CN113769768B - 一种双功能复合纳米材料及其制备方法和用途 - Google Patents

一种双功能复合纳米材料及其制备方法和用途 Download PDF

Info

Publication number
CN113769768B
CN113769768B CN202111048297.5A CN202111048297A CN113769768B CN 113769768 B CN113769768 B CN 113769768B CN 202111048297 A CN202111048297 A CN 202111048297A CN 113769768 B CN113769768 B CN 113769768B
Authority
CN
China
Prior art keywords
silver
molybdenum
salt
composite
ctab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111048297.5A
Other languages
English (en)
Other versions
CN113769768A (zh
Inventor
王毅
连雨萌
张盾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN202111048297.5A priority Critical patent/CN113769768B/zh
Publication of CN113769768A publication Critical patent/CN113769768A/zh
Application granted granted Critical
Publication of CN113769768B publication Critical patent/CN113769768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及模拟酶技术以及光催化,具体说是一种双功能复合纳米材料(溴化银、钼酸银复合物)及其制备方法和用途。通过银盐、钼盐与CTAB通过一步沉淀法获得双功能复合纳米材料。本发明制备的纳米材料具有合成方法简单、成本低、性能优异、可重复利用等优点,在纳米材料催化氧化领域中具有广阔的应用前景。

Description

一种双功能复合纳米材料及其制备方法和用途
技术领域
本发明涉及模拟酶技术以及光催化,具体说是一种双功能复合纳米材料(溴化银、钼酸银复合物)及其制备方法和用途。
背景技术
生物体内所含活性酶如HRP,具有高催化活性以及特异性,在有机合成、生物传感器、环境治理、废水处理、医疗领域中有较多的应用。纳米酶的类酶催化活性来自其自身的纳米结构,无需额外引入催化基团或天然酶;天然酶易受到温度、pH影响,相比之下纳米酶稳定性更高、成本较低且催化活性可调,因此开发这种模拟酶材料显得尤为重要。半导体光催化剂具有高效、稳定、环境友好的特点。在一系列半导体光催化剂材料中,TiO2无毒、结构稳定、活性高,但TiO2只能被紫外光激发,在实际应用中受到很大限制。铂/二氧化钛纳米粒子(Pt/TiO2NPs)具有类过氧化物酶活性,可以快速催化过氧化氢(H2O2)氧化3,3’,5,5’-四甲基联苯胺(TMB)显色。单独一种半导体材料性能受限,具有光生电子和空穴复合率高、对可见光吸收力差等缺点,复合半导体光催化剂大大减弱了这些缺点。
近年来,随着研究发现,越来越多的纳米材料或纳米复合材料被查证具有模拟酶的性质,如UsAuNPs/MOF[1]、CuO-HCSs[2]、CuS/GO[3]等;也有越来越多半导体异质结材料被证明具有光催化活性,如Ag3PO4/TiO2[4]等。相比于天然酶的获取方法,模拟酶材料一方面降低了材料成本,二是合成方法简便,单元操作易于实现,具有优异的耐久性、稳定性、生物相容性和可重复使用性;纳米酶也存在固有的缺点,纳米酶的微弱可见光响应限制了杀菌活性的应用,则需要对纳米复合材料进行改性使其具有光催化能力。相比于单一的半导体光催化剂,复合光催化剂提高了带隙宽度,光生电子和空穴分离效率也有很大提高;可见光下的光催化活性和黑暗环境中的类酶活性在杀菌应用中具有协同作用。因此,开发一种具有光催化和模拟酶活性的高效催化剂,在提高催化剂的利用率以及环境问题的应用方面具有重要意义。
1.HU WEN-CHAO,YOUNIS M R,ZHOU YUE,et al(2020)In situ fabrication ofultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterialtherapy.Small,2000553.
2.XI JU-QUN,WEO GEN,AN LAN-FANG,et al(2019)Copper/carbon hybridnanozyme:tuning catalytic activity by the copper state for antibacterialtherapy.Nano Letter 19(11):7645-7654.
3.WANG WAN-SHUN,LI BING-LIN,YANG HUI-LI,et al(2020)Efficientelimination of multidrug-resistant bacteria using copper sulfide nanozymesanchored to graphene oxide nanosheets.Nano Res 13(8):2156-2164.
4.LIU HUAN,LI DAO-RONG,YANG XIN-LI,et al(2019)Fabrication andcharacterization of Ag3PO4/TiO2 heterostructure with improved visible-lightphotocatalytic activity for the degradation of methyl orange andsterilization of E.coli.Materials Technology 34(4):192-203.
发明内容
本发明的目的在于提供一种双功能复合纳米材料(溴化银、钼酸银复合物)及其制备方法和用途。
为实现上述目的,本发明采用的技术方案为:
一种双功能复合纳米材料的制备方法,通过银盐、钼盐与CTAB通过一步沉淀法获得双功能复合纳米材料。
进一步的说:
将银盐、钼盐和CTAB粉末混合,再加入去离子水得混合液,将混合溶液在黑暗环境下磁力搅拌1-2小时,将得到的材料清洗并离心,离心后将得到的复合材料在60-80℃下真空干燥6-8小时,最终得到含银、钼的纳米复合材料;其中,钼盐、CTAB的摩尔比为1:1。
所述将银盐加入蒸馏水进行磁力搅拌获得含银溶液,钼盐与CTAB依次加入蒸馏水进行磁力搅拌获得含钼混合溶液,将含钼混合溶液缓慢滴加至含银溶液中,滴加后黑暗环境下磁力搅拌1-2小时进行反应。
所述黑暗环境下磁力搅拌反应后依次经无水乙醇和蒸馏水各清洗2-3次,清洗后离心,收集黄色沉淀后于60℃-80℃真空干燥6-8小时,并将干燥后的粉末进行研磨得双功能复合纳米材料。
所述银盐为硝酸银;钼盐为钼酸铵。
一种双功能纳米复合材料,所述方法制备获得含银、钼的不规则纳米球状颗粒的双功能复合纳米材料,其中,复合纳米材料粒径均达到100-250nm,溴化银呈9-20nm规则纳米球状负载于100-250nm钼酸银不规则纳米球状颗粒表面。
一种双功能纳米复合材料的应用,所述含银、钼的双功能复合纳米材料在作为模拟酶或光催化剂在经可见光条件下对染料进行降解中的应用。
所述含银、钼的双功能复合纳米材料作为模拟酶材料,在酸性条件下对底物进行催化氧化还原反应中的应用。
所述底物为TMB和H2O2
所述染料为罗丹明B和/或盐酸四环素(TC)。
本发明与现有技术相比,具有以下优点及突出性效果:
本发明通过简单可行的溶剂沉淀法得到含银、钼的复合纳米材料,该材料具有模拟酶和光催化活性的双功能。本发明所得材料与一些现有材料相比光催化活性较高且可同时降解罗丹明B和TC,同时具有氧化物酶活性及过氧化物酶活性;成本低、制备方法简单、重复性高、易于保存;该材料可作为一种新型材料在工程防污实践、免疫分析、生物检测和临床诊断等领域具有潜在的应用价值,在新型催化氧化分析中具有广阔的应用前景。
附图说明:
图1为本发明实施案例提供的纳米材料的TEM图;
图2为本发明实施案例提供的定性分析材料成分的X-射线衍射图;
图3为本发明实施例提供的纳米材料模拟酶催化测试图。
图4为本发明实施例提供的纳米材料光催化降解图像,其中,a为降解罗丹明B的光催化降解图像,b为降解TC的光催化降解图像。
具体实施方式
以下通过具体的实施例对本发明作进一步说明,有助于本领域的普通技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1:
将1mmol AgNO3放入烧杯中加入20mL蒸馏水,磁力搅拌20min,使其溶解于蒸馏水中获得含银溶液;将0.036mmol(NH4)6Mo7O24·4H2O、0.25mmol CTAB放入烧杯加入20mL蒸馏水,磁力搅拌20min,使其溶解于蒸馏水中获得含钼混合溶液;将所得含钼混合溶液缓慢滴加到上述AgNO3溶液中,并在黑暗条件下搅拌1h得到产物。所得产物用蒸馏水和无水乙醇分别清洗产物3次,清洗后以6000r/min离心,收集黄色沉淀将其放于真空干燥箱60℃干燥6h,得到1:1AgBr/Ag2MoO4复合纳米材料(参见图1),并对所得材料经XRD测试(参见图2)。
由图1可看出,复合纳米材料平均粒径达到189nm,平均粒径16nm的溴化银呈规则纳米球状负载于平均粒径189nm的钼酸银不规则纳米球状颗粒表面。由图2可以看出合成的复合材料的成分与AgBr标准卡片(JCPDS No.79-0149)、Ag2MoO4标准卡片(JCPDS No.08-0473)相吻合,即复合纳米材料中产物含AgBr和Ag2MoO4
实施例2-4:
制备过程:
将1mmol AgNO3放入烧杯中加入20mL蒸馏水,磁力搅拌20min,使其溶解于蒸馏水中获得含银溶液。将表1记载的不同比例(NH4)6Mo7O24·4H2O、CTAB放入烧杯加入20mL蒸馏水,磁力搅拌20min,使其溶解于蒸馏水中获得含钼混合溶液;将所得含钼混合溶液缓慢滴加到上述AgNO3溶液中,并在黑暗条件下搅拌1h得到产物。用蒸馏水和无水乙醇分别清洗产物3次,清洗后以6000r/min离心,收集黄色沉淀将其放于真空干燥箱60℃干燥6h,实施例2-4分别得到1:2AgBr/Ag2MoO4、2:1AgBr/Ag2MoO4和3:1AgBr/Ag2MoO4复合纳米材料。
表1
(NH4)6Mo7O24·4H2O/mmol CTAB/mmol
实施例1 0.036 0.25
实施例2 0.047 0.16
实施例3 0.023 0.33
实施例4 0.018 0.375
上述实施例2-4获得的复合纳米材料粒径达到170-210nm,溴化银呈12-18nm规则纳米球状负载于170-210nm钼酸银不规则纳米球状颗粒表面。
应用例1
在0.5mM H2O2,4mM TMB,上述实例1获得的1:1AgBr/Ag2MoO4纳米材料作为模拟酶三种物质,在不同条件下(TMB、过氧化氢和TMB、过氧化氢和模拟酶材料、TMB和模拟酶材料或过氧化氢和TMB和模拟酶材料)加入至pH为4的醋酸钠醋酸缓冲液,共1mL体系中测试模拟酶性能,各物质加入后等待5min后进行溶液颜色观察,在652nm波长下进行吸光度测试。当体系中只有过氧化氢和TMB时,溶液呈无色透明;当体系中只有过氧化氢和模拟酶材料1:1AgBr/Ag2MoO4,未加入TMB时,溶液呈无色透明;当向TMB和过氧化氢体系中加入模拟酶材料1:1AgBr/Ag2MoO4时以及当体系中只有TMB与模拟酶材料1:1AgBr/Ag2MoO4时,溶液变为较深蓝色,证明TMB已经被氧化为蓝色的oxTMB;结合图3吸光度数据,可见本发明提供的纳米材料具有较高的氧化物酶和过氧化物模拟酶活性。
应用例2
处理1:向40mL的10mg/L罗丹明B中分别加入40mg的1mg/mL上述各实施例获得的AgBr/Ag2MoO4,而后加入具有底部滤光片的石英管中进行可见光光催化降解实验,首先在暗态条件下以250r/min的速度搅拌30min达到吸附-脱附平衡,随后打开氙灯光源每隔30min取一次反应溶液,将1mL反应溶液在6000r/min的速度下离心后进行吸光度测试。空白组可见光下反应120min后体系颜色无明显变化,实验组则由紫红色变为无色,根据图4结果也能够说明对罗丹明B降解率达100%(图4a)。
处理2:向40mL的10mg/L TC中分别加入40mg的1mg/mL上述各实施例获得的AgBr/Ag2MoO4加入具有底部滤光片的石英管中进行可见光光催化降解实验,首先在暗态条件下以250r/min的速度搅拌30min达到吸附-脱附平衡,随后打开氙灯光源每隔30min取一次反应溶液,将1mL反应溶液在6000r/min的速度下离心后进行吸光度测试。空白组可见光下反应120min后体系颜色无明显变化,实验组则由淡黄色变为接近无色,120min内对TC的降解率达到73%(图4b)。可见本发明提供的纳米材料具有优异的光催化活性,可以对染料罗丹明B以及抗生素TC进行降解;由于其同时具有模拟酶活性,所以是一种新型高效的双功能催化材料。

Claims (6)

1.一种双功能复合纳米材料的应用,其特征在于:将AgBr/Ag2MoO4作为模拟酶材料,在酸性条件下对底物进行催化氧化还原反应;所述底物为TMB和H2O2;所述AgBr/ Ag2MoO4复合材料通过银盐、钼盐与CTAB通过一步沉淀法获得。
2.按权利要求1所述双功能复合纳米材料的应用,其特征在于:
将银盐、钼盐和CTAB粉末混合,再加入去离子水得混合液,将混合溶液在黑暗环境下磁力搅拌1-2小时,将得到的材料清洗并离心,离心后将得到的复合材料在60-80℃下真空干燥6-8小时,最终得到含银、钼的纳米复合材料;其中,钼盐、CTAB的摩尔比为1:1。
3.按权利要求1所述双功能复合纳米材料的应用,其特征在于:将银盐加入蒸馏水进行磁力搅拌获得含银溶液,钼盐与CTAB依次加入蒸馏水进行磁力搅拌获得含钼混合溶液,将含钼混合溶液缓慢滴加至含银溶液中,滴加后黑暗环境下磁力搅拌1-2小时进行反应。
4.按权利要求2所述双功能纳米复合材料的应用,其特征在于:所述黑暗环境下磁力搅拌反应后依次经无水乙醇和蒸馏水各清洗2-3次,清洗后离心,收集黄色沉淀后于60℃-80℃真空干燥6-8小时,并将干燥后的粉末进行研磨得双功能复合纳米材料。
5.按权利要求1-3任意一项所述双功能纳米复合材料的应用,其特征在于:所述银盐为硝酸银;钼盐为钼酸铵。
6.按权利要求1所述双功能纳米复合材料的应用,其特征在于:所述AgBr/ Ag2MoO4复合材料中溴化银呈9-20nm规则纳米球状负载于100-250nm钼酸银不规则纳米球状颗粒表面。
CN202111048297.5A 2021-09-08 2021-09-08 一种双功能复合纳米材料及其制备方法和用途 Active CN113769768B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111048297.5A CN113769768B (zh) 2021-09-08 2021-09-08 一种双功能复合纳米材料及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111048297.5A CN113769768B (zh) 2021-09-08 2021-09-08 一种双功能复合纳米材料及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN113769768A CN113769768A (zh) 2021-12-10
CN113769768B true CN113769768B (zh) 2023-05-26

Family

ID=78841609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111048297.5A Active CN113769768B (zh) 2021-09-08 2021-09-08 一种双功能复合纳米材料及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN113769768B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1381662A (en) * 1971-03-01 1975-01-22 Miles Lab Detecting hydrogen peroxide and peroxidative compounds
CN104888813A (zh) * 2015-05-12 2015-09-09 国家纳米科学中心 一种MoS2-PtAg纳米复合材料、制备方法及其用途
CN105214646A (zh) * 2015-09-24 2016-01-06 福建医科大学 氧化钨量子点材料模拟过氧化物酶
CN106268881A (zh) * 2016-08-17 2017-01-04 许昌学院 一种方块状Ag2MoO4@Ag@AgBr 三元复合物及其制备方法和应用
CN109331846A (zh) * 2018-11-14 2019-02-15 上海纳米技术及应用国家工程研究中心有限公司 纳米溴化银复合钨酸铋的制备方法及其产品和应用
CN109482182A (zh) * 2018-11-12 2019-03-19 国家海洋局第海洋研究所 一种Ag2WO4模拟酶材料及其应用
CN110872131A (zh) * 2019-12-06 2020-03-10 中国科学院长春应用化学研究所 Cu2MoS4纳米酶、其制备方法、纳米药物及应用
CN111017996A (zh) * 2019-09-25 2020-04-17 青岛大学 一种合成具有双重模拟酶活性的MoO3-X抗菌材料的方法
CN111715244A (zh) * 2020-07-24 2020-09-29 济南大学 一种拟酶催化剂的制备方法及其应用
CN112588301A (zh) * 2020-12-03 2021-04-02 中国科学院海洋研究所 一种复合金属纳米材料及其制备和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1381662A (en) * 1971-03-01 1975-01-22 Miles Lab Detecting hydrogen peroxide and peroxidative compounds
CN104888813A (zh) * 2015-05-12 2015-09-09 国家纳米科学中心 一种MoS2-PtAg纳米复合材料、制备方法及其用途
CN105214646A (zh) * 2015-09-24 2016-01-06 福建医科大学 氧化钨量子点材料模拟过氧化物酶
CN106268881A (zh) * 2016-08-17 2017-01-04 许昌学院 一种方块状Ag2MoO4@Ag@AgBr 三元复合物及其制备方法和应用
CN109482182A (zh) * 2018-11-12 2019-03-19 国家海洋局第海洋研究所 一种Ag2WO4模拟酶材料及其应用
CN109331846A (zh) * 2018-11-14 2019-02-15 上海纳米技术及应用国家工程研究中心有限公司 纳米溴化银复合钨酸铋的制备方法及其产品和应用
CN111017996A (zh) * 2019-09-25 2020-04-17 青岛大学 一种合成具有双重模拟酶活性的MoO3-X抗菌材料的方法
CN110872131A (zh) * 2019-12-06 2020-03-10 中国科学院长春应用化学研究所 Cu2MoS4纳米酶、其制备方法、纳米药物及应用
CN111715244A (zh) * 2020-07-24 2020-09-29 济南大学 一种拟酶催化剂的制备方法及其应用
CN112588301A (zh) * 2020-12-03 2021-04-02 中国科学院海洋研究所 一种复合金属纳米材料及其制备和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Raja Arumugam Senthil et al..A facile synthesis of nano AgBr attached potato-like Ag2MoO4 composite as highly visible-light active photocatalyst for purification of industrial waste-water.《Environmental Pollution》.2020,第269卷第2.1节,图6a. *
Xu Huihui et al..The effective photocatalysis and antibacterial properties of AgBr/Ag2MoO4@ZnO composites under visible light irradiation.BIOFOULING.2019,第35卷(第7期),第719-731页. *
Yumeng Lian et al..Visible light-driven photocatalytic and enzyme-like properties of novel AgBr/Ag2MoO4 for degradation of pollutants and improved antibacterial application.《Colloids and Surfaces A: Physicochemical and Engineering Aspects》.第639卷文献号128348. *
徐会会.银盐半导体材料的制备及其光催化防污性能的研究.《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》.2019,(第9期),第4.2.1节,摘要. *
王兵.不同形貌钼酸铁和钒酸铈的制备、表征及其模拟过氧化物酶活性研究.《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》.2018,(第1期),全文. *

Also Published As

Publication number Publication date
CN113769768A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
Chen et al. MOF-derived Co3O4@ Co-Fe oxide double-shelled nanocages as multi-functional specific peroxidase-like nanozyme catalysts for chemo/biosensing and dye degradation
Zhu et al. In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide
Wu et al. CeO2/Co3O4 porous nanosheet prepared using rose petal as biotemplate for photo-catalytic degradation of organic contaminants
Zhang et al. Accelerated generation of hydroxyl radical through surface polarization on BiVO4 microtubes for efficient chlortetracycline degradation
Kumar et al. Photocatalytic, nitrite sensing and antibacterial studies of facile bio-synthesized nickel oxide nanoparticles
Sheng et al. Direct electrochemistry of glucose oxidase immobilized on NdPO4 nanoparticles/chitosan composite film on glassy carbon electrodes and its biosensing application
Xia et al. Photocatalytic performance and antibacterial mechanism of Cu/Ag-molybdate powder material
Jiang et al. Carbon nanodots as reductant and stabilizer for one-pot sonochemical synthesis of amorphous carbon-supported silver nanoparticles for electrochemical nonenzymatic H2O2 sensing
Xu et al. Synthesis of KCl-doped lignin carbon dots nanoenzymes for colorimetric sensing glutathione in human serum
CN112588301B (zh) 一种复合金属纳米材料及其制备和应用
Niu et al. Vanadium nitride@ carbon nanofiber composite: Synthesis, cascade enzyme mimics and its sensitive and selective colorimetric sensing of superoxide anion
CN109289884A (zh) 一种银-磷酸银-三氧化钨三元复合纳米光催化材料及其制备方法和应用
CN109060787A (zh) 一种基于纳米酶检测四环素类抗生素的方法
CN105056926A (zh) 一种新型TiO2/WO3包覆的磁性纳米复合粒子及其制备方法和用途
CN113237840A (zh) 类过氧化物纳米酶及其制备方法、活性检测方法及传感器
CN109529892A (zh) 一种纳米带状moa复合光催化剂制备方法
CN113523297A (zh) 一种利用牡丹提取物制备纳米银的方法
Kumar et al. One-pot synthesis of ZnO nanoparticles for nitrite sensing, photocatalytic and antibacterial studies
CN112362646A (zh) 一种基于纳米酶的谷胱甘肽传感器及其制备方法与应用
Rajendran et al. Electrochemical detection of hydrogen peroxide using micro and nanoporous CeO2 catalysts
CN108479772A (zh) 金掺杂纳米氧化锌复合材料及其制备方法与在光催化降解四环素中的应用
CN103769217B (zh) 一种负载型磁性催化剂
CN107748143B (zh) 一种基于荧光聚合物模拟酶的过氧化氢比色传感方法
CN113769768B (zh) 一种双功能复合纳米材料及其制备方法和用途
CN113499773A (zh) 一种纳米氧化锌负载钯纳米粒子的纳米酶及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant