CN113755813A - 一种衬底的预处理方法和金刚石膜的制备方法 - Google Patents

一种衬底的预处理方法和金刚石膜的制备方法 Download PDF

Info

Publication number
CN113755813A
CN113755813A CN202111058715.9A CN202111058715A CN113755813A CN 113755813 A CN113755813 A CN 113755813A CN 202111058715 A CN202111058715 A CN 202111058715A CN 113755813 A CN113755813 A CN 113755813A
Authority
CN
China
Prior art keywords
substrate
diamond
spin
etching
micro powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111058715.9A
Other languages
English (en)
Inventor
冯曙光
于金凤
李光存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Guangzhi Technology Co Ltd
Original Assignee
Anhui Guangzhi Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Guangzhi Technology Co Ltd filed Critical Anhui Guangzhi Technology Co Ltd
Priority to CN202111058715.9A priority Critical patent/CN113755813A/zh
Publication of CN113755813A publication Critical patent/CN113755813A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0236Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明属于金刚石膜制备领域,公开了一种衬底的预处理方法和金刚石膜的制备方法,包括以下步骤:S1.清洗衬底,然后干燥;S2.将步骤S1所得衬底进行酸液湿法刻蚀;S3.制备金刚石微粉浆料,将金刚石微粉浆料均匀地旋涂在步骤S2刻蚀后的衬底上,得旋涂后的衬底;S4.低温烘干步骤S3旋涂后的衬底;S5.将步骤S4低温烘干后的衬底进行等离子体干法刻蚀,得预处理后的衬底,最后使用上述衬底的预处理方法所得预处理后的衬底沉积金刚石。本发明所述方法提高了金刚石形核的速率、密度与质量,克服了机械研磨和普通超声接种的缺点,有利于高品质金刚石膜的制备。

Description

一种衬底的预处理方法和金刚石膜的制备方法
技术领域
本发明属于金刚石膜制备领域,具体涉及衬底的预处理方法、及金刚石膜的制备方法。
背景技术
金刚石独特的晶体结构,决定了其具有众多的优异物理化学性质,如极大的硬度、极好的化学稳定性、极低的摩擦系数、极高的弹性模量等,是一种典型的多功能材料,在能源、催化,传感器、精密加工等诸多高新技术领域有良好的应用前景。然而天然金刚石储量极少且价格昂贵,多为颗粒状,常用于首饰等奢侈品消费领域;高温高压法制备的金刚石杂质较多,且难以掺杂,多为颗粒状,多用于磨料模具领域,难以满足金刚石在高新技术领域的实际需求。
化学气相沉积法(CVD)是制备高品质金刚石膜的有效方法,尤其是微波化学气相沉积法(MPCVD)凭借其等离子体密度大、无电极污染等优势,成为制备高品质金刚石膜的首选方案,然而制备高品质金刚石膜并非易事,其质量受多种因素的影响,尤其是形核的好坏直接决定了金刚石膜质量的高低。对衬底预处理是增强形核密度与质量的最常用、最重要的方法。
现有金刚石膜的制备方法中常采用机械研磨、超声处理等工艺对衬底进行预处理,这些技术的随机性较大,特别是机械研磨,难以保证处理的一致性,导致制备出的金刚石膜质量存在一定的差异性,并且机械研磨易造成衬底的破裂,导致一定的浪费。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种衬底的预处理方法,该方法克服了机械研磨和普通超声接种的缺点,有利于高品质金刚石膜的制备,工艺流程简单,适合大面积工业推广。
本发明另一目的在于提供一种金刚石膜的制备方法。
为实现本发明目的,具体技术方案如下:
一种衬底的预处理方法,包括以下步骤:
S1.清洗衬底,然后干燥;
S2.将步骤S1所得衬底进行酸液湿法刻蚀;
S3.制备金刚石微粉浆料,将金刚石微粉浆料均匀地旋涂在步骤S2刻蚀后的衬底上,得旋涂后的衬底;
S4.低温烘干步骤S3旋涂后的衬底;
S5.将步骤S4低温烘干后的衬底进行等离子体干法刻蚀,得预处理后的衬底,备用。
本发明为提升金刚石形核所需的高自由能位置即缺陷,创造性地通过酸液与衬底发生反应,除去衬底上材料,控制酸的浓度与反应的时间,实现对刻蚀程度的控制,从而在整个衬底上出现较为均匀的缺陷,有效的提升金刚石形核所需的高自由能位置。再对表面有缺陷衬底进行凝胶旋涂、等离子刻蚀等处理,进行接种,浆料旋涂可将金刚石微粉均匀的旋涂在衬底表面,而等离子刻蚀可除去凝胶及增加碳与衬底材料的结合力,该方法将大量金刚石微粉镶入衬底或缺陷中,在形核前期充当形核的晶核,有效的提升了形核速率。
进一步的,所述衬底选用硅、二氧化硅、钛、钼中的一种,优选为硅。
进一步的,步骤S1中,清洗方式为超声清洗,优选所述超声清洗的参数设定为:依次采用丙酮、无水乙醇、去离子水超声清洗3~10min。
进一步的,步骤S1中,清洗后吹干所述衬底即可。
进一步的,步骤S2中,酸液湿法刻蚀后,所得衬底表面粗糙度小于100 nm。
进一步优选的,步骤S2中,所述酸液为氢氟酸、硝酸、盐酸中的一种或多种混合,刻蚀温度为40~150℃,刻蚀2~30min;优选所述酸液的pH值为2~5。
进一步优选所述酸液为氢氟酸和硝酸的混合溶液,其中,硝酸浓度为45~68%,氢氟酸浓度为20~40%,所述混合溶液中氢氟酸和硝酸的体积比为1~5:1。
进一步的,步骤S2至步骤S3之间,清洗、干燥所述衬底。优选所述清洗方式为超声清洗,所述超声清洗的参数设定为:依次采用丙酮、无水乙醇、去离子水超声清洗3~10min。所述所述干燥方式为吹干。
进一步的,步骤S3中,旋涂后的衬底表面,金刚石微粉凝胶的厚度为1~500um。
进一步的,优选所述旋涂工艺具体参数为:800~20000r/min,旋涂时间10~120s。
进一步的,步骤S3中,所述金刚石微粉浆料,金刚石微粉的质量分数为10~50%。
进一步的,步骤S4中,低温烘干工艺为:在40~100℃,保温40~80min进行烘干处理。
进一步的,步骤S5中,所述等离子体干法刻蚀过程为依次对步骤S4低温烘干后的衬底进行氧等离子干法刻蚀、氢等离子干法刻蚀;
进一步优选所述具体步骤为:
S51.氧等离子体干法刻蚀:压强10~16 kPa,温度为200~600℃,刻蚀时间8~60min;
S52.氢等离子体干法刻蚀:压强10~16 kPa,温度为200~900℃,刻蚀时间8~80min。
本发明等离子刻蚀设置氧刻蚀和氢刻蚀的意义在于:氧刻蚀是除去有机物,氢刻蚀是对金刚石微粉刻蚀,降低整个平面的粗糙度及增强碳与硅的结合力。
本发明还提供了一种金刚石膜的制备方法,该方法使用上述衬底的预处理方法所得预处理后的衬底沉积金刚石。
进一步的,所述沉积气氛为氢气和甲烷,所述氢气和甲烷的体积比为100:1.5~5.5,沉积压强为9~21 kPa,沉积温度为800~920℃。
相对现有技术,本发明的有益效果在于:
(1)本发明创新地将等酸蚀、浆料旋涂、等离子体刻蚀等工艺结合起来预处理衬底,在金刚石沉积前,用酸溶液对沉积金刚石膜的衬底进行湿法刻蚀刻蚀,有效地在衬底表面刻蚀出均匀缺陷,尤其是后期的浆料旋涂、等离子体刻蚀又可将大量金刚石微粉镶入衬底表面及缺陷中,根据晶体形核理论,在形核前期,这些镶入的金刚石微粉可充当形核的晶核,高形核速率,并且衬底被刻蚀出的大量缺陷又可提供金刚石形核所需的高自由能位置,极大提升形核位置密度。
(2)在金刚石膜制备过程中,使用本发明预处理后的衬底,在形核时,与处理后的衬底中镶入的金刚石微粉可充当形核的晶核,提高形核速率,缩短了金刚石膜形核的孕育期;而且衬底被刻蚀出的缺陷又可提供金刚石形核所需的高自由能位置,极大提升形核位置密度,极好的形核质量又为高品质金刚石膜的生长提供了良好的前提条件。
(3)本发明所述金刚石膜的制备方法提高了金刚石形核的速率、密度与质量,克服了机械研磨和普通超声接种的缺点,有利于高品质金刚石膜的制备。在金刚石膜沉积的过程中,本发明采用的低碳浓度进一步提升了金刚石膜的质量。
(4)本发明工艺流程简单,适合大面积工业推广。
附图说明
图1为本发明实施例工艺流程图。
图2为本发明实施例1所得金刚石膜拉曼图。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1
本实施例提供一种金刚石膜的制备方法,包括以下步骤:
S1.选用单晶硅为衬底,依次用丙酮、无水乙醇、去离子水对衬底进行超声清洗,然后吹干;
S2.将步骤S1清洗吹干后的硅衬底放进硝酸与氢氟酸的混合溶液中进行酸液湿法刻蚀,混合溶液中硝酸浓度40%,氢氟酸浓度30%,体积比1:1,设置水浴锅温度为50℃,刻蚀10mim;
S2-3.依次用丙酮、无水乙醇、去离子水对湿法刻蚀后的衬底进行超声清洗,然后吹干;
S3. 制备金刚石微粉浆料,称取2.5g w0.25的金刚石微粉放进研钵中,并向研钵中逐渐滴入20g松油醇与5g乙二醇,研磨分散5min,最后放进球磨机进一步分散,球磨机转速为600r/min,时间为30min,分散完成后备用;将金刚石微粉浆料均匀地旋涂在步骤S2-3所得衬底上,旋涂过程中工艺参数设置为10000r/min,旋涂时间60s,旋涂厚度为20um;
S4.将步骤S3旋涂后的衬底放进烘箱中在60℃,保温40min;
S5.将步骤S4烘干后的衬底放进微波等离子体化学气相沉积系统中,首先在氧气100sccm,刻蚀温度350℃,压强11kPa的条件下刻蚀6min,待氧刻蚀完成后,停止微波及通入氧气,待压强变为0.01kPa后,通入200sccm氢气,待压强升至2kPa时,开启微波,在700℃、12kPa下刻蚀20min,得预处理后的衬底;
S6.步骤S5完成后,停止微波及氢气的通入,待压强变为0.01Pa后,通入200sccm氢气、待压强升至2kPa时,开启微波,调节功率及压强,使温度示数为850℃,压强为14kPa,通入4sccm的甲烷,沉积20h,得金刚石膜,所述金刚石膜样品的拉曼如图2所示,从图中可以看出,制备的样品在1332cm-1处有尖锐的金刚石特征峰D峰出现,无明显的非晶碳G峰出现,表明制备的金刚石品质较高。
实施例2
本实施例提供一种金刚石膜的制备方法,包括以下步骤:
S1.选用单晶硅为衬底,依次用丙酮、无水乙醇、去离子水对衬底进行超声清洗,然后吹干;
S2.将步骤S1清洗吹干后的硅衬底放进硝酸与氢氟酸的混合溶液中进行酸液湿法刻蚀,混合溶液中硝酸浓度40%,氢氟酸浓度30%,体积比1:1,设置水浴锅温度为80℃,刻蚀10mim;
S2-3.依次用丙酮、无水乙醇、去离子水对湿法刻蚀后的衬底进行超声清洗,然后吹干;
S3.制备金刚石微粉浆料,称取2.5gw0.25的金刚石微粉放进研钵中,并向研钵中逐渐滴入20g松油醇与5g乙二醇,研磨分散5min,最后放进球磨机进一步分散,球磨机转速为600r/min,时间为30min,分散完成后备用;将金刚石微粉浆料均匀地旋涂在步骤S2-3所得衬底上,旋涂过程中工艺参数设置为10000r/min,旋涂时间60s,旋涂厚度为20um;
S4.将步骤S3旋涂后的衬底放进烘箱中在60℃,保温40min;
S5.将步骤S4烘干后的衬底放进微波等离子体化学气相沉积系统中,首先在氧气100sccm,刻蚀温度350℃,压强11kPa的条件下刻蚀6min,待氧刻蚀完成后,停止微波及通入氧气,待压强变为0.01Pa后,通入200sccm氢气,待压强升至2kPa时,开启微波,在700℃、12kPa下刻蚀20min,得预处理后的衬底;
S6.步骤S5完成后,停止微波及氢气的通入,待压强变为0.01Pa后,通入200sccm氢气、待压强升至2kPa时,开启微波,调节功率及压强,使温度示数为850℃,压强为14kPa,通入4sccm的甲烷,沉积20h,得金刚石膜。
对比例1
本对比例提供一种金刚石膜的制备方法,包括以下步骤:
S1.选用单晶硅为衬底,依次用丙酮、无水乙醇、去离子水对衬底进行超声清洗,然后吹干;
S2.将步骤S1清洗吹干后的硅衬底放进硝酸与氢氟酸的混合溶液中进行酸液湿法刻蚀,混合溶液中硝酸浓度40%,氢氟酸浓度30%,体积比1:1,设置水浴锅温度为10℃,刻蚀10mim;
S2-3.依次用丙酮、无水乙醇、去离子水对湿法刻蚀后的衬底进行超声清洗,然后吹干;
S3.制备金刚石微粉浆料,称取2.5g w0.25的金刚石微粉放进研钵中,并向研钵中逐渐滴入20g松油醇与5g乙二醇,研磨分散5min,最后放进球磨机进一步分散,球磨机转速为600r/min,时间为30min,分散完成后备用;将金刚石微粉凝胶溶液均匀地旋涂在步骤S2-3所得衬底上,旋涂过程中工艺参数设置为10000r/min,旋涂时间60s,旋涂厚度为20um;
S4.将步骤S3旋涂后的衬底放进烘箱中在60℃,保温40min;
S5.将步骤S4烘干后的衬底放进微波等离子体化学气相沉积系统中,首先在氧气100sccm,刻蚀温度350℃,压强11kPa的条件下刻蚀6min,待氧刻蚀完成后,停止微波及通入氧气,待压强变为0.01kPa后,通入200sccm氢气,待压强升至2kPa时,开启微波,在700℃、12kPa下刻蚀20min,得预处理后的衬底;
S6.步骤S5完成后,停止微波及氢气的通入,待压强变为0.01Pa后,通入200sccm氢气、待压强升至2kPa时,开启微波,调节功率及压强,使温度示数为850℃,压强为14kPa,通入4sccm的甲烷,沉积20h,得金刚石膜。
对比例2
本对比例提供一种金刚石膜的制备方法,包括以下步骤:
S1.选用单晶硅为衬底,依次用丙酮、无水乙醇、去离子水对衬底进行超声清洗,然后吹干;
S2.将步骤S1清洗吹干后的硅衬底放进硝酸与氢氟酸的混合溶液中进行酸液湿法刻蚀,混合溶液中硝酸浓度40%,氢氟酸浓度30%,体积比1:1,设置水浴锅温度为80℃,刻蚀2h;
S2-3.依次用丙酮、无水乙醇、去离子水对湿法刻蚀后的衬底进行超声清洗,然后吹干;
S3.制备金刚石微粉浆料,称取2.5g w0.25的金刚石微粉放进研钵中,并向研钵中逐渐滴入20g松油醇与5g乙二醇,研磨分散5min,最后放进球磨机进一步分散,球磨机转速为600r/min,时间为30min,分散完成后备用;将金刚石微粉凝胶溶液均匀地旋涂在步骤S2-3所得衬底上,旋涂过程中工艺参数设置为10000r/min,旋涂时间60s,旋涂厚度为20um;
S4.将步骤S3旋涂后的衬底放进烘箱中在60℃,保温40min;
S5.将步骤S4烘干后的衬底放进微波等离子体化学气相沉积系统中,首先在氧气100sccm,刻蚀温度350℃,压强11kPa的条件下刻蚀6min,待氧刻蚀完成后,停止微波及通入氧气,待压强变为0.01Pa后,通入200sccm氢气,待压强升至2kPa时,开启微波,在700℃、12kPa下刻蚀20min,得预处理后的衬底;
S6.步骤S5完成后,停止微波及氢气的通入,待压强变为0.01Pa后,通入200sccm氢气、待压强升至2kPa时,开启微波,调节功率及压强,使温度示数为850℃,压强为14kPa,通入4sccm的甲烷,沉积20h,得金刚石膜。
对比例3
本对比例提供一种金刚石膜的制备方法,选用单晶硅为衬底,不进行预处理,直接进行沉积:
通入200sccm氢气、待压强升至2kPa时,开启微波,调节功率及压强,使温度示数为850℃,压强为14kPa,通入4sccm的甲烷,沉积20h,得金刚石膜。
测试实施例
本实施例对实施例1/2和对比例1/2/3所得预处理后的衬底和金刚石膜进行测试,所得数据见表1所示。
表1
Figure 104103DEST_PATH_IMAGE001
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的包含范围之内。

Claims (10)

1.一种衬底的预处理方法,其特征在于,包括以下步骤:
S1.清洗衬底,然后干燥;
S2.将步骤S1所得衬底进行酸液湿法刻蚀;
S3.制备金刚石微粉浆料,将金刚石微粉浆料均匀地旋涂在步骤S2刻蚀后的衬底上,得旋涂后的衬底;
S4.低温烘干步骤S3旋涂后的衬底;
S5.将步骤S4低温烘干后的衬底进行等离子体干法刻蚀,得预处理后的衬底,备用。
2.如权利要求1所述的衬底的预处理方法,其特征在于,所述衬底选用硅、二氧化硅、钛中的一种。
3.如权利要求1或2所述的衬底的预处理方法,其特征在于,步骤S2中,酸液湿法刻蚀后,所得衬底表面粗糙度小于100 nm。
4.如权利要求3所述的衬底的预处理方法,其特征在于,步骤S2中,所述酸液为氢氟酸、硝酸、盐酸中的一种或多种混合,刻蚀温度为40~150℃,刻蚀2~30min;优选所述酸液pH值为2~5。
5.如权利要求1所述的衬底的预处理方法,其特征在于,步骤S3中,旋涂后的衬底表面,金刚石微粉凝胶的厚度为1~500um;优选所述旋涂工艺具体参数为:800~20000r/min,旋涂时间10~120s。
6.如权利要求1或5所述的衬底的预处理方法,其特征在于,步骤S3中,
所述金刚石微粉浆料中,金刚石微粉的质量分数为10~50%。
7.如权利要求1所述的衬底的预处理方法,其特征在于,步骤S4中,低温烘干工艺为:在40~100℃,保温40~80min进行烘干处理。
8.如权利要求1所述的衬底的预处理方法,其特征在于,步骤S5中,所述等离子体干法刻蚀过程为依次对步骤S4低温烘干后的衬底进行氧等离子干法刻蚀、氢等离子干法刻蚀;
优选所述具体步骤为:
S51.氧等离子体干法刻蚀:压强10~16 kPa,温度为200~600℃,刻蚀时间8~60min;
S52.氢等离子体干法刻蚀:压强10~16 kPa,温度为200~900℃,刻蚀时间8~80min。
9.一种金刚石膜的制备方法,其特征在于,使用权利要求1~8任一项所述衬底的预处理方法所得预处理后的衬底沉积金刚石。
10.如权利要求9所述的金刚石膜的制备方法,其特征在于,沉积气氛为氢气和甲烷,所述氢气和甲烷的体积比为100:1.5~5.5,沉积压强为9~21 kPa,沉积温度为800~920℃。
CN202111058715.9A 2021-09-10 2021-09-10 一种衬底的预处理方法和金刚石膜的制备方法 Pending CN113755813A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111058715.9A CN113755813A (zh) 2021-09-10 2021-09-10 一种衬底的预处理方法和金刚石膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111058715.9A CN113755813A (zh) 2021-09-10 2021-09-10 一种衬底的预处理方法和金刚石膜的制备方法

Publications (1)

Publication Number Publication Date
CN113755813A true CN113755813A (zh) 2021-12-07

Family

ID=78794655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111058715.9A Pending CN113755813A (zh) 2021-09-10 2021-09-10 一种衬底的预处理方法和金刚石膜的制备方法

Country Status (1)

Country Link
CN (1) CN113755813A (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304461A (en) * 1989-01-10 1994-04-19 Kabushiki Kaisha Kobe Seiko Sho Process for the selective deposition of thin diamond film by gas phase synthesis
US5308661A (en) * 1993-03-03 1994-05-03 The Regents Of The University Of California Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate
US5397428A (en) * 1991-12-20 1995-03-14 The University Of North Carolina At Chapel Hill Nucleation enhancement for chemical vapor deposition of diamond
US5863324A (en) * 1995-08-04 1999-01-26 Kabushiki Kaisha Kobe Seiko Sho Process for producing single crystal diamond film
US5897924A (en) * 1995-06-26 1999-04-27 Board Of Trustees Operating Michigan State University Process for depositing adherent diamond thin films
DE10043587A1 (de) * 1999-09-17 2001-07-05 Max Planck Gesellschaft Verfahren zur Herstellung eines Substrats, nach diesem Verfahren hergestelltes Substrat, Trägerscheibe und Schmuckdiamant
US20140255701A1 (en) * 2013-03-08 2014-09-11 National Tsing Hua University Diamond-like carbon film and method for fabricating the same
KR20150004664A (ko) * 2013-07-03 2015-01-13 제주대학교 산학협력단 다이아몬드 필름 코팅의 전처리 공정 및 이를 이용한 다이아몬드 필름 코팅 방법
CN110690105A (zh) * 2019-10-22 2020-01-14 西安电子科技大学 基于六方氮化硼和氮化铝在金刚石衬底上生长氮化镓的方法
CN111005010A (zh) * 2019-12-18 2020-04-14 昆明理工大学 一种纳米金刚石金属化薄膜的制备方法、产品及应用
CN112430803A (zh) * 2020-11-16 2021-03-02 北京科技大学 一种自支撑超薄金刚石膜的制备方法
CN112647056A (zh) * 2020-12-01 2021-04-13 上海征世科技有限公司 一种基于纳米粒子修饰的金刚石薄膜及其制备方法
CN112899774A (zh) * 2021-01-18 2021-06-04 武汉普迪真空科技有限公司 一种天然金刚石同质外延生长单晶金刚石的方法
CN113257675A (zh) * 2021-05-12 2021-08-13 智程半导体设备科技(昆山)有限公司 一种具有高散热性的半导体器件制备方法及半导体器件

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304461A (en) * 1989-01-10 1994-04-19 Kabushiki Kaisha Kobe Seiko Sho Process for the selective deposition of thin diamond film by gas phase synthesis
US5397428A (en) * 1991-12-20 1995-03-14 The University Of North Carolina At Chapel Hill Nucleation enhancement for chemical vapor deposition of diamond
US5308661A (en) * 1993-03-03 1994-05-03 The Regents Of The University Of California Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate
US5897924A (en) * 1995-06-26 1999-04-27 Board Of Trustees Operating Michigan State University Process for depositing adherent diamond thin films
US5863324A (en) * 1995-08-04 1999-01-26 Kabushiki Kaisha Kobe Seiko Sho Process for producing single crystal diamond film
DE10043587A1 (de) * 1999-09-17 2001-07-05 Max Planck Gesellschaft Verfahren zur Herstellung eines Substrats, nach diesem Verfahren hergestelltes Substrat, Trägerscheibe und Schmuckdiamant
US20140255701A1 (en) * 2013-03-08 2014-09-11 National Tsing Hua University Diamond-like carbon film and method for fabricating the same
KR20150004664A (ko) * 2013-07-03 2015-01-13 제주대학교 산학협력단 다이아몬드 필름 코팅의 전처리 공정 및 이를 이용한 다이아몬드 필름 코팅 방법
CN110690105A (zh) * 2019-10-22 2020-01-14 西安电子科技大学 基于六方氮化硼和氮化铝在金刚石衬底上生长氮化镓的方法
CN111005010A (zh) * 2019-12-18 2020-04-14 昆明理工大学 一种纳米金刚石金属化薄膜的制备方法、产品及应用
CN112430803A (zh) * 2020-11-16 2021-03-02 北京科技大学 一种自支撑超薄金刚石膜的制备方法
CN112647056A (zh) * 2020-12-01 2021-04-13 上海征世科技有限公司 一种基于纳米粒子修饰的金刚石薄膜及其制备方法
CN112899774A (zh) * 2021-01-18 2021-06-04 武汉普迪真空科技有限公司 一种天然金刚石同质外延生长单晶金刚石的方法
CN113257675A (zh) * 2021-05-12 2021-08-13 智程半导体设备科技(昆山)有限公司 一种具有高散热性的半导体器件制备方法及半导体器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(俄罗斯)维克多·索菲尔主编: "《衍射光学元件的计算机设计方法》", 30 April 2007, 天津科学技术出版社, pages: 233 - 234 *

Similar Documents

Publication Publication Date Title
CN111088523B (zh) 一种大尺寸单晶金刚石异质外延生长的方法
CN110106483B (zh) 一种类石墨颗粒复合的类金刚石涂层及其制备方法和应用
CN109811298B (zh) 一种沉积金刚石涂层前硬质合金刀具预处理方法及装置
CN104498894B (zh) 一种多孔金刚石薄膜的制备方法
CN101805891B (zh) 一种低温高速沉积氢化非晶氮化硅薄膜的方法
CN108342716A (zh) 等离子体增强化学气相沉积制备二维材料的系统及方法
CN216514120U (zh) 一种基于mpcvd法制备金刚石膜的基片台
CN112410880B (zh) 自调控生长取向的柔性自支撑单晶Fe3O4薄膜材料的制备、薄膜材料及单晶结构
CN105239032A (zh) 一种用于金刚石涂层梯度硬质合金基体的制备方法
CN111733452B (zh) 柔性自支撑单晶磁性Fe3O4薄膜材料的制备、薄膜材料及应用、单晶结构
CN113755815A (zh) 衬底的预处理方法、及金刚石膜的制备方法
CN113373512A (zh) 基于铱-石墨烯结构化缓冲层的单晶金刚石外延生长方法
CN101834233B (zh) 一种低温高速沉积氢化非晶硅太阳能电池薄膜的方法
CN100432287C (zh) 强磁场下金刚石薄膜的制备方法
CN112779517B (zh) 一种自支撑纳米锥金刚石的制备方法
CN113755813A (zh) 一种衬底的预处理方法和金刚石膜的制备方法
CN113529050A (zh) 一种用于金刚石膜抛光的等离子体刻蚀法及其产品
CN113755814A (zh) 衬底的预处理方法、及该方法在金刚石膜制备过程中的应用
CN111573658A (zh) 一种大面积直接生长的扭角双层石墨烯及其制备方法
CN113755819B (zh) 氮化铝基底上的低粗糙度微晶金刚石薄膜及其制备方法
CN115747752A (zh) 衬底的预处理方法及金刚石膜的制备方法
CN107541714B (zh) 一种大尺寸石墨烯玻璃的快速生长方法
CN115044889A (zh) 一种石墨基座表面用SiC复合涂层及其制备方法
CN113213774B (zh) 石墨烯玻璃及其制备方法
CN113981542B (zh) 一种调控腔体压强制备高质量单晶畴二维材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination