CN113731491A - 一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法和应用 - Google Patents

一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法和应用 Download PDF

Info

Publication number
CN113731491A
CN113731491A CN202111201208.6A CN202111201208A CN113731491A CN 113731491 A CN113731491 A CN 113731491A CN 202111201208 A CN202111201208 A CN 202111201208A CN 113731491 A CN113731491 A CN 113731491A
Authority
CN
China
Prior art keywords
pdvb
sio
janus
enzyme
composite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111201208.6A
Other languages
English (en)
Other versions
CN113731491B (zh
Inventor
孟庆博
于戏波
宋溪明
尤元祥
毕云鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202111201208.6A priority Critical patent/CN113731491B/zh
Publication of CN113731491A publication Critical patent/CN113731491A/zh
Application granted granted Critical
Publication of CN113731491B publication Critical patent/CN113731491B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • B01J31/0295Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate by covalent attachment to the substrate, e.g. silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法和应用。首先以雪人形状的PDVB/PS@SiO2Janus粒子为载体,采用1‑乙烯基‑3‑丁基咪唑六氟磷酸盐离子液体对PDVB端进行聚离子液体化修饰,利用咪唑环的正电荷静电吸引带负电荷的AuCl4 前驱体,最后加入硼氢化钠还原得负载Au纳米粒子的仿酶催化剂。本发明利用Janus粒子两端独特的亲疏水性结构有效稳定Pickering乳液体系,增大界面的接触面积,减小传质速率从而提高催化效率,发现Pickering乳液体系较比其他体系催化效果更明显,降解率更高,可以方便有效的降解甲基橙染料。

Description

一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备 方法和应用
技术领域
本发明涉及一种雪人形Janus复合粒子负载的仿酶催化剂的制备方法和应用。
背景技术
天然的过氧化物酶(HRP)是种绿色催化剂,反应条件温和,用于很多重要的化学反应中,特别是对过氧化氢具有高效的活化作用,可用于催化和生物等领域。但HRP酶本身存在一些固有缺点,例如:提取成本高、稳定性差、催化反应条件苛刻和酶活性易降低等问题,因此开发人工模拟酶来代替HRP等天然酶具有重要的意义。
相关领域研究人员分析HRP是以铁卟啉结构为催化中心,是以对底物有亲和性和络合作用的氨基酸多肽基团作为结合部位进行催化。目前,针对其结构与催化性能的对应关系,对过氧化物酶的酶模拟研究工作主要是对HRP的催化部位的模拟。例如,自然界中也广泛存在着以金属卟啉类化合物为辅基的天然活性物质或酶蛋白,如血红蛋白、细胞色素、和漆酶等也可以催化活化H2O2表现出过氧化物酶的催化特性。除此之外前人发现很多的纳米材料也具有仿酶的特性。相对于天然酶来说,纳米酶材料具有催化活性良好,容易制备,活性易于调控,对极端的反应环境和底物浓度有更强的承受能力等优点。例如,2007年Yan课题组首次发现氧化铁纳米颗粒具有类似过氧化物模拟酶的催化活性。其催化特性与天然过氧化物酶一致,可与TMB底物发生显色反应。Qu课题组发现碳材料,如单壁碳纳米管也具有内在的过氧化物模拟酶催化活性。后来人们又发现金、银等金属纳米材料同样具有过氧化物模拟酶活性。
传统的双相催化反应体系具有传质速率慢,催化效率低等特点。而Pickering乳液体系能增大界面的接触面积,减小传质速率从而提高催化效率。Janus粒子是一种在组成和结构上具有不对称性的特殊材料,两端独特的亲疏水性结构可以有效稳定Pickering乳液,提高其催化效果。
发明内容
本发明的目的是利用Janus复合粒子独特的基团实现对仿酶催化剂的负载,同时在Pickering乳液体系中实现对甲基橙染料的降解。
本发明采用的技术方案是:一种基于雪人形Janus复合粒子为载体的仿酶催化剂,所述仿酶催化剂是以雪人形状的PDVB/PS@SiO2 Janus粒子为载体,采用1-乙烯基-3-丁基咪唑六氟磷酸盐离子液体对PDVB端进行聚离子液体化修饰,利用咪唑环的正电荷静电吸引带负电荷的AuCl4 -前驱体,最后加入硼氢化钠还原,得到负载Au纳米粒子的仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子。
一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法,包括如下步骤:
1)先将PDVB/PS@SiO2 Janus粒子在N,N-二甲基甲酰胺中浸泡12h,然后将浸泡后的PDVB/PS@SiO2 Janus粒子超声分散于无水乙醇中,得PDVB/PS@SiO2分散液;
2)将1-乙烯基-3-丁基咪唑六氟磷酸盐离子液体分散在无水乙醇中,并加入AIBN引发剂,体系在70℃下预热5min,形成预聚物的活性种溶液,随后将步骤1)得到的PDVB/PS@SiO2分散液逐滴加入到活性种溶液中,70℃下恒温反应10h,得到PILs-PDVB/PS@SiO2 Janus复合粒子;
3)将步骤2)得到的PILs-PDVB/PS@SiO2 Janus复合粒子分散在水中,室温搅拌2h,加入HAuCl4溶液,室温反应12h后,加入硼氢化钠水溶液,在室温下反应5h,得到仿酶催化剂,即负载Au纳米粒子的Au-PILs-PDVB/PS@SiO2 Janus复合粒子。
进一步的,上述的制备方法,步骤1)中,所述PDVB/PS@SiO2 Janus粒子的制备方法包括如下步骤:
1)取聚苯乙烯中空球分散在水中得聚苯乙烯水溶液,调节聚苯乙烯水溶液的pH为8-10,在60-70℃下搅拌形成种子乳液;
2)再将3-(甲基丙烯酰氧)丙基三甲氧基硅烷、1.0wt%的过硫酸钾水溶液和十二烷基硫酸钠超声分散在水中,使之形成单体乳液;
3)随后将单体乳液缓慢滴加进种子乳液中,于70-80℃下进行反应;反应结束后,离心,将离心所得的沉淀用水、乙醇洗涤后,离心分离,并真空干燥12-14h后,得到雪人形状的PDVB/PS@SiO2 Janus粒子。
进一步的,上述的制备方法,步骤2)中,AIBN引发剂与PDVB/PS@SiO2和离子液体总量的质量比为1:100。
进一步的,上述的制备方法,步骤3)中,按体积比,HAuCl4溶液:硼氢化钠水溶液=1:5。
本发明提供的基于雪人形Janus复合粒子为载体的仿酶催化剂在催化降解有机污染物中的应用。
进一步的,将仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子溶于水后加入甲苯,进行涡混振荡后形成Pickering乳液,用于催化降解有机污染物。
进一步的,方法如下:将仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子溶于有机污染物溶液后加入甲苯进行涡混振荡形成Pickering乳液,然后加入过氧化氢,进行催化降解。
进一步的,所述有机污染物为甲基橙。
本发明的有益效果是:
1、由于天然的HRP酶易变性失活,价格昂贵,而且传统的双相反应体系具有传质速率慢,催化效率低等缺点。本发明利用Janus粒子两端独特的亲疏水性结构,负载Au纳米粒子,制得的仿酶催化剂具有仿HRP酶活性,制备方便,可以有效稳定Pickering乳液体系,能增大界面的接触面积,提高传质速率从而提高催化效率。
2、本发明采用Janus复合粒子负载的仿酶催化剂来稳定Pickering乳液用于甲基橙染料的降解。发现Pickering乳液体系较比其他体系催化效果更明显,降解率更高,因此合成的这种Janus复合粒子负载的仿酶催化剂的仿酶催化效果显著,可以方便有效的降解甲基橙染料。
3、本发明采用以Janus复合粒子为载体实现对金纳米粒子的负载,使其作为仿酶催化剂用于催化降解甲基橙染料。
4、本发明利用Janus复合粒子独特的基团,在实现对仿酶催化剂负载的同时,还可以有效稳定Pickering乳液,使Janus复合粒子既作为乳化剂,又作为仿酶催化剂,用于催化降解甲基橙染料。
5、本发明制备的Janus复合粒子负载型仿酶催化剂具有高催化活性,是一种便捷、环境友好型的催化剂。
附图说明
图1a为聚离子液体改性前PDVB/PS@SiO2 Janus粒子的XPS谱图。
图1b为聚离子液体改性后PILs-PDVB/PS@SiO2 Janus复合粒子的XPS谱图。
图2为聚离子液体改性前后Janus复合粒子的Zeta电位图。
图3a为PILs-PDVB/PS@SiO2 Janus复合粒子的透射电镜TEM图。
图3b为仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子的透射电镜TEM图。
图4为仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子的XRD图。
图5为Au-PILs-PDVB/PS@SiO2 Janus复合粒子乳化2mL水和1mL甲苯的实物图以及显微镜图。
图6为在不同过氧化氢含量下甲基橙溶液吸光度变化图。
图7为在不同催化剂含量下甲基橙溶液吸光度变化图。
图8为在不同体系下催化降解甲基橙溶液吸光度变化图。
图9为不同体系下降解甲基橙溶液的降解率。
具体实施方式
实施例1基于雪人形Janus复合粒子为载体的仿酶催化剂(一)PDVB/PS@SiO2Janus粒子的制备
取13g聚苯乙烯中空球分散在160g水中,得聚苯乙烯水溶液,调节聚苯乙烯水溶液的pH为8-10,在60-70℃下搅拌形成种子乳液。
再将0.6g 3-(甲基丙烯酰氧)丙基三甲氧基硅烷、0.6g 1.0wt%的过硫酸钾水溶液和0.02g十二烷基硫酸钠超声分散在50mL水中,使之形成单体乳液。
随后将单体乳液缓慢滴加进种子乳液中,于70-80℃下进行反应24h;反应结束后,离心,将离心所得的沉淀用水、乙醇洗涤后,离心分离,并真空干燥12-14h后,得到白色粉末,即雪人形状的PDVB/PS@SiO2 Janus粒子。
(二)PDVB/PS@SiO2分散液制备
先将1g的PDVB/PS@SiO2 Janus粒子在80mL的N,N-二甲基甲酰胺(DMF)中浸泡12h,然后离心,用DMF溶液洗涤多次后冷冻干燥成粉末。目的是除去部分线性PS结构,减小聚合物链段的位阻效应,提高PDVB残余双键反应活性,然后将0.1g浸泡后的PDVB/PS@SiO2Janus粒子超声分散于10g的无水乙醇中,得PDVB/PS@SiO2分散液。
(三)聚离子液体化Janus复合粒子的制备
将0.1g的1-乙烯基-3-丁基咪唑六氟磷酸盐离子液体分散在10g的无水乙醇中,加入0.002g的AIBN引发剂,整个体系在70℃预热5min,形成预聚物的活性种溶液,将PDVB/PS@SiO2分散液逐滴加入到活性种溶液中,70℃恒温反应10h后离心。水洗数次后,冷冻干燥,得PILs-PDVB/PS@SiO2 Janus复合粒子。
(四)仿酶催化剂的制备
将0.1g的PILs-PDVB/PS@SiO2 Janus复合粒子分散在20mL水中,室温搅拌2h,加入10mL的HAuCl4溶液,室温反应12h后,加入50mL的硼氢化钠水溶液,在25℃下反应5h,离心,水洗数次后,冷冻干燥,得到仿酶催化剂,即,Au-PILs-PDVB/PS@SiO2 Janus复合粒子。
(五)检测
图1a为聚离子液体改性前PDVB/PS@SiO2 Janus粒子的XPS谱图。图1b为聚离子液体改性后PILs-PDVB/PS@SiO2 Janus复合粒子的XPS谱图。从图1a可以看出,在154eV,103eV,285eV,531eV处出现Si2s,Si2p,C1s,O1s的轨道特征峰,说明粒子为PDVB/PS@SiO2Janus粒子。而从图1b看出离子液体改性后的粒子在136eV,401eV,687eV处又新出现P2p,N1s,F1s的轨道特征峰,说明离子液体被成功修饰在Janus粒子上。
图2为聚离子液体改性前后Janus复合粒子的Zeta电位图。从图2可以看出,改性前Zeta电位值为-23.5mv,这是因为SiO2端表面有大量的羟基基团,改性后Zeta电位值变成11.8mv,这是因为离子液体的咪唑基团骨架带正电,导致电位上升,因此说明离子液体被成功修饰在Janus粒子上。
图3a为PILs-PDVB/PS@SiO2 Janus复合粒子的透射电镜TEM图。图3b为仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子的透射电镜TEM图。如图3a看出,PILs-PDVB/PS@SiO2Janus复合粒子呈雪人形状,大头为PILs-PDVB/PS端,小头为SiO2端。从图3b看出,Au纳米粒子大部分被负载到PILs-PDVB/PS端,分散的比较均匀,没有发生团聚现象。
图4为仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子的XRD图。从图4中看出,Au-PILs-PDVB/PS@SiO2 Janus复合粒子在(111),(200),(220),(311)处与Au的标准卡片相对应,说明Janus复合粒子成功负载Au纳米粒子。
实施例2基于雪人形Janus复合粒子为载体的仿酶催化剂的乳化性能
为了考察制备的基于雪人形Janus复合粒子为载体的仿酶催化剂的乳化性能,取3mg的Au-PILs-PDVB/PS@SiO2 Janus复合粒子溶于2mL水后加入1mL甲苯,进行涡混振荡后形成Pickering乳液,制样后采用光学显微镜进行观察。
图5为Au-PILs-PDVB/PS@SiO2 Janus复合粒子乳化2mL水和1mL甲苯的实物图以及光学显微镜图。如图5所示,从实物图中看出乳液形成水包甲苯的状态,从显微镜图看出乳液粒径均匀,说明乳化效果良好。
实施例3基于雪人形Janus复合粒子为载体的仿酶催化剂催化降解甲基橙溶液的研究
首先配置3-15ppm不同浓度的甲基橙溶液,测量464nm处的吸光度,根据甲基橙溶液的浓度以及吸光度制作甲基橙溶液的标准曲线。
(一)不同过氧化氢的量对体系中催化降解甲基橙溶液的影响
用醋酸钠和醋酸配置pH=4的缓冲溶液备用。将3mg仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子溶于4mL浓度为15mg/L的甲基橙的pH=4的醋酸钠缓冲溶液后,分别加入10μL到50μL的不同过氧化氢量,随后加入2mL甲苯进行涡混振荡后形成Pickering乳液,并在室温磁力搅拌8h,离心取水层在464nm处观察吸光度的变化,然后通过绘制不同过氧化氢量下甲基橙在464nm处吸光度的变化图来探讨不同过氧化氢的量对体系中催化降解甲基橙溶液的影响。
图6为在不同过氧化氢含量下甲基橙溶液吸光度变化图。从图6中看出,随着过氧化氢含量从10μL到40μL不断变化时,甲基橙溶液吸光度逐渐变小,说明甲基橙被催化降解效果变强。但是当过氧化氢含量变为50μL时,甲基橙溶液吸光度反而变大,这是由于过氧化氢在仿酶催化剂下生成羟基自由基可以用于降解甲基橙溶液,而过多的过氧化氢会使羟基自由基淬灭反而降解效果不好。因此40μL的过氧化氢含量最佳。
(二)不同仿酶催化剂含量对体系中催化降解甲基橙溶液的影响
分别将3mg到15mg的仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子溶于4mL浓度为15mg/L的甲基橙的pH=4的醋酸钠缓冲溶液后,加入2mL甲苯进行涡混振荡后形成Pickering乳液,加入40μL过氧化氢,进行室温磁力搅拌8h,离心取水层在464nm处观察吸光度的变化,来探讨不同仿酶催化剂的量对体系中催化降解甲基橙溶液的影响。
图7为在不同仿酶催化剂含量下甲基橙溶液吸光度变化图,从图7中看出,随着仿酶催化剂含量不断增加,甲基橙溶液吸光度逐渐变小,说明甲基橙被催化降解效果不断提高。当仿酶催化剂含量为15mg时,甲基橙的吸光度达到0.05,并且不会随催化剂含量的进一步增加改变,因此15mg的仿酶催化剂含量最佳。
(三)不同体系下对体系中催化降解甲基橙溶液的影响
于4mL浓度为(15mg/L)的甲基橙的pH=4的醋酸钠缓冲溶液中,通过
(1)只添加40μL过氧化氢;
(2)只添加15mg的仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子;
(3)添加Au-PILs-PDVB/PS@SiO2 Janus复合粒子和过氧化氢的水相;即,直接添加15mg的催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子和40μL的过氧化氢的水溶液;
(4)添加Au-PILs-PDVB/PS@SiO2 Janus复合粒子和过氧化氢的乳液;即,添加15mg的Au-PILs-PDVB/PS@SiO2 Janus复合粒子后,加入(2)mL甲苯,形成稳定的Pickering乳液后加入40μL的过氧化氢的水溶液。
将几个体系进行室温磁力搅拌8h后,离心取水层在464nm处观察吸光度的变化。探讨这几个体系催化降解甲基橙溶液的效果。
图8为在不同体系下催化降解甲基橙溶液吸光度变化图。从图8中看出,当只加40μL过氧化氢时,甲基橙的吸光度为0.56,这是因为过氧化氢具有一定的氧化性,可以降解甲基橙溶液。当只添加15mg的仿酶催化剂时,甲基橙的吸光度为0.468,这是因为Janus粒子本身对甲基橙染料有一定的吸附效果。而当加入15mg的仿酶催化剂和40μL的过氧化氢的水溶液时,甲基橙的吸光度为0.239,当加入15mg的仿酶催化剂和40μL的过氧化氢的Pickering乳液时,甲基橙的吸光度为0.05,水相催化体系相比起乳液催化体系对甲基橙的降解程度偏低,原因可能是在催化降解的反应中,乳液的体系增大了反应物的接触面积,反应后的产物如N-甲基苯胺、N,N-二甲基苯胺等偏向油溶性进入甲苯相,产物的相转移过程减少了H2O2的消耗,有利于反应的进行。
分别间隔每1h取不同体系的水层在464nm处观察吸光度的变化,根据甲基橙溶液标准工作曲线公式,可计算降解实验中的甲基橙溶液浓度,其降解率可以通过下列公式计算:
降解率(%)=(Co-C)/Co*100%,
Co是初始的甲基橙浓度,C是催化降解过程中的甲基橙浓度。绘制不同体系下降解甲基橙溶液的降解率。
图9为不同体系下降解甲基橙溶液的降解率。只加过氧化氢的体系在8h后降解率为43.56%,只添加仿酶催化剂的体系在8h后降解率为53.06%,仿酶催化剂和过氧化氢的水溶液体系在8h后降解率上升至76.99%,而仿酶催化剂和过氧化氢的Pickering乳液催化体系在8h后降解率可达95.33%,说明仿酶催化剂的Pickering乳液催化体系催化降解甲基橙的效果相对于其他体系来说更加显著。
结果表明:本发明中制备的Janus复合粒子负载的仿酶催化剂来稳定Pickering乳液用于甲基橙染料的催化降解实验中,发现Pickering乳液体系较比其他体系催化效果更明显,降解率更高,因此合成的这种Janus复合粒子负载的仿酶催化剂的仿酶催化效果显著,可以方便有效的降解甲基橙染料。

Claims (9)

1.一种基于雪人形Janus复合粒子为载体的仿酶催化剂,其特征在于,所述仿酶催化剂是以雪人形状的PDVB/PS@SiO2 Janus粒子为载体,采用1-乙烯基-3-丁基咪唑六氟磷酸盐离子液体对PDVB端进行聚离子液体化修饰,利用咪唑环的正电荷静电吸引带负电荷的AuCl4 -前驱体,最后加入硼氢化钠还原,得到负载Au纳米粒子的仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子。
2.一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法,其特征在于,制备方法包括如下步骤:
1)先将PDVB/PS@SiO2 Janus粒子在N,N-二甲基甲酰胺中浸泡12h,然后将浸泡后的PDVB/PS@SiO2 Janus粒子超声分散于无水乙醇中,得PDVB/PS@SiO2分散液;
2)将1-乙烯基-3-丁基咪唑六氟磷酸盐离子液体分散在无水乙醇中,并加入AIBN引发剂,体系在70℃下预热5min,形成预聚物的活性种溶液,随后将步骤1)得到的PDVB/PS@SiO2分散液逐滴加入到活性种溶液中,70℃下恒温反应10h,得到PILs-PDVB/PS@SiO2 Janus复合粒子;
3)将步骤2)得到的PILs-PDVB/PS@SiO2 Janus复合粒子分散在水中,室温搅拌2h,加入HAuCl4溶液,室温反应12h后,加入硼氢化钠水溶液,在室温下反应5h,得到负载Au纳米粒子的仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子。
3.根据权利要求2所述的制备方法,其特征在于,步骤1)中,所述PDVB/PS@SiO2 Janus粒子的制备方法包括如下步骤:
1)取聚苯乙烯中空球分散在水中,得聚苯乙烯水溶液,调节聚苯乙烯水溶液的pH为8-10,在60-70℃下搅拌形成种子乳液;
2)再将3-(甲基丙烯酰氧)丙基三甲氧基硅烷、1.0wt%的过硫酸钾水溶液和十二烷基硫酸钠超声分散在水中,形成单体乳液;
3)随后将单体乳液缓慢滴加进种子乳液中,于70-80℃下进行反应;反应结束后,离心,将离心所得的沉淀用水、乙醇洗涤后,离心分离,并真空干燥12-14h后,得到雪人形状的PDVB/PS@SiO2 Janus粒子。
4.根据权利要求2所述的制备方法,其特征在于,步骤2)中,AIBN引发剂与PDVB/PS@SiO2和离子液体总量的质量比为1:100。
5.根据权利要求2所述的制备方法,其特征在于,步骤3)中,按体积比,HAuCl4溶液:硼氢化钠水溶液=1:5。
6.根据权利要求1所述的基于雪人形Janus复合粒子为载体的仿酶催化剂在催化降解有机污染物中的应用。
7.根据权利要求6所述的应用,其特征在于,将仿酶催化剂Au-PILs-PDVB/PS@SiO2Janus复合粒子溶于水后加入甲苯,进行涡混振荡后形成Pickering乳液,用于催化降解有机污染物。
8.根据权利要求7所述的应用,其特征在于,方法如下:将仿酶催化剂Au-PILs-PDVB/PS@SiO2 Janus复合粒子溶于有机污染物溶液后加入甲苯进行涡混振荡形成Pickering乳液,然后加入过氧化氢,进行催化降解。
9.根据权利要求6、7或8所述的应用,其特征在于,所述有机污染物为甲基橙。
CN202111201208.6A 2021-10-15 2021-10-15 一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法和应用 Active CN113731491B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111201208.6A CN113731491B (zh) 2021-10-15 2021-10-15 一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111201208.6A CN113731491B (zh) 2021-10-15 2021-10-15 一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN113731491A true CN113731491A (zh) 2021-12-03
CN113731491B CN113731491B (zh) 2023-11-10

Family

ID=78726703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111201208.6A Active CN113731491B (zh) 2021-10-15 2021-10-15 一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN113731491B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114392766A (zh) * 2022-01-06 2022-04-26 辽宁大学 一种两端功能化复合型Janus粒子催化剂的制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525254A (zh) * 2014-12-24 2015-04-22 东华大学 一种用于降解甲基橙的含金催化剂及其制备和应用
EP2902103A1 (en) * 2014-01-31 2015-08-05 Leibniz-Institut für Polymerforschung Dresden e.V. Janus particles with polymer shells
CN105289724A (zh) * 2015-09-28 2016-02-03 辽宁大学 Au/PILs/PPyNTs复合材料的制备方法及应用
CN105536639A (zh) * 2016-01-04 2016-05-04 辽宁大学 一种离子液体功能化雪人形各向异性复合材料及其制备方法和应用
CN107930544A (zh) * 2017-11-27 2018-04-20 陕西师范大学 磁响应性负载型Janus多级孔SiO2复合微球及其制备方法
CN110982811A (zh) * 2019-12-09 2020-04-10 北京化工大学 一种基于Janus磁性纳米粒子和DNA定向固定技术构建人造细胞的方法
CN112403519A (zh) * 2020-12-09 2021-02-26 兰州大学 COF-300/PPy/Au(G)纳米酶催化剂的制备方法及应用
CN112980807A (zh) * 2020-10-31 2021-06-18 北京化工大学 一种基于dna与氧化石墨烯和金属有机骨架材料间相互作用构建固定多酶系统的方法
CN113145178A (zh) * 2021-03-19 2021-07-23 浙江工业大学 一种Janus结构聚合物基纳米金属催化剂及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902103A1 (en) * 2014-01-31 2015-08-05 Leibniz-Institut für Polymerforschung Dresden e.V. Janus particles with polymer shells
CN104525254A (zh) * 2014-12-24 2015-04-22 东华大学 一种用于降解甲基橙的含金催化剂及其制备和应用
CN105289724A (zh) * 2015-09-28 2016-02-03 辽宁大学 Au/PILs/PPyNTs复合材料的制备方法及应用
CN105536639A (zh) * 2016-01-04 2016-05-04 辽宁大学 一种离子液体功能化雪人形各向异性复合材料及其制备方法和应用
CN107930544A (zh) * 2017-11-27 2018-04-20 陕西师范大学 磁响应性负载型Janus多级孔SiO2复合微球及其制备方法
CN110982811A (zh) * 2019-12-09 2020-04-10 北京化工大学 一种基于Janus磁性纳米粒子和DNA定向固定技术构建人造细胞的方法
CN112980807A (zh) * 2020-10-31 2021-06-18 北京化工大学 一种基于dna与氧化石墨烯和金属有机骨架材料间相互作用构建固定多酶系统的方法
CN112403519A (zh) * 2020-12-09 2021-02-26 兰州大学 COF-300/PPy/Au(G)纳米酶催化剂的制备方法及应用
CN113145178A (zh) * 2021-03-19 2021-07-23 浙江工业大学 一种Janus结构聚合物基纳米金属催化剂及其制备方法和应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
RUOTONG ZHAO ET AL.: "Functional Janus Particles Modified with Ionic Liquids for Dye Degradation", 《ACS APPLIED NANO MATERIALS》 *
RUOTONG ZHAO ET AL.: "Poly(ionic liquid)-Modified Magnetic Janus Particles for Dye Degradation", 《LANGMUIR》 *
YIJIANG LIU ET AL.: "Preparation of Janus-type catalysts and their catalytic performance at emulsion interface", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
YIJING SUN ET AL.: "Robust Reactive Janus Composite Particles of Snowman Shape", 《MACROMOLECULES》 *
刘静: "聚合离子液体修饰化介孔复合材料的制备及其生物电化学应用研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
唐秀平: "聚离子液体基Janus复合颗粒的制备与性能研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *
孙大吟: "Janus颗粒的乳化行为及其衍生材料的研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *
蔡志芳: "离子液体BMIMPF6/纳米材料修饰电极的制备与研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114392766A (zh) * 2022-01-06 2022-04-26 辽宁大学 一种两端功能化复合型Janus粒子催化剂的制备方法和应用

Also Published As

Publication number Publication date
CN113731491B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
Miao et al. Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production
Cui et al. Mesoporous metal–organic framework with well-defined cruciate flower-like morphology for enzyme immobilization
Xie et al. Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review
Verma et al. Recent trends in nanomaterials immobilised enzymes for biofuel production
Gao et al. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization
Rong et al. Preparation of efficient, stable, and reusable laccase–Cu3 (PO4) 2 hybrid microspheres based on copper foil for decoloration of congo red
Pierre The sol-gel encapsulation of enzymes
Wang et al. Oriented enzyme immobilization at the oil/water interface enhances catalytic activity and recyclability in a pickering emulsion
Li et al. Size-tunable metal–organic framework-coated magnetic nanoparticles for enzyme encapsulation and large-substrate biocatalysis
Bayramoglu et al. Immobilization of laccase on itaconic acid grafted and Cu (II) ion chelated chitosan membrane for bioremediation of hazardous materials
Zhang et al. Design and preparation of carbon nitride-based amphiphilic Janus N-doped carbon/MoS2 nanosheets for interfacial enzyme nanoreactor
Wei et al. Highly selective entrapment of his-tagged enzymes on superparamagnetic zirconium-based MOFs with robust renewability to enhance pH and thermal stability
Miao et al. Synthesis and properties of porous CLEAs lipase by the calcium carbonate template method and its application in biodiesel production
CN113244958B (zh) Mn-MOF适冷纳米酶及其制备方法和用途
Wu et al. Preparation and characterization of monodispersed microfloccules of TiO2 nanoparticles with immobilized multienzymes
CN113731491B (zh) 一种基于雪人形Janus复合粒子为载体的仿酶催化剂的制备方法和应用
Li et al. Immobilization of lipase from Thermomyces lanuginosus in magnetic macroporous ZIF-8 improves lipase reusability in biodiesel preparation
Tang et al. Site-specific and covalent immobilization of lipase on natural polyphenol-modified magnetic nanoparticles for effective biodiesel production
Zhao et al. Robust and recyclable two-dimensional nanobiocatalysts for biphasic reactions in Pickering emulsions
Jiao et al. Construction of macroporous β-glucosidase@ mofs by a metal competitive coordination and oxidation strategy for efficient cellulose conversion at 120 C
CN103525805A (zh) 一种可再生的磁性固定化酶载体及其制备方法
CN113351258A (zh) 一种由海藻酸钠作为配体修饰的铂纳米粒子及其氧化酶活性
Naseem et al. Enzymes encapsulated smart polymer micro assemblies and their tuned multi-functionalities: a critical review
Du et al. Construction of catalase@ hollow silica nanosphere: Catalase with immobilized but not rigid state for improving catalytic performances
Qi et al. Surfactant-assisted synthesis of colloidosomes for positional assembly of a bienzyme system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant