在0.1-150μM浓度范围内具有良好的线性响应,检测灵敏度高达243μA·μM-1·cm-2。本实施例所得经过Ni修饰的掺硼金刚石颗粒微电极用于葡萄糖检测:在0.05-20μM浓度范围内具有良好的线性响应,检测灵敏度高达410μA·μM-1·cm-2。
对比例1
(1)将平均粒径为150μm的金刚石颗粒清洗。
(2)浸入含纳米金刚石的悬浊液中超声震荡30min,清洗并烘干。放入所述含纳米金刚石的悬浊液中,纳米金刚石的质量分数为0.01wt%。
(3)采用热丝CVD沉积硼掺杂金刚石膜,沉积工艺参数:热丝距离7mm,生长温度为800-900℃,热丝温度2200℃,沉积压强3KPa,通过气体的质量流量比为氢气:甲烷:硼烷=98:2:0.3,生长压力为2Kpa,连续生长6h。
图3为金刚石颗粒包覆多晶掺B金刚石薄膜后的SEM图。因为缺少连续生长,表面有些区域未包覆完全。

Claims (10)

1.一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器,其特征在于:包括工作电极、对电极、参比电极,基底,所述工作电极由至少一颗掺杂金刚石颗粒组成,所述掺杂金刚石颗粒由内至外包含载体颗粒、包覆层,修饰层,所述载体颗粒为含硼金刚石颗粒或纯金刚石颗粒,所述包覆层为掺杂金刚石薄膜,其中掺杂元素选自为硼、氮、磷中的一种或多种,所述修饰层选自碳材料修饰或金属修饰中的至少一种。
2.根据权利要求1所述的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器,其特征在于:所述载体颗粒为单晶结构,所述掺杂金刚石薄膜为多晶结构;
所述载体颗粒的颗粒尺寸为100nm-500μm,所述掺杂金刚石薄膜的厚度为5μm-20μm;
所述掺杂金刚石薄膜中掺杂元素的浓度>1021cm-3
所述掺杂金刚石薄膜的掺杂方式包含恒定掺杂、多层变化掺杂、梯度掺杂的一种或多种组合。
3.根据权利要求1所述的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器,其特征在于:
所述掺杂金刚石薄膜为多孔结构的掺杂金刚石薄膜,所述掺杂金刚石薄膜中孔洞的孔径为10nm-200nm;
所述碳材料修饰中的碳材料选自微晶石墨、碳纳米管,碳纳米纤维,石墨烯中的至少一种,所述金属修饰中的金属选自铁、铜、铂、银、金中的至少一种,
所述参比电极为Ag/AgCl,对电极为Au纳米颗粒。
4.根据权利要求1所述的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器,其特征在于:
所述基底的材料选自硅和锗半导体、聚酰亚胺,聚二甲基硅氧烷,聚对苯二甲酸乙二醇酯中的一种。
5.根据权利要求1-4任意一项所述的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器的制备方法,其特征在于:包括如下步骤:
步骤一 掺杂金刚石颗粒的制备
先将载体颗粒表面种植纳米金刚石籽晶,然后将种植有金刚石籽晶的载体颗粒进行化学气相沉积生长掺杂金刚石薄膜,在掺杂金刚石薄膜表面设置碳材料修饰层和/或金属修饰层即得掺杂金刚石颗粒;
步骤二 传感器的组装
先将基底于UV光下下暴露处理,并通过掩膜构造基底表面的电极布局,然后采用化学镀,将Au纳米颗粒沉积于基底表面,然后将银浆涂在基底表面,加热处理,再将涂覆有银浆的基底浸入含氯离子的溶液中,在基底表面形成Ag/AgCl参比电极,最后将至少一颗掺杂金刚石颗粒固定于基底上,并与Au纳米颗粒连接即得集成传感器。
6.根据权利要求5所述的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器的制备方法,其特征在于:
步骤一中,所述将载体颗粒表面种植纳米金刚石籽晶的过程为:将载体颗粒浸入含纳米金刚石的悬浊液中超声震荡≥30min,最后清洗、烘干即得,所述含纳米金刚石的悬浊液中,纳米金刚石的质量分数为0.01-0.1wt%;
步骤一中,所述化学气相沉积生长掺杂金刚石薄膜的工艺过程为:通过气体的质量流量比为氢气:甲烷:掺杂气源=98:2:0.3-0.6,生长压力为2-5Kpa,生长温度为800-850℃,生长次数为2-6次,每生长1次,将载体颗粒取出,摇晃载体颗粒后,再继续生长,单次生长的时间为3-6h,所述掺杂气源选自氨气、磷化氢、硼烷中的至少一种;
所述化学气相沉积为热丝化学气相沉积,热丝的温度为2500-2700℃。
7.根据权利要求5所述的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器的制备方法,其特征在于:
步骤一中,所述碳材料修饰层的设置过程为:先采用磁控溅射法在掺杂金刚石薄膜表面沉积金属镍层;所述金属镍层的厚度为2-22nm;然后将覆盖有金属镍层的掺杂金刚石颗粒进行热催化于掺杂金刚石薄膜表面生长出碳材料,形成碳材料修饰层;所述碳材料包括微晶石墨,碳纳米管,碳纳米纤维,石墨烯中的一种或多种;
所述磁控溅射的工艺为:采用纯度≥99.99%的镍靶,基底与靶材间距为10-12cm,采取氩气气氛,沉积气压为0.4-0.6Pa,溅射功率为150W,沉积时间为60s;
当碳材料选自微晶石墨时,所述热催化的工艺为:通入97-100sccm的氢气,热催化温度为750-800℃,热催化气压为9-11kPa,热催化时间为1-1.2h,升温速率为18-22℃/min,降温速率为18-22℃/min;
当碳材料选自碳纳米管时,所述热催化的工艺为:通入28.5sccm的氢气,1.5-2.0sccm的甲烷,热催化温度为750-800℃,热催化气压为10kPa,热催化时间为35-40min,升温速率为195-205℃/min,降温速率为195-205℃/min;
当碳材料选自碳纳米纤维时,所述热催化的工艺为:通入28.5sccm的氢气,1.5-2.0sccm的甲烷,热催化温度为950-1000℃,热催化气压为10kPa,热催化时间为30-40min,升温速率为195-205℃/min,降温速率为195-205℃/min;
当碳材料选自石墨烯时,所述热催化的工艺为:通入98sccm的氢气,热催化温度为750-800℃,热催化气压为10kPa,热催化时间为5min,升温速率为195-205℃/min,降温速率为195-205℃/min。
8.根据权利要求5所述的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器的制备方法,其特征在于:
步骤一中,所述金属修饰层的设置过程为:采用磁控溅射法在掺杂金刚石薄膜表面沉积金属层;所述金属层的厚度为2-22nm;所述磁控溅射的工艺为:靶材的纯度≥99.9%,靶材选自铁、铜、铂、银、金中的至少一种,基底与靶材间距为10-15cm,采取氩气气氛,沉积气压为0.6-2Pa,溅射功率为150-300W,沉积时间为60-120s;将溅射后的掺杂金刚石颗粒置于热管式炉进行热处理,使金属层球化为纳米颗粒团簇,晶粒尺寸20-500nm,气压维持在15-20kpa,热处理的温度为900℃,热处理的时间为4-5h,通入气氛的质量流量比为H2:Ar=1.5-3。
9.根据权利要求5所述的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器的制备方法,其特征在于:
步骤二中,将Au纳米颗粒沉积于基底表面的过程为:将设置好电极布局的基底采用含有0.4M乙二胺和50mM EDC的胺化溶液中胺化180min,与先于阴暗条件下使用1mM HAuCl4溶液处理基底80-200min,再使用0.1M NaBH4溶液处理PET基底5-50min,然后将基底置于0.5MKSCN(溶液中超声处理1h,再将基底含有0.125M Na2SO3、0.6M甲醛和8mM Na3Au(SO3)2的镀Au溶液中120min,用去离子水冲洗并用N2干燥基底;
步骤二中,将涂覆有银浆的基底浸入30μL0.1 M FeCl3溶液中60s,在基底表面形成Ag/AgCl参比电极。
10.根据权利要求1-4任意一项所述的一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器的应用,其特征在于:将碳材料/金属修饰的掺杂金刚石颗粒集成传感器用于电化学检测。
CN202111084124.9A 2021-09-15 2021-09-15 一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用 Active CN113777142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111084124.9A CN113777142B (zh) 2021-09-15 2021-09-15 一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111084124.9A CN113777142B (zh) 2021-09-15 2021-09-15 一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113777142A true CN113777142A (zh) 2021-12-10
CN113777142B CN113777142B (zh) 2024-10-01

Family

ID=78844420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111084124.9A Active CN113777142B (zh) 2021-09-15 2021-09-15 一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113777142B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396801A (zh) * 2002-06-16 2003-02-12 吉林大学 在金刚石对顶砧上集成金属电极的方法
US20110210004A1 (en) * 2008-09-12 2011-09-01 Patrick Unwin Boron-Doped Diamond
CN102288844A (zh) * 2011-05-17 2011-12-21 吉林大学 在金刚石对顶砧上集成电极的方法
CN103938182A (zh) * 2014-04-08 2014-07-23 上海交通大学 硼氮共掺纳米基定向金刚石薄膜的制备方法
CN104762607A (zh) * 2015-03-31 2015-07-08 浙江工业大学 一种单颗粒层纳米金刚石薄膜及其制备方法
CN105316648A (zh) * 2015-11-13 2016-02-10 浙江工业大学 一种硼掺杂单颗粒层纳米金刚石薄膜及其制备方法
CN108362751A (zh) * 2018-01-23 2018-08-03 武汉工程大学 基于硼掺杂金刚石微电极的电化学丙氨酸生物传感器的制备方法及其应用
CN110072811A (zh) * 2016-11-11 2019-07-30 株式会社理光 导电金刚石颗粒、导电金刚石电极和测试装置
CN111562297A (zh) * 2020-05-11 2020-08-21 中南大学 一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用
CN111579612A (zh) * 2020-05-11 2020-08-25 中南大学 一种基于金属修饰多孔掺硼金刚石电极的非酶生物传感器及其制备方法和应用
CN111579606A (zh) * 2020-05-11 2020-08-25 中南大学 一种高稳定性金属修饰掺硼金刚石电极及其制备方法和应用
CN112415055A (zh) * 2020-10-10 2021-02-26 牡丹江师范学院 基于金刚石对顶砧的综合原位电输运测量方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396801A (zh) * 2002-06-16 2003-02-12 吉林大学 在金刚石对顶砧上集成金属电极的方法
US20110210004A1 (en) * 2008-09-12 2011-09-01 Patrick Unwin Boron-Doped Diamond
CN102288844A (zh) * 2011-05-17 2011-12-21 吉林大学 在金刚石对顶砧上集成电极的方法
CN103938182A (zh) * 2014-04-08 2014-07-23 上海交通大学 硼氮共掺纳米基定向金刚石薄膜的制备方法
CN104762607A (zh) * 2015-03-31 2015-07-08 浙江工业大学 一种单颗粒层纳米金刚石薄膜及其制备方法
CN105316648A (zh) * 2015-11-13 2016-02-10 浙江工业大学 一种硼掺杂单颗粒层纳米金刚石薄膜及其制备方法
CN110072811A (zh) * 2016-11-11 2019-07-30 株式会社理光 导电金刚石颗粒、导电金刚石电极和测试装置
CN108362751A (zh) * 2018-01-23 2018-08-03 武汉工程大学 基于硼掺杂金刚石微电极的电化学丙氨酸生物传感器的制备方法及其应用
CN111562297A (zh) * 2020-05-11 2020-08-21 中南大学 一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用
CN111579612A (zh) * 2020-05-11 2020-08-25 中南大学 一种基于金属修饰多孔掺硼金刚石电极的非酶生物传感器及其制备方法和应用
CN111579606A (zh) * 2020-05-11 2020-08-25 中南大学 一种高稳定性金属修饰掺硼金刚石电极及其制备方法和应用
CN112415055A (zh) * 2020-10-10 2021-02-26 牡丹江师范学院 基于金刚石对顶砧的综合原位电输运测量方法

Also Published As

Publication number Publication date
CN113777142B (zh) 2024-10-01

Similar Documents

Publication Publication Date Title
US11603594B2 (en) Boron doped diamond electrode and preparation method and applications thereof
JP4775718B2 (ja) 白金ナノ触媒担持炭素ナノチューブ電極及びその製造方法
US6673392B2 (en) Method of vertically aligning carbon nanotubes on substrates at low pressure using thermal chemical vapor deposition with DC bias
TWI337204B (zh)
CN111593316B (zh) 一种高比表面积超亲水的梯度硼掺杂金刚石电极及其制备方法和应用
US8846144B1 (en) Method for making a carbon nanotube film
CN108441948A (zh) 一种晶圆级石墨烯微纳米单晶阵列的制备方法
CN102092670B (zh) 碳纳米管复合结构及其制备方法
CN109722641A (zh) 金刚石/石墨烯复合导热膜及其制备方法和散热系统
CN104498894B (zh) 一种多孔金刚石薄膜的制备方法
JP6335561B2 (ja) 垂直方向に向きが揃ったカーボンナノチューブをダイアモンド基板上に成長させる方法
CN111562297B (zh) 一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用
CN106756870A (zh) 一种等离子体增强化学气相沉积生长石墨烯的方法
CN111579606B (zh) 一种高稳定性金属修饰掺硼金刚石电极及其制备方法和应用
CN207775345U (zh) 金刚石/石墨烯复合导热膜和散热系统
CN110230044A (zh) 以纳米金刚石粉为赝模板制备多孔掺硼金刚石电极的方法
CN114101660B (zh) 一种核壳结构的金刚石颗粒及其制备方法和应用
CN113777142B (zh) 一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用
CN108910868B (zh) 一种在绝缘衬底上制备石墨烯枝晶的方法
CN113845183B (zh) 一种基于掺杂金刚石颗粒的水处理三维电极及其制备方法
CN110496616A (zh) 光电催化的负载金属的硼掺杂金刚石及制备方法和应用
JP6783722B2 (ja) 窒化ホウ素膜の成長装置および方法
CN113897675B (zh) 一种掺杂金刚石颗粒及其制备方法与应用
CN113804734B (zh) 一种掺杂金刚石颗粒传感器及其制备方法和应用
CN113881929B (zh) 一种双面结构的金刚石-石墨烯薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant