CN111562297B - 一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用 - Google Patents
一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用 Download PDFInfo
- Publication number
- CN111562297B CN111562297B CN202010390519.0A CN202010390519A CN111562297B CN 111562297 B CN111562297 B CN 111562297B CN 202010390519 A CN202010390519 A CN 202010390519A CN 111562297 B CN111562297 B CN 111562297B
- Authority
- CN
- China
- Prior art keywords
- boron
- doped diamond
- carbon material
- composite electrode
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/271—Diamond only using hot filaments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/278—Diamond only doping or introduction of a secondary phase in the diamond
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Inert Electrodes (AREA)
Abstract
本发明涉及一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用,所述非酶生物传感器的工作电极为碳材料/掺硼金刚石复合电极,所述碳材料/掺硼金刚石复合电极包括衬底、设置于衬底表面的掺硼金刚石层,以及设置于掺硼金刚石层表面的碳材料,所述碳材料选自微晶石墨,碳纳米管,碳纳米纤维,石墨烯中的至少一种,所述碳纳米管为底端生长的碳纳米管,所述掺硼金刚石薄膜为表面多孔结构结构,同时表面还修饰有镍钠米颗粒。本发明结合化学气相沉积、磁控溅射与退火,实现了不同复合材料电极的镍催化制备。所制备的复合碳材料电极具有高灵敏度,高稳定性,高分辨率和高选择性特性,可以广泛应用于葡萄糖传感器的构建。
Description
技术领域
本发明涉及一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用,属于非酶生物传感器制备技术领域。
背景技术
生物传感器(biosensor)是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理换能器有机结合的器械或装置,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。生物传感器的结构(组成)根据定义,包括两部分:1、生物活性材料(也叫生物敏感膜、分子识别元件)。2、物理换能器(也叫传感器)。其中本专利涉及是传感器部分,其作用是将各种生物的、化学的和物理的信息转变成电信号。生物反应过程产生的信息是多元化的,微电子和传感技术的现代成果为检测这些信息提供了丰富的手段,使得研究者在设计生物传感器时对换能器的选择有足够的回旋余地。
由于碳材料具有良好的力学、电学及化学性能,特别是具有大的比表面积、良好的导电性和生物相容性,因而碳材料(如掺硼金刚石、石墨、碳纳米管和石墨烯等)作为载体材料以负载纳米敏感材料构建的非酶葡萄糖传感器得到了广泛的研究。然而目前金属纳米材料修饰复合碳材料电极的制备方法,如水热法、电沉积法等,往往需要二次负载,导致复合电极中纳米敏感材料和载体之间的结合较差,样品制备重复性差、制备成本较高。本专利采取掺硼金刚石和甲烷分别作为固态碳源和气态碳源,通过镍金属原位热催化出一系列的特征复合碳材料结构,通过简单的调控热催化工艺参数即可精确控制不同的复合碳材料的制备,不需要二次负载,这种方式构建的镍纳米颗粒修饰复合碳材料电极界面结合稳定、电极性能更优异。
发明内容
针对现有技术的不足,本发明第一个目的在于提供一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器。
本发明的第二个目的在于提供一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法。
本发明的第三个目的在于提供一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的应用。
为了实现上述目的,本发明采用如下技术方案:
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器,所述非酶生物传感器的工作电极为碳材料/掺硼金刚石复合电极,所述碳材料/掺硼金刚石复合电极包括衬底、设置于衬底表面的掺硼金刚石层,以及设置于掺硼金刚石层表面的碳材料,所述碳材料选自微晶石墨,碳纳米管,碳纳米纤维,石墨烯中的至少一种,所述碳纳米管为顶端生长的碳纳米管,所述掺硼金刚石层为表面多孔结构,同时表面还修饰有镍钠米颗粒。
发明人发现,通过于掺硼金刚石层表面引入碳材料,可以大幅的增加电极的稳定催化活性,如微晶石墨可以改善界面电阻和增强镍纳米颗粒与掺硼金刚石之间的结合,提高其电荷传输速率并降低镍纳米颗粒的剥脱率;碳纳米纤维具有极高比表面积,可以增加电极催化活性位点,提高其催化活性;石墨烯独特的sp2结构可以增强镍纳米颗粒与掺硼金刚石之间的电荷转移速率,同时其具有高催化活性,从而可以提高电极电催化活性,碳纳米管可以增加基底比表面积,另外发明人还意外的发现,控制均为顶端生长的碳纳米管所得碳材料/掺硼金刚石复合电极,表面出更为优异的催化活性和稳定性。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器,所述衬底为P型重掺杂硅基底为单晶,厚度为0.4-0.6mm,电阻率≤0.0001Ωcm。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器,所述掺硼金刚石层厚度为10-12μm,晶粒大小为10-20μm,(111)晶面为暴露面。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,包括如下步骤:
步骤1、先于衬底表面种植籽晶,然而采用热丝化学气相沉积法在衬底表面沉积获得掺硼金刚石层;
步骤2、采用磁控溅射法在掺硼金刚石层表面沉积金属镍层;
步骤3、将步骤2制备的覆盖有金属镍层的样品进行热催化于掺硼金刚石层表面生长出碳材料,形成碳材料/掺硼金刚石复合电极;所述碳材料选自微晶石墨,碳纳米管,碳纳米纤维,石墨烯中的至少一种;
步骤4、将步骤3制备的碳材料/掺硼金刚石复合电极作为工作电极组装成非酶生物传感器。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,步骤1中,种植籽晶的过程为:将衬底浸入含纳米金刚石的悬浊液中超声震荡≥30min,最后清洗、烘干。
在实际操作过程中,先将P型重掺杂硅片置于丙酮溶液中超声清洗10分钟以除去表面污渍,烘干备用。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,步骤1中,热丝化学气相沉积法的工艺为:热丝温度2500-2700℃,通入气体的质量流量比为氢气:甲烷:硼烷=98:2:0.3-0.6,生长压力为3Kpa,生长温度为800-850℃;生长时间为10-12h。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,步骤2中,所述金属镍层的厚度为20-22nm。
在本发明中,发明人意外的发现,将金属镍层为20-22nm时,所得复合电极的性能最佳,尤其是在碳纳米管的生长时,只有在本发明的金属镍层的范围下,才能获得顶端生长的碳纳米管。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,步骤2中,所述磁控溅射的工艺为:采用纯度≥99.99%的镍靶,基底与靶材间距为10-12cm,采取氩气气氛,沉积气压为0.4-0.6Pa,溅射功率为150W,溅射时间为60s。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,步骤3中,当碳材料选自微晶石墨时,所述热催化的工艺为:通入97-100sccm的氢气,热催化温度为750-800℃,热催化气压为9-11kPa,热催化时间为1-1.2h,升温速率为18-22℃/min,降温速率为18-22℃/min。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,步骤3中,当碳材料选自碳纳米管时,所述热催化的工艺为:通入28.5sccm的氢气,1.5-2.0sccm的甲烷,热催化温度为750-800℃,热催化气压为10kPa,热催化时间为35-40min,升温速率为195-205℃/min,降温速率为195-205℃/min。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,步骤3中,当碳材料选自碳纳米纤维时,所述热催化的工艺为:通入28.5sccm的氢气,1.5-2.0sccm的甲烷,热催化温度为950-1000℃,热催化气压为10kPa,热催化时间为30-40min,升温速率为195-205℃/min,降温速率为195-205℃/min。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,步骤3中,当碳材料选自石墨烯时,所述热催化的工艺为:通入98sccm的氢气,热催化温度为750-800℃,热催化气压为10kPa,热催化时间为5min,升温速率为195-205℃/min,降温速率为195-205℃/min。
可以看出,石墨烯的热催化条件与微晶石墨的仅为升降温的不同,这是由于石墨和石墨烯本质上来说是同样的结构,只不过我们一般认为通过某些特定金属(如Cu,Ni)热催化形成石墨烯是属于高质量的薄层石墨,或者单层石墨。严格意义上的石墨烯是一种二维材料,由一层以sp2杂化轨道结合的碳原子组成,也就是单层石墨。石墨是由很多层石墨烯以范得瓦尔斯间结合而成的,一般来说热催化形成石墨中的晶体存在一定量的缺陷和无序结构。石墨和石墨烯的形成过程基本原理一致,都是金刚石中的碳原子通过在金属中溶解扩散,再在金属表面析出,不过石墨烯的析出过程对热力学参数要求很高,需要比较完美的结晶过程中,因此通过快速升降温可以可控的获得石墨烯,因为快速的升温提供必要的碳原子扩散析出能量,而保温时间短结合快速降温可以保证反应短时、迅速进行,保证结晶的完美性。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,所述步骤4中,将步骤3获得的碳材料/掺硼金刚石复合电极作为工作电极,封装,然后以铂电极作为对电极,Ag/AgCl电极作为参比电极构成非酶传感器。
所述封装过程为:将碳材料/掺硼金刚石复合电极采用AB胶与高导电铜线黏合,并置于烘干箱中,固化温度为150℃,固化时间为30min。
本发明一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的应用,将所述非酶生物传感器用于检测多巴胺或葡萄糖。
有益效果
本发明提供了一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器,所述非酶生物传感器的工作电极为碳材料/掺硼金刚石复合电极,所述碳材料/掺硼金刚石复合电极包括衬底、设置于衬底表面的掺硼金刚石层,以及设置于掺硼金刚石层表面的碳材料,所述碳材料选自微晶石墨,碳纳米管,碳纳米纤维,石墨烯中的至少一种,所述碳纳米管为顶端生长的碳纳米管。所述掺硼金刚石层为表面多孔结构结构,同时表面还修饰有镍钠米颗粒。
发明人发现,通过于掺硼金刚石层层表面在引入碳材料,可以大幅的增加电极的稳定催化活性,如微晶石墨可以改善界面电阻和增强镍纳米颗粒与掺硼金刚石之间的结合,提高其电荷传输速率并降低镍纳米颗粒的剥脱率;碳纳米纤维具有极高比表面积,可以增加电极催化活性位点,提高其催化活性;石墨烯独特的sp2结构可以增强镍纳米颗粒与掺硼金刚石之间的电荷转移速率,同时其具有高催化活性,从而可以提高电极电催化活性,碳纳米管可以增加基底比表面积,另外发明人还意外的发现,控制均为顶端生长的碳纳米管所得碳材料/掺硼金刚石复合电极,表面出更为优异的催化活性和稳定性。
附图说明
图1为实施例1中催化出微晶石墨的复合电极扫描(SEM)图和Raman光谱图;
图2为实施例2中催化出碳纳米管的复合电极形貌扫描(SEM)图;
图3为实施例3中催化出碳纳米纤维的复合电极形貌扫描(SEM)图。
具体实施方式
通过以下实施例进一步阐明本发明的实质性特点和显著进步,但本发明绝非仅局限于实施例。
实施例1
步骤一、硅基底预处理。首先将硅基底置于丙酮溶液中超声处理10min,以除去表面油污;再将其置于纳米金刚石籽晶悬浊液中进行籽晶种植30min,以提高金刚石生长形核率;最后置于无水乙醇中超声处理5min;
步骤二、掺硼金刚石膜的制备。采用热丝化学气相沉积掺硼金刚石,在所述沉积过程中,通入反应气体包括氢气,甲烷,硼烷,所述氢气流量为98sccm,甲烷流量为2sccm,硼烷流量为0.4sccm.,热丝温度2500-2700℃,沉积温度800-850℃,沉积压强3kPa,沉积时间12h。
步骤三、镍催化层制备。采取磁控溅射方式在掺硼金刚石表面沉积镍层,在所述沉积过程中,采取纯度为99.99%的高纯镍靶,基底与靶材间距为10cm,采取氩气气氛,沉积气压为0.5Pa,溅射功率为150W,沉积时间为60s,镍层沉积厚度为20-22nm。
步骤四、微晶石墨相催化。在微晶石墨的催化过程中,通入98sccm的氢气,热催化温度为800℃,热催化气压为10kPa,热催化时间为1h,升温速率为20℃/min,降温速率为20℃/min;微晶石墨相存在于镍纳米颗粒与多孔金刚石界面处,能够有效增强界面电荷传递速率并且增强载体与催化颗粒之间的结合,有助于提升电极灵敏度和稳定性。
步骤五、传感器制备。方法为,将步骤四获得的电极封装完后,使用参比电极和对电极与封装后的电极一起构成三电极检测传感器,用于检测葡萄糖浓度。该电极检测限低至0.24μM,在2μM-0.5mM线性范围内灵敏度为1010.8μA mM-1cm-2;在0.5-15mM线性范围内灵敏度为660.8μA mM-1cm-2。
实施例2
步骤一、硅基底预处理。首先将硅基底置于丙酮溶液中超声处理10min,以除去表面油污;再将其置于纳米金刚石籽晶悬浊液中进行籽晶种植30min,以提高金刚石生长形核率;最后置于无水乙醇中超声处理5min;
步骤二、掺硼金刚石膜的制备。采用热丝化学气相沉积掺硼金刚石,在所述沉积过程中,通入反应气体包括氢气,甲烷,硼烷,所述氢气流量为98sccm,甲烷流量为2sccm,硼烷流量为0.4sccm.,热丝温度2500-2700℃,沉积温度800-850℃,沉积压强3kPa,沉积时间12h。
步骤三、镍催化层制备。采取磁控溅射方式在掺硼金刚石表面沉积镍层,在所述沉积过程中,采取纯度为99.99%的高纯镍靶,基底与靶材间距为10cm,采取氩气气氛,沉积气压为0.5Pa,溅射功率为150W,沉积时间为60s,镍层沉积厚度为20-22nm。
步骤四、碳纳米管。在碳纳米管的催化过程中,通入28.5sccm的氢气,1.5sccm的甲烷,热催化温度为800℃,热催化气压为10kPa,热催化时间为40min,升温速率为200℃/min,降温速率为200℃/min;碳纳米管为镍纳米颗粒提供限于空间,由于两者的限域协同作用,可以有效提升催化颗粒的本征催化活性与稳定性。
步骤五、传感器制备。方法为,将步骤四获得的电极封装完后,使用参比电极和对电极与封装后的电极一起构成三电极检测传感器,用于检测葡萄糖浓度。该电极检测限低至1.0μM,在1.25μM-0.49mM线性范围内灵敏度为1642.20μA mM-1cm-2;在0.49-6.79mM线性范围内灵敏度为1374.4μA mM-1cm-2。
实施例3
步骤一、硅基底预处理。首先将硅基底置于丙酮溶液中超声处理10min,以除去表面油污;再将其置于纳米金刚石籽晶悬浊液中进行籽晶种植30min,以提高金刚石生长形核率;最后置于无水乙醇中超声处理5min;
步骤二、掺硼金刚石膜的制备。采用热丝化学气相沉积掺硼金刚石,在所述沉积过程中,通入反应气体包括氢气,甲烷,硼烷,所述氢气流量为98sccm,甲烷流量为2sccm,硼烷流量为0.4sccm.,热丝温度2500-2700℃,沉积温度800-850℃,沉积压强3kPa,沉积时间12h。
步骤三、镍催化层制备。采取磁控溅射方式在掺硼金刚石表面沉积镍层,在所述沉积过程中,采取纯度为99.99%的高纯镍靶,基底与靶材间距为10cm,采取氩气气氛,沉积气压为0.5Pa,溅射功率为150W,沉积时间为60s,镍层沉积厚度为20-22nm。
步骤四、碳纳米纤维催化。在碳纳米纤维的催化过程中,通入28.5sccm的氢气,1.5sccm的甲烷,热催化温度为1000℃,热催化气压为10kPa,热催化时间为40min,升温速率为200℃/min,降温速率为200℃/min;碳纳米纤维呈现烟花状分布生长,形成球状多级多级纳米结构,其比表面积极大,可以极大增强电极与溶液接触面积,同时促进分子扩散,具有优异的葡萄糖催化活性。
步骤五、传感器制备。方法为,将步骤四获得的电极封装完后,使用参比电极和对电极与封装后的电极一起构成三电极检测传感器,用于检测葡萄糖浓度。该电极检测限低至0.23μM,在0.5μM-0.49mM线性范围内灵敏度为1740.0μA mM-1cm-2;在0.49-4.11mM线性范围内灵敏度为1116.8μA mM-1cm-2。
对比例1
其他条件与实例1相同,通过改变溅射镍层时间,设计为20s、40s、60s和90s,其溅射层厚度分别为7-8nm,14-15nm,20-22nm和30-34nm。其中溅射时间60s即为实例1中的样品,最终由于四个样品的最高灵敏度性能分为别205.4μA mM-1cm-2,569.5μA mM-1cm-2,1010.8μA mM-1cm-2和844.5μA mM-1cm-2,实施例1中的样品具有最优异的性能。
对比例2
其他条件与实例2相同,其中对比样设计三组,其溅射时间分别为5s,20s和60s,得到的溅射层厚度为2-3nm,7-8nm和20-22nm,其中溅射时间60s的样品为实例2中的样品。在进行热催化处理后,溅射时间5s的样品碳纳米管密度非常稀疏,大致呈现底端生长,溅射时间20s的样品碳纳米管呈现底端生长和顶端生长混合生长模式。
对比例3
其他条件与实例2相同,通过改变热催化时间10min,20min,40min和60min,其中热催化时间40min即为实例2中的样品,最终由于四个样品中,热催化时间40min的样品碳纳米管密度最高,四个样品的最高灵敏度性能分为别469.1μA mM-1cm-2,889.4μA mM-1cm-2,1642.20μA mM-1cm-2和1025.7μA mM-1cm-2,实施例2中的样品具有最优异的性能。
对比例4
其他条件与实例3相同,通过改变热催化温度800℃,900℃,1000℃和1100℃,其中热催化时间1000℃即为实例3中的样品,最终由于四个样品中,热催化温度1000℃和1100℃的样品成功催化出碳纳米纤维,同时1000℃下样品中的碳纳米纤维密度最高,两个电极最高灵敏度性能分为别1740.0μA mM-1cm-2和1229.6μA mM-1cm-2,实施例3中的样品具有最优异的性能。
Claims (7)
1.一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,其特征在于,包括如下步骤:
步骤1、先于衬底表面种植籽晶,然而采用热丝化学气相沉积法在衬底表面沉积获得掺硼金刚石层;
步骤2、采用磁控溅射法在掺硼金刚石层表面沉积金属镍层;所述金属镍层的厚度为20-22nm;
步骤3、将步骤2制备的覆盖有金属镍层的样品进行热催化于掺硼金刚石层表面生长出碳材料,形成碳材料/掺硼金刚石复合电极;所述碳材料选自碳纳米管;所述热催化的工艺为:通入28.5sccm的氢气,1.5-2.0sccm的甲烷,热催化温度为750-800℃,热催化气压为10kPa,热催化时间为35-40min,升温速率为195-205℃/min,降温速率为195-205℃/min;
步骤4、将步骤3制备的碳材料/掺硼金刚石复合电极作为工作电极组装成非酶生物传感器;
所述非酶生物传感器的工作电极为碳材料/掺硼金刚石复合电极,所述碳材料/掺硼金刚石复合电极包括衬底、设置于衬底表面的掺硼金刚石层,以及设置于掺硼金刚石层表面的碳材料,所述碳材料选自碳纳米管所述碳纳米管为顶端生长的碳纳米管,所述掺硼金刚石层为表面多孔结构,同时表面还修饰有镍钠米颗粒;
所述掺硼金刚石层厚度为10-12μm,晶粒大小为10-20μm,(111)晶面为暴露面。
2.根据权利要求1所述的一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,其特征在于:所述衬底为P型重掺杂硅基底为单晶,厚度为0.4-0.6mm,电阻率≤0.0001Ωcm。
3.根据权利要求1所述的一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,其特征在于:
步骤1中,种植籽晶的过程为:将衬底浸入含纳米金刚石的悬浊液中超声震荡≥30min,最后清洗、烘干。
4.根据权利要求1所述的一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,其特征在于:步骤1中,热丝化学气相沉积法的工艺为:热丝温度2500-2700℃,通入气体的质量流量比为氢气:甲烷:硼烷=98:2:0.3-0.6,生长压力为3Kpa,生长温度为800-850℃;生长时间为10-12h。
5.根据权利要求1所述的一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,其特征在于:所述磁控溅射的工艺为:采用纯度≥99.99%的镍靶,基底与靶材间距为10-12cm,采取氩气气氛,沉积气压为0.4-0.6Pa,溅射功率为150W,沉积时间为60s。
6.根据权利要求1所述的一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的制备方法,其特征在于:所述步骤4中,将步骤3获得的碳材料/掺硼金刚石复合电极作为工作电极,封装,然后以铂电极作为对电极,Ag/AgCl电极作为参比电极构成非酶传感器。
7.根据权利要求1-2任意一项所述的制备方法所制备的一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器的应用,其特征在于:将所述非酶生物传感器用于检测多巴胺或葡萄糖。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010390519.0A CN111562297B (zh) | 2020-05-11 | 2020-05-11 | 一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010390519.0A CN111562297B (zh) | 2020-05-11 | 2020-05-11 | 一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111562297A CN111562297A (zh) | 2020-08-21 |
CN111562297B true CN111562297B (zh) | 2022-04-01 |
Family
ID=72072006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010390519.0A Active CN111562297B (zh) | 2020-05-11 | 2020-05-11 | 一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111562297B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113777142B (zh) * | 2021-09-15 | 2024-10-01 | 湖南新锋科技有限公司 | 一种碳材料/金属修饰的掺杂金刚石颗粒集成传感器及其制备方法和应用 |
CN113881929B (zh) * | 2021-09-15 | 2024-04-02 | 湖南新锋先进材料科技有限公司 | 一种双面结构的金刚石-石墨烯薄膜及其制备方法和应用 |
CN113960133B (zh) * | 2021-10-25 | 2022-12-27 | 山东大学 | 一种金属纳米片负载的掺硼金刚石微阵列电极、其制备方法及在葡萄糖传感器中的应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106435518B (zh) * | 2016-10-21 | 2018-07-17 | 中南大学 | 一种高比表面积硼掺杂金刚石电极及其制备方法和应用 |
CN107119263A (zh) * | 2017-05-04 | 2017-09-01 | 天津理工大学 | 一种垂直石墨烯/掺硼金刚石传感电极的制备方法 |
-
2020
- 2020-05-11 CN CN202010390519.0A patent/CN111562297B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111562297A (zh) | 2020-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111562297B (zh) | 一种基于碳材料/掺硼金刚石复合电极的非酶生物传感器及其制备方法和应用 | |
Zhai et al. | Rational construction of 3D‐networked carbon nanowalls/diamond supporting CuO architecture for high‐performance electrochemical biosensors | |
Peng et al. | Self-powered photoelectrochemical aptasensor based on phosphorus doped porous ultrathin g-C3N4 nanosheets enhanced by surface plasmon resonance effect | |
Mohapatra et al. | Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions | |
Hofmann et al. | State of transition metal catalysts during carbon nanotube growth | |
Chen et al. | Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry | |
Wang et al. | A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing | |
Hofmann et al. | In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation | |
JP5549984B2 (ja) | 高比表面積のカーボンナノチューブ集合体の製造方法 | |
Tang et al. | Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy | |
CN111579612B (zh) | 一种基于金属修饰多孔掺硼金刚石电极的非酶生物传感器及其制备方法和应用 | |
Güneş et al. | Synthesis of hierarchical hetero-composite of graphene foam/α-Fe2O3 nanowires and its application on glucose biosensors | |
KR20140111548A (ko) | 그래핀의 제조 방법 | |
JP2009184906A (ja) | カーボンナノチューブ構造体及びその製造方法 | |
KR20180039156A (ko) | 그래핀 합성 | |
JP6335561B2 (ja) | 垂直方向に向きが揃ったカーボンナノチューブをダイアモンド基板上に成長させる方法 | |
JP2017019718A (ja) | カーボンナノチューブの製造方法 | |
Gupta et al. | Borophene nanomaterials: synthesis and applications in biosensors | |
CN104588058A (zh) | 一种石墨烯纳米带垂直阵列-碳化钼纳米晶体复合材料、制备及其应用 | |
Aleksanyan et al. | Growth, characterization, and application of vertically aligned carbon nanotubes using the RF-magnetron sputtering method | |
Fajardo-Díaz et al. | Synthesis, characterization and cyclic voltammetry studies of helical carbon nanostructures produced by thermal decomposition of ethanol on Cu-foils | |
JP4663668B2 (ja) | 六角形のナノ板状構造のダイヤモンドの形成方法 | |
KR101151424B1 (ko) | 금속 나노입자를 표면에 형성한 1차원 나노구조물의 제조방법 | |
Vijayalakshmi et al. | High performance electrochemical H2O2 sensor based on MWCNT thin films fabricated by novel electron beam evaporation | |
Kim et al. | Preferential Biofunctionalization of Carbon Nanotubes Grown by Microwave Plasma-Enhanced CVD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |