CN113737396A - 一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料及其制备方法 - Google Patents

一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料及其制备方法 Download PDF

Info

Publication number
CN113737396A
CN113737396A CN202111134399.9A CN202111134399A CN113737396A CN 113737396 A CN113737396 A CN 113737396A CN 202111134399 A CN202111134399 A CN 202111134399A CN 113737396 A CN113737396 A CN 113737396A
Authority
CN
China
Prior art keywords
elastomer
solution
nanofiber
composite film
electrostatic spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111134399.9A
Other languages
English (en)
Inventor
李祎
肖淞
吴豪颖
唐炬
潘成
张晓星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202111134399.9A priority Critical patent/CN113737396A/zh
Publication of CN113737396A publication Critical patent/CN113737396A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料及其制备方法。该材料由纳米纤维和弹性体微球通过静电纺丝共混形成,其中纳米纤维为聚偏氟乙烯‑六氟丙烯共聚物(PVDF‑HFP),弹性体微球为苯乙烯‑乙烯‑丁烯‑苯乙烯嵌段共聚物。制备方法如下:(1)将纳米纤维前驱体溶解为可供静电纺丝的溶液A;(2)将弹性体微球溶解为可供静电纺丝的溶液B;(3)采用共轭静电纺丝加工技术,同步进行纳米纤维和弹性体微球的纺制,以得到纳米纤维复合薄膜。本发明制备得到的纳米纤维复合薄膜材料具有厚度可调、透气性、防水性和可拉伸性,同时具有良好的摩擦起电效应,且制备方法简单,适合工业化生产,能够作为透气可拉伸的可穿戴摩擦纳米发电机应用潜力。

Description

一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材 料及其制备方法
技术领域
本发明属于柔性电子领域,特别涉及一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合膜及其制备方法。
背景技术
摩擦纳米发电机能够收集低频机械振动、液体流动、生物运动等形式的机械能,并将其转换为电能,在可穿戴电子领域具有广泛的应用前景。对于可穿戴柔性电子器件而言,具有透气、可拉伸、防水等特性是本领域工程应用所期望的;同时,针对应用于摩擦纳米发电机场景的柔性可拉伸材料,其应当位于摩擦序列表负极性或正极性两端的位置,即表面能足够低,易于摩擦起电。
目前,应用于摩擦纳米发电机的可拉伸薄膜材料主要有硅橡胶(PDMS)、EVA弹性体、脂肪族芳香族无规共聚酯(Ecoflex)、水凝胶等。但上述薄膜材料均为致密结构,透气性能较差,作为可穿戴设备应用时易引发皮肤过敏等问题。同时,EVA等材料亲电性能较差,其构建的摩擦纳米发电机输出电压较低,限制了高性能器件的研发及应用。
发明内容
针对上述技术问题,本发明提供一种用于摩擦纳米发电机的可拉伸纳米纤维复合膜及其制备方法。
本发明提供的技术方案如下:
本发明第一方面提供一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料,由纳米纤维前驱体和弹性体通过共轭静电纺丝加工形成,纳米纤维互相堆叠交织形成网状结构,弹性体形成微球构成纳米纤维交织的结点,其中纳米纤维前驱体为聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP),弹性体为苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)。
进一步,所述PVDF-HFP的分子量(Mn)为130000~200000,其中PVDF的质量分数为70%,HFP质量分数为30%;
进一步,所述SEBS的分子量(Mn)为70000~90000,其中苯乙烯的质量分数为20%,乙烯-丁烯的质量分数为80%。
进一步,所述纳米纤维前驱体溶于溶剂丙酮-二甲基甲酰胺混合溶液中进行静电纺丝。
进一步,所述弹性体溶于溶剂甲苯-二甲基甲酰胺混合溶液进行微球纺制。
本发明第二方面提供第一方面所述的纳米纤维复合薄膜材料的制备方法,包括以下步骤:
(1)将纳米纤维前驱体溶解为可供静电纺丝的溶液A;
(2)将弹性体溶解为可供静电纺丝的溶液B;
(3)采用共轭静电纺丝加工技术,同步进行纳米纤维纺丝和弹性体微球纺制,以得到纳米纤维复合薄膜。
进一步,所述纳米纤维前驱体溶于溶剂丙酮-二甲基甲酰胺混合溶液,所述弹性体溶于溶剂甲苯-二甲基甲酰胺混合溶液。所述溶剂根据聚合物的溶解性择优选择。
更进一步,所述纳米纤维前驱体占溶液A的质量百分比为15%-18%,弹性体占溶液B的质量百分比为12%-15%。
进一步,所述纳米纤维前驱体占纳米纤维前驱体与弹性体微球总质量的30%-50%。
进一步,所述共轭静电纺丝设备工作电压为负极性-2kV,正极性20kV。
进一步,所述纳米纤维复合薄膜加工时间与最终膜厚度成正比,优选4小时。
进一步,共轭静电纺丝时,纳米纤维和纳米纤维的出丝口正面相对,距离择优选择;出丝口距离收集滚筒为15-20cm。
本发明提供的制备方法能够显著提升纳米纤维机械稳定性、拉伸性和疏水性,其机理如下:共轭静电纺丝过程中,嵌段共聚物弹性体喷射产生的微米/纳米小球与聚合物电纺溶液产生的纳米纤维共同参与堆叠过程,且弹性体微米/纳米小球能够自组装覆盖于聚合物纳米纤维的结点,进而牢固焊接纤维结点,提升纤维薄膜的机械稳定性,避免纤维物理堆积所引发的脱落;另外,弹性体小球具有弹力,能够在拉伸过程中协助纳米纤维吸收机械应变,限制拉伸过程中纤维结点的滑动,改善纳米纤维薄膜拉伸性及恢复性;弹性体小球也增加了纳米纤维薄膜的粗糙度,进而提升了整个薄膜的疏水性能。
本发明的有益效果:
1、本发明制备得到的纳米纤维复合薄膜材料具有厚度可控、透气性、防水性和可拉伸性,同时具有良好的摩擦起电效应;
2、本发明制备得到的纳米纤维复合薄膜材料,弹性体嵌入到了PVDF-HFP纳米纤维中,形成了层状复合结构,弹性体微球能够自组装于纳米纤维的结点处,实现纤维结点的自焊接并抑制拉伸时纤维间的滑动,从而保证了纳米纤维复合薄膜材料的拉伸-回复性能;同时增加了表面粗糙度,提升了复合薄膜材料的疏水性。
3、本发明制备得到的纳米纤维复合薄膜加工方法简单,适合工业化生产。
附图说明
图1为共轭静电纺丝过程示意图,其中PVDF-HFP溶液和SEBS溶液所连接注射器的针尖面对面放置;
图2为实施例1制备的纳米纤维复合薄膜材料拉伸测试图;
图3为实施例3制备的纳米纤维复合薄膜材料拉伸测试图;
图4为不同PVDF-HFP含量的纳米纤维复合薄膜的应力应变曲线,其中PVDF-HFP为仅使用PVDF-HFP制备的薄膜,3-7为30%PVDF-HFP-70%SEBS制备的薄膜。
图5为实施例1制备的纳米纤维复合薄膜材料气动稳定性测试;
图6为实施例1制备的纳米纤维复合薄膜微观形貌图;
图7为实施例3制备的纳米纤维复合薄膜微观形貌图;
图8为不同PVDF-HFP含量的纳米纤维复合薄膜的输出性能,其中横坐标为PVDF-HFP与SEBS的质量比,两者质量总和为10质量份,纵坐标为电压;
具体实施方式
下面通过实施例进一步阐述本发明,本发明的内容完全不限于此。
实施例1
制备纳米纤维复合薄膜,步骤如下:
1)称取1.5g PVDF-HFP聚合物颗粒,加入20ml玻璃瓶中;再加入10ml丙酮-二甲基甲酰胺混合溶液,其中丙酮与二甲基甲酰胺的体积比为6:4,采用磁力搅拌子搅拌4h得到电纺溶液A;
2)称取1.2g SEBS弹性体颗粒,加入20ml玻璃瓶中;再加入10ml甲苯-二甲基甲酰胺混合溶液,其中甲苯与二甲基甲酰胺的体积比为85:15,采用磁力搅拌子搅拌4h得到电纺溶液B;
3)将溶液A和溶液B分别装入两个注射器,连接静电纺丝机,调节静电纺丝参数(电压为-2kV,20kV)开展共轭静电纺丝,其中溶液A的推出速度为0.7ml/h,溶液B的推出速度为2ml/h,得到纳米纤维复合薄膜材料。
实施例2
制备纳米纤维复合薄膜,步骤如下:
1)称取1.5g PVDF-HFP聚合物颗粒,加入20ml玻璃瓶中;再加入10ml丙酮-二甲基甲酰胺混合溶液,其中丙酮与二甲基甲酰胺的体积比为6:4,采用磁力搅拌子搅拌4h得到电纺溶液A;
2)称取1.2g SEBS弹性体颗粒,加入20ml玻璃瓶中;再加入10ml甲苯-二甲基甲酰胺混合溶液,其中甲苯与二甲基甲酰胺的体积比为85:15,采用磁力搅拌子搅拌4h得到电纺溶液B;
3)将溶液A和溶液B分别装入两个注射器,连接静电纺丝机,调节静电纺丝参数(电压为-2kV,20kV)开展共轭静电纺丝,其中溶液A的推出速度为1.1ml/h,溶液B的推出速度为2ml/h,得到纳米纤维复合薄膜材料。
实施例3
制备纳米纤维复合薄膜,步骤如下:
1)称取1.5g PVDF-HFP聚合物颗粒,加入20ml玻璃瓶中;再加入10ml丙酮-二甲基甲酰胺混合溶液,其中丙酮与二甲基甲酰胺的体积比为6:4,采用磁力搅拌子搅拌4h得到电纺溶液A;
2)称取1.2g SEBS弹性体颗粒,加入20ml玻璃瓶中;再加入10ml甲苯-二甲基甲酰胺混合溶液,其中甲苯与二甲基甲酰胺的体积比为15:85,采用磁力搅拌子搅拌4h得到电纺溶液B;
3)将溶液A和溶液B分别装入两个注射器,连接静电纺丝机,调节静电纺丝参数(电压为-2kV,20kV)开展共轭静电纺丝,其中溶液A的推出速度为1.6ml/h,溶液B的推出速度为2ml/h,得到纳米纤维复合薄膜材料。
实施例4
性能和表观测试:
(1)拉伸测试:
图2和图3为实施例1和实施例3制备的纳米纤维复合薄膜材料的拉伸测试结果。从图2、图3中可以看出薄膜宏观颜色为白色,拉伸后能保持良好的机械结构,并不发生断裂。
图4给出了实施例1得到的复合纤维薄膜与传统PVDF-HFP电纺薄膜的应力应变曲线,可以看到传统PVDF-HFP薄膜的断裂伸长率为270%;而本实施例1得到的复合薄膜断裂伸长率达到490%,显著优于传统PVDF-HFP电纺薄膜。
(2)机械结构稳定性测试
图5给出了实施例1制备的纳米纤维复合薄膜材料和传统PVDF-HFP薄膜材料的机械结构稳定性测试结果,可以看到传统PVDF-HFP纤维薄膜在高速气流的吹动下会出现明显的脱层;而经本发明制备的PVDF-HFP/SEBS薄膜在高速气流吹动下能够保持良好的机械结构稳定性。
(3)表观测试:
图6和图7为实施例1、实施例3制备的纳米纤维复合薄膜材料的微观形貌图。从图中可以看到SEBS弹性体嵌入了PVDF-HFP纳米纤维,形成了复合结构。
(4)输出性能测试:
图8为实施例1-3制备的纳米纤维复合薄膜以及纯SEBS弹性体薄膜在相同机械能摩擦下的输出电压。从图8可以看出,随着复合材料中PVDF-HFP含量由30%逐步增加至50%,薄膜的摩擦输出电压从75V增加至约130V,接近纯PVDF-HFP的140V。在PVDF-HFP含量为30%(3:7)和40%(4:6)时,摩擦纳米发电机的输出电压相比较于SEBS弹性体薄膜提升近10倍。
以上所述,仅为本发明较佳的具体实施方式,但本发明保护的范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所做的任何修改,等同替换和改进等,均应包含在发明的保护范围之内。

Claims (10)

1.一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料及其制备方法,其特征在于:
由纳米纤维前驱体溶液和弹性体溶液通过共轭静电纺丝加工形成,纳米纤维互相堆叠交织形成网状结构,弹性体形成微球并实现纳米纤维交织结点的自焊接,其中纳米纤维前驱体为聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP),弹性体为苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物。
2.根据权利要求1所述的纤维复合薄膜材料,其特征在于:所述PVDF-HFP的分子量为130000~200000,其中PVDF的质量分数为70%,HFP质量分数为30%。
3.根据权利要求1所述的纤维复合薄膜材料,其特征在于:所述苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物分子量为70000~90000,其中苯乙烯的质量分数为20%,乙烯-丁烯的质量分数为80%。
4.根据权利要求1所述的纤维复合薄膜材料,其特征在于:所述纳米纤维前驱体溶于溶剂丙酮-二甲基甲酰胺混合溶液中进行纳米纤维纺丝;所述弹性体溶于溶剂甲苯-二甲基甲酰胺混合溶液进行弹性体微球纺制。
5.权利要求1-4任一项所述的纳米纤维复合薄膜材料的制备方法,其特征在于,包括以下步骤:
(1)将纳米纤维前驱体溶解为可供静电纺丝的溶液A;
(2)将弹性体溶解为可供静电纺丝的溶液B;
(3)采用共轭静电纺丝加工技术,同步进行纳米纤维和弹性体微球纺制,以得到纳米纤维复合薄膜。
6.根据权利要求5所述的方法,其特征在于:所述纳米纤维前驱体溶于溶剂丙酮-二甲基甲酰胺混合溶液中进行纳米纤维纺丝,所述弹性体溶于溶剂甲苯-二甲基甲酰胺混合溶液进行弹性体微球纺制。
7.根据权利要求6所述的方法,其特征在于:所述纳米纤维前驱体占溶液A的质量百分比为15%-18%,弹性体占溶液B的质量百分比为12%-15%。
8.根据权利要求5所述的方法,其特征在于:所述纳米纤维前驱体占纳米纤维前驱体与弹性体微球总质量的30%-50%。
9.根据权利要求5所述的方法,其特征在于:所述共轭静电纺丝设备工作电压为负极性-2kV,正极性20kV。
10.根据权利要求5所述的方法,其特征在于:所述纳米纤维前驱体占溶液A和弹性体溶液B通过推进泵控制流速喷丝,其中溶液A和溶液B的流速可根据需求设置。
CN202111134399.9A 2021-09-27 2021-09-27 一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料及其制备方法 Pending CN113737396A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111134399.9A CN113737396A (zh) 2021-09-27 2021-09-27 一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111134399.9A CN113737396A (zh) 2021-09-27 2021-09-27 一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113737396A true CN113737396A (zh) 2021-12-03

Family

ID=78741318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111134399.9A Pending CN113737396A (zh) 2021-09-27 2021-09-27 一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113737396A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337353A (zh) * 2021-12-31 2022-04-12 武汉大学 一种管状单电极结构摩擦纳米发电机及其制备方法、测试性能装置及方法
CN115262088A (zh) * 2022-07-18 2022-11-01 河南师范大学 一种用于提高压电/摩擦电输出性能的pvdf复合薄膜的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170832A (ja) * 2009-01-22 2010-08-05 Nissan Motor Co Ltd ポリマーブレンドフィルムを含む電極
US20110151737A1 (en) * 2009-12-17 2011-06-23 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
CN102380980A (zh) * 2011-07-27 2012-03-21 江南大学 一种自净化纺织品及其加工方法
CN105908363A (zh) * 2016-05-12 2016-08-31 华南农业大学 一种静电喷射复合薄膜及其制备方法与应用
CN107475902A (zh) * 2017-08-28 2017-12-15 天津工业大学 一种超疏水纤维膜的制备方法
CN107502958A (zh) * 2017-07-10 2017-12-22 东华大学 基于摩擦纳米发电机的透气型柔性压力传感器及其制备
CN110755669A (zh) * 2019-10-31 2020-02-07 河南亚都实业有限公司 一种医用胶原创面修复膜
US20200054975A1 (en) * 2018-08-20 2020-02-20 Hollingsworth & Vose Company Filter media comprising binder components
CN112778559A (zh) * 2020-11-16 2021-05-11 中国科学院化学研究所 一种兼具结构稳定性和高饱和度的结构色薄膜及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170832A (ja) * 2009-01-22 2010-08-05 Nissan Motor Co Ltd ポリマーブレンドフィルムを含む電極
US20110151737A1 (en) * 2009-12-17 2011-06-23 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
CN102380980A (zh) * 2011-07-27 2012-03-21 江南大学 一种自净化纺织品及其加工方法
CN105908363A (zh) * 2016-05-12 2016-08-31 华南农业大学 一种静电喷射复合薄膜及其制备方法与应用
CN107502958A (zh) * 2017-07-10 2017-12-22 东华大学 基于摩擦纳米发电机的透气型柔性压力传感器及其制备
CN107475902A (zh) * 2017-08-28 2017-12-15 天津工业大学 一种超疏水纤维膜的制备方法
US20200054975A1 (en) * 2018-08-20 2020-02-20 Hollingsworth & Vose Company Filter media comprising binder components
CN110755669A (zh) * 2019-10-31 2020-02-07 河南亚都实业有限公司 一种医用胶原创面修复膜
CN112778559A (zh) * 2020-11-16 2021-05-11 中国科学院化学研究所 一种兼具结构稳定性和高饱和度的结构色薄膜及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YILI等: ""Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator"", 《NANO ENERGY》 *
孟永德: "《无机非金属材料综合实验》", 暨南大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337353A (zh) * 2021-12-31 2022-04-12 武汉大学 一种管状单电极结构摩擦纳米发电机及其制备方法、测试性能装置及方法
CN115262088A (zh) * 2022-07-18 2022-11-01 河南师范大学 一种用于提高压电/摩擦电输出性能的pvdf复合薄膜的制备方法
CN115262088B (zh) * 2022-07-18 2023-05-23 河南师范大学 一种用于提高压电/摩擦电输出性能的pvdf复合薄膜的制备方法

Similar Documents

Publication Publication Date Title
CN113737396A (zh) 一种用于摩擦纳米发电机的透气可拉伸纳米纤维复合薄膜材料及其制备方法
Yue et al. In-situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application
Pawlowski et al. Electrospinning of a micro-air vehicle wing skin
Zhang et al. Nanoengineered electrospun fibers and their biomedical applications: a review
Ju et al. Preparation of elastomeric tree-like nanofiber membranes using thermoplastic polyurethane by one-step electrospinning
US20070082197A1 (en) Electrospun carbon nanotube reinforced silk fibers
Liu et al. Simulation of electrospun nanofibre deposition on stationary and moving substrates
CN106362206B (zh) 一种高强度高亲水性氧化石墨烯-p34hb纳米纤维支架及其制备方法和应用
CN104746239B (zh) 一种软相高分子/聚酰亚胺梯度型复合纳米纤维膜及其制备方法
Ren PAN nanofibers and nanofiber reinforced composites
Chai et al. Robust, breathable, and chemical-resistant polytetrafluoroethylene (PTFE) films achieved by novel in-situ fibrillation strategy for high-performance triboelectric nanogenerators
CN107700075B (zh) 一种具有自交联结构的静电纺丝纤维膜的制备方法
Lee et al. Biocomposites electrospun with poly (ε-caprolactone) and silk fibroin powder for biomedical applications
Chen et al. Competitive effects of centrifugal force and electric field force on centrifugal electrospinning
Tanaka et al. Effect of humidity on diameter of polyamide 6 nanofiber in electrospinning process
Guo et al. Fabrication of high-performance piezoelectric composite from commingled waste plastic films via a novel physicomechanical technology
Han et al. Preparation and Characterization of Core—Shell Structured Nanofibers by Coaxial Electrospinning
Lei et al. Controllable diameter of electrospun nanofibers based on the velocity of whipping jets for high-efficiency air filtration
CN105506862B (zh) 三明治型麦饭石/聚合物复合薄膜的制备方法
JP2022032977A (ja) ポリマー繊維を生産するためのデバイス及び方法、ならびにそのポリマー繊維の使用
Hamzah et al. Physical Characterisation of Electrospun PVDF/PVA Nanofibre Membrane as a Potential Artificial Soft Tissue Scaffold Application.
Lee et al. Preparation of chitosan microfibres using electro-wet-spinning and their electroactuation properties
Attari et al. Mechanical characterization of Nanocelluloses/Cellulose acetate composite Nanofibrous membranes
Han et al. The effects of electrospinning parameters on coaxial polyacrylonitrile/polyurethane nanofibers: Morphology and water vapour transmission rate
Safitri et al. The morphology of polyvinyl alcohol/polyvinylpyrrolidone nanoparticles and nanofibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211203