CN113731387A - 一种处理水中有机污染物的廉价金属/半导体复合光催化剂及制备方法 - Google Patents

一种处理水中有机污染物的廉价金属/半导体复合光催化剂及制备方法 Download PDF

Info

Publication number
CN113731387A
CN113731387A CN202010459964.8A CN202010459964A CN113731387A CN 113731387 A CN113731387 A CN 113731387A CN 202010459964 A CN202010459964 A CN 202010459964A CN 113731387 A CN113731387 A CN 113731387A
Authority
CN
China
Prior art keywords
metal
semiconductor
nano
water
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010459964.8A
Other languages
English (en)
Inventor
徐铭泽
张挺耸
李金华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN202010459964.8A priority Critical patent/CN113731387A/zh
Publication of CN113731387A publication Critical patent/CN113731387A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/31Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/33Indium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/42Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种新型金属/半导体复合光催化剂及其制备方法,具体涉及一系列能够高效去水中有机污染物的以金属纳米粒子为核心,表面附着宽禁带半导体材料的复合光催化剂,该材料能够有效处理工业排放的有机染料污染物。本发明通过有机物配体使具有紫外光催化的半导体与在紫外区具有表面等离子共振效应的廉价金属纳米粒子相复合,制备出在紫外光的作用下具有较高光催化效果的金属/半导体复合光催化材料。该方法条件温和、工艺简单、环境友好、无需特殊设备。所制备的催化剂具有成本较低、重复性好、并且有着较好的光催化效果的特点,具有良好的应用前景。

Description

一种处理水中有机污染物的廉价金属/半导体复合光催化剂 及制备方法
技术领域
本发明属于环境处理技术领域,具体涉及一系列能够处理水中有机物的廉价金属/半导体复合材料及其制备方法。
背景技术
随着社会发展,人们生活中越来越依赖各种工业化产品,如塑料、农药、染料、纺织印染品等。然而工业产品的生产过程中会产生大量有机物废水,这些有机物有着较高的毒性,并且不易降解,对水体污染较大。有机物进入水体后,能够被好氧微生物分解,使溶解氧大幅下降,甚至造成缺氧状态、危害水中生物,使大批鱼类死亡。于是,水中有机物的处理十分有意义。目前,光催化技术能够高效、无污染的降解水中有机物。光催化技术的核心材料为半导体材料,其特殊的能带结构使得半导体在特定波长光的照射下产生电子空穴。电子空穴对能够参加降解反应,生成二氧化碳和水,实现无污染的处理水中污染物。
半导体的光催化效率受到光响应范围、量子产率等因素影响,而金属纳米粒子与半导体相复合能够提高半导体的光催化效果。但是人们普遍利用价格昂贵的贵金属如金、银纳米粒子的表面等离子共振效应来增强半导体的光催化活性。但一方面,贵金属价格较高,提高了催化剂的成本。另一方面,金、银纳米粒子的表面等离子共振波长范围普遍在可见光范围内,对于、紫外光才能够响应的宽禁带半导体材料的光催化增强效果具有局限性。
发明内容
本发明提供一种价格低廉、具有较好光催化性能、环境友好的廉价金属/半导体复合材料,该材料制备工艺简单、造价低廉、并且能够有效降解水中有机物。在此基础上,本发明还提供了此复合光催化材料的制备方法。
本发明提出的廉价金属/半导体复合材料其结构特征在于:金属粒子为核心,半导体材料负载在金属粒子表面。
本发明提出的廉价金属/半导体复合光催化材料中,金属与半导体的物质的量比为1:1~1:3。
本发明提出的廉价金属/半导体复合催化材料中,所述的金属应为铝、铟、镁中的一种,粒径为30 nm~100 nm。所述的半导体材料为TiO2、ZnO、SnO2、MnTiO3、In2O3、BaTiO3的一种,尺寸为5~20 nm。
本发明提出的廉价金属/半导体复合催化材料由如下步骤制备。
1)将1~3 mg金属纳米粒子加入15 ml乙醇和水体积比2:1~3:1的混合溶液中,使用细胞粉碎仪超声处理20 min~40 min。
2)上述金属纳米粒子溶液中,加入2.7~22.8 mg配体,在30℃~40℃的温度下,在转速为500 r/min~1500 r/min条件下搅拌15 min~20min。得到表面修饰的金属纳米粒子溶液。
3)将2.9~20.5 mg半导体纳米粒子加入15 ml去离子水中,在转速为500 r/min~1500 r/min条件下搅拌5 min~10min,得到半导体悬浊液。
4)将表面修饰的金属纳米粒子溶液与半导体悬浊液混合,在30℃~40℃的温度下静置1~2 h。得到金属/半导体纳米复合材料的悬浊液。
5)将得到的金属/半导体纳米复合材料的悬浊液在5000~6000 r/min的转速下离心5 min~10 min,除去上清液烘干可得到金属/半导体复合催化材料。
本发明所提供的金属/半导体复合催化剂制备方法中,所述的配体为谷胱甘肽,半胱氨酸,硫代苹果酸中的一种或两种以上的混合物。
与现有技术相比,本发明的优点在于:其中金属与半导体二者通过表面配体相互作用相结合。所以配体的需要具有氨基及羧基特定官能团。金属表面原子与配体的羧基反应形成稳定的化学键,半导体表面羟基官能团也可以和配体的氨基与剩余的羧基反应形成稳定化学键。在实际使用过程中金属和半导体能够结合稳定,保证金属与半导体之间紧密连接,以便发生电子及能量的转移,以提高传统半导体的光催化效率。
本发明金属/半导体纳米复合材料的光催化效率提升机理可解释为:铝、铟、镁等纳米粒子在紫外区间内的介电常数的实部为负、虚部较小,所以此类金属纳米粒子在紫外光范围内有着较强的吸收,并且能够发生表面等离子共振效应,并在其周围产生近场增强效应,半导体纳米粒子受到增强的电磁场作用后,会提高电子空穴产生率。除此之外,金属与半导体相互接触会发生电子转移,从而使半导体表面的能带发生弯曲,产生肖特基势垒。使半导体表面电子耗尽,空穴累积。而电子由于弯曲的能带累积至半导体内部。从而实现电子和空穴的分离,降低了电子空穴复合率。金属/半导体复合光催化体系在提高电子空穴产生率的前提下,同时降低其复合率,促进了光催化反应的进行。
本发明还提供金属/半导体纳米复合光催化剂的制备方法。该方法条件温和、工艺简单、环境友好、无需特殊设备。所制备的催化剂具有成本较低、重复性好、并且有着较好的光催化效果的特点,具有良好的应用前景。
附图说明
图1是本发明实施例1所获得的Al/TiO2纳米复合光催化材料的透射电镜图片。
图2是本发明实施例1所获得的Al/TiO2纳米复合光催化材料的XRD图片。
图3是本发明实施例1所获得的Al/TiO2纳米复合光催化材料对亚甲基蓝的讲解效果图。
具体实施方式
以下实施例中所采用的材料和仪器均为市售,原材料为分析纯。
实施例1:
一种Al/TiO2纳米复合光催化材料,其中包括Al纳米粒子(其尺寸为50-100 nm),TiO2纳米粒子(其尺寸为5 nm-15 nm)。TiO2纳米粒子负载在Al纳米粒子上。
上述施例的Al/TiO2纳米复合光催化材料的制备方法包括以下步骤。
1)在室温条件下配置金属纳米粒子溶液:将1 mg Al纳米粒子加入15 ml乙醇和水体积比2:1的混合溶液中,使用细胞粉碎仪超声处理20min。
2)上述金属纳米粒子溶液中,加入11.4 mg谷胱甘肽配体,在30℃的温度下,在转速为500 r/min条件下搅拌15 min。得到表面修饰的金属纳米粒子溶液。
3)将2.9 mg TiO2纳米粒子加入15 ml去离子水中,在转速为500 r/min条件下搅拌10 min,得到半导体悬浊液。
4)将表面修饰的金属纳米粒子溶液与半导体悬浊液混合,在30 ℃的温度下静置2h。得到Al/TiO2纳米复合材料溶液。
5)将得到的金属/半导体纳米复合材料的悬浊液在6000 r/min的转速下离心5min,除去上清液烘干可得到金属/半导体复合催化材料。
图1为本实施例1所获得的Al/TiO2纳米复合光催化材料的TEM图,可以看出,本发明制备的Al/TiO2纳米复合材料的颗粒大小约为80 nm,表面粗糙。
图2为本实施例1所获得的Al/TiO2纳米复合光催化材料的XRD图,可以看出,Al/TiO2纳米复合材料拥有Al和TiO2的特征峰。
图3为本实施例1所获得的Al/TiO2纳米复合光催化材料在500 w的氙灯的照射下对亚甲基蓝的降解图,可以看出,Al/TiO2纳米复合光催化材料能够在70 min内能够将100ml的1 mg/L的亚甲基蓝溶液降解至原来浓度的1%,比TiO2对亚甲基蓝的降解率有较好的提高。证明了Al/TiO2纳米复合材料的高效光催化性能。
实施例2:
一种In/ZnO纳米复合光催化材料,其中包括In纳米粒子(其尺寸为30-70 nm),ZnO纳米粒子(其尺寸为3 nm-10 nm)。ZnO纳米粒子负载在In纳米粒子上。
上述施例的In/ZnO纳米复合光催化材料的制备方法包括以下步骤。
1)在室温条件下配置金属纳米粒子溶液:将3 mg In纳米粒子加入15 ml乙醇和水体积比3:1的混合溶液中,使用细胞粉碎仪超声处理40min。
2)上述金属纳米粒子溶液中,加入3.9 mg硫代苹果酸配体,在40℃的温度下,在转速为1000 r/min条件下搅拌20 min。得到表面修饰的金属纳米粒子溶液。
3)将6.3 mg ZnO纳米粒子加入15 ml去离子水中,在转速为1000 r/min条件下搅拌5 min,得到半导体悬浊液。
4)将表面修饰的金属纳米粒子溶液与半导体悬浊液混合,在40 ℃的温度下静置1h。得到In/ZnO纳米复合材料溶液。
5)将得到的金属/半导体纳米复合材料的悬浊液在5000 r/min的转速下离心10min,除去上清液烘干可得到金属/半导体复合催化材料。
表格1为实施例2所获得的In/ZnO纳米复合光催化材料在500 w的氙灯的照射下对 亚甲基蓝的降解效果表格。可以看出In/ZnO能够在80 min内能够将100 ml的1 mg/L的亚甲 基蓝溶液降解至原来浓度的1%。
降解时间(min) 0 10 20 30 40 50 60 70 80
浓度比 100% 85% 77% 63% 49% 42% 29% 12% 1%
表1
实施例3:
一种Al/SnO2纳米复合光催化材料,其中包括Al纳米粒子(其尺寸为50-100 nm),SnO2纳米粒子(其尺寸为5 nm-10 nm)。SnO2纳米粒子负载在Al纳米粒子上。
上述施例的Al/SnO2纳米复合光催化材料的制备方法包括以下步骤。
1)将3 mg金属纳米粒子加入15 ml乙醇和水体积比3:1的混合溶液中,使用细胞粉碎仪超声处理40 min。
2)上述金属纳米粒子溶液中,加入16.7 mg半胱氨酸配体,在30℃的温度下,在转速为1500 r/min条件下搅拌20min。得到表面修饰的金属纳米粒子溶液。
3)将13.5 mg半导体纳米粒子加入15 ml去离子水中,在转速为1500 r/min条件下搅拌5 min,得到半导体悬浊液。
4)将表面修饰的金属纳米粒子溶液与半导体悬浊液混合,在40℃的温度下静置2h。得到金属/半导体纳米复合材料的悬浊液。
5)将得到的金属/半导体纳米复合材料的悬浊液在5000 r/min的转速下离心10min,除去上清液烘干可得到金属/半导体复合催化材料。
表格2为实施例2所获得的Al/SnO2纳米复合光催化材料在500 w的氙灯的照射下 对亚甲基蓝的降解效果表格。可以看出In/ZnO能够在50 min内能够将100 ml的1 mg/L的亚 甲基蓝溶液降解至原来浓度的1%。
降解时间(min) 0 10 20 30 40 50
浓度比 100% 75% 56% 37% 18% 1%
表2。

Claims (5)

1.一种处理水中有机物的金属/半导体复合光催化剂,其特征在于,核心粒子为金属粒子,外层粒子为半导体纳米材料通过配体与内层的金属相连接。
2.如权利要求1所述的金属/半导体复合光催化剂,其特征在于:所述的金属应为铝、铟、镁中的一种,尺寸为30 nm~100 nm。
3.如权利要求1所述的金属/半导体复合光催化剂,其特征在于:所述的半导体材料为TiO2、ZnO、SnO2、MnTiO3、In2O3、BaTiO3的一种,尺寸为5~20 nm。
4.根据权利要求1-3任意一种金属/半导体复合光催化剂的制备方法,其特征在于:将1~3 mg金属纳米粒子加入15 ml乙醇和水体积比2:1~3:1的混合溶液中,使用细胞粉碎仪超声处理20 min~40 min;在上述金属纳米粒子溶液中,加入11.4~22.8 mg配体,在30℃~40℃的温度下,在转速为500 r/min~1500 r/min条件下搅拌15 min~20min,得到表面修饰的金属纳米粒子溶液;再将2.9~20.5 mg半导体纳米粒子加入15 ml去离子水中,在转速为500 r/min~1500 r/min条件下搅拌5 min~10min,得到半导体悬浊液;将表面修饰的金属纳米粒子溶液与半导体悬浊液混合,在30℃~40℃的温度下静置1~2h,得到金属/半导体纳米复合材料的悬浊液;将得到的金属/半导体纳米复合材料的悬浊液在6000 r/min~7000 r/min的转速下离心5 min~10 min,除去上清液烘干可得到金属/半导体复合催化材料。
5.根据权利要求4所述的金属/半导体复合光催化剂的制备方法,其特征在于,权利要求4步骤2中所提及的配体为谷胱甘肽,半胱氨酸,硫代苹果酸中的一种或两种以上的混合物。
CN202010459964.8A 2020-05-28 2020-05-28 一种处理水中有机污染物的廉价金属/半导体复合光催化剂及制备方法 Pending CN113731387A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010459964.8A CN113731387A (zh) 2020-05-28 2020-05-28 一种处理水中有机污染物的廉价金属/半导体复合光催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010459964.8A CN113731387A (zh) 2020-05-28 2020-05-28 一种处理水中有机污染物的廉价金属/半导体复合光催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN113731387A true CN113731387A (zh) 2021-12-03

Family

ID=78723657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010459964.8A Pending CN113731387A (zh) 2020-05-28 2020-05-28 一种处理水中有机污染物的廉价金属/半导体复合光催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN113731387A (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064278A (ja) * 2001-08-23 2003-03-05 Mitsubishi Chemicals Corp コアシェル型半導体ナノ粒子
CN1962060A (zh) * 2005-11-08 2007-05-16 财团法人工业技术研究院 金属纳米光催化剂复合材料及其制法
KR20090035812A (ko) * 2007-10-08 2009-04-13 전북대학교산학협력단 자외선 및 가시광선 동시응답 이산화티타늄 캡슐형금속나노입자 광촉매 및 그 제조방법
US20120145532A1 (en) * 2009-07-24 2012-06-14 Stc.Unm Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles
CN102500758A (zh) * 2011-09-29 2012-06-20 厦门大学 一种金与铜铟硒的核壳纳米晶及其制备方法
CN102816402A (zh) * 2011-06-09 2012-12-12 北京化工大学 一种高透明紫外阻隔仿陶瓷柔性纳米复合膜材料及其制备方法
JP2013188697A (ja) * 2012-03-14 2013-09-26 Ishii Kei 複合型プラズモン金属ナノ粒子及びその用途
CN104492432A (zh) * 2014-12-13 2015-04-08 济南大学 中空双金属纳米粒子/二氧化钛核壳结构及其制备方法和应用
CN104645980A (zh) * 2013-11-21 2015-05-27 中国科学院金属研究所 一种贵金属-氧化锌复合材料及其制备方法和应用
CN104916782A (zh) * 2015-05-25 2015-09-16 中国科学院半导体研究所 采用表面等离激元效应的倒置太阳电池结构及制备方法
CN108160990A (zh) * 2018-01-05 2018-06-15 广东工业大学 一种核壳结构的纳米颗粒互连材料及其制备方法
US20180299458A1 (en) * 2015-05-21 2018-10-18 Lamdagen Corporation Plasmonic nanoparticles and lspr-based assays
CN108786792A (zh) * 2018-06-25 2018-11-13 福州大学 一种金属/半导体复合光催化剂及其制备与应用
CN110385427A (zh) * 2019-07-31 2019-10-29 东南大学 一种水溶性纳米粒子及其制备方法和应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064278A (ja) * 2001-08-23 2003-03-05 Mitsubishi Chemicals Corp コアシェル型半導体ナノ粒子
CN1962060A (zh) * 2005-11-08 2007-05-16 财团法人工业技术研究院 金属纳米光催化剂复合材料及其制法
KR20090035812A (ko) * 2007-10-08 2009-04-13 전북대학교산학협력단 자외선 및 가시광선 동시응답 이산화티타늄 캡슐형금속나노입자 광촉매 및 그 제조방법
US20120145532A1 (en) * 2009-07-24 2012-06-14 Stc.Unm Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles
CN102816402A (zh) * 2011-06-09 2012-12-12 北京化工大学 一种高透明紫外阻隔仿陶瓷柔性纳米复合膜材料及其制备方法
CN102500758A (zh) * 2011-09-29 2012-06-20 厦门大学 一种金与铜铟硒的核壳纳米晶及其制备方法
JP2013188697A (ja) * 2012-03-14 2013-09-26 Ishii Kei 複合型プラズモン金属ナノ粒子及びその用途
CN104645980A (zh) * 2013-11-21 2015-05-27 中国科学院金属研究所 一种贵金属-氧化锌复合材料及其制备方法和应用
CN104492432A (zh) * 2014-12-13 2015-04-08 济南大学 中空双金属纳米粒子/二氧化钛核壳结构及其制备方法和应用
US20180299458A1 (en) * 2015-05-21 2018-10-18 Lamdagen Corporation Plasmonic nanoparticles and lspr-based assays
CN104916782A (zh) * 2015-05-25 2015-09-16 中国科学院半导体研究所 采用表面等离激元效应的倒置太阳电池结构及制备方法
CN108160990A (zh) * 2018-01-05 2018-06-15 广东工业大学 一种核壳结构的纳米颗粒互连材料及其制备方法
CN108786792A (zh) * 2018-06-25 2018-11-13 福州大学 一种金属/半导体复合光催化剂及其制备与应用
CN110385427A (zh) * 2019-07-31 2019-10-29 东南大学 一种水溶性纳米粒子及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUHIRO HONDA ET AL.: "Plasmon-enhanced UV photocatalysis", APPLIED PHYSICS LETTERS, vol. 104, pages 061108 *

Similar Documents

Publication Publication Date Title
Liu et al. A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation
Narzary et al. Visible light active, magnetically retrievable Fe3O4@ SiO2@ g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants
Scott et al. Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite
Huang et al. Preparation and characterization of Cu2O/TiO2 nano–nano heterostructure photocatalysts
CN107442178B (zh) 一种可见光催化剂Fe3O4@PDA@Ag复合微球的制备方法
CN109692698B (zh) 一种催化还原NOx的Bi/Ti3C2纳米片状光催化剂及其制备方法
Chen et al. The BiOBr/Bi/Bi2WO6 photocatalyst with SPR effect and Z-scheme heterojunction synergistically degraded RhB under visible light
Alburaih et al. Facile synthesis of W1-yFeyO3@ NiO@ RGO ternary nanohybrid with enhanced sunlight mediated photocatalytic and bactericidal activities for water purification
Yang et al. In-situ generation of oxygen vacancies and Bi0 clusters on MoSe2/Bi@ BiOBr-OV via Fermi inter-level electron transfer for efficient elimination of chlorotetracycline and Cr (VI)
Lu et al. A novel preparation of GO/NiFe2O4/TiO2 nanorod arrays with enhanced photocatalytic activity for removing unsymmetrical dimethylhydrazine from water
Nuengmatcha et al. Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst
Jabbar et al. Reasonable decoration of CuO/Cd0. 5Zn0. 5S nanoparticles onto flower-like Bi5O7I as boosted step-scheme photocatalyst for reinforced photodecomposition of bisphenol A and Cr (VI) reduction in wastewater
Tu et al. Synthesis of Fe2O3/TiO2/graphene aerogel composite as an efficient Fenton‐photocatalyst for removal of methylene blue from aqueous solution
CN113198515B (zh) 一种三元光催化剂及其制备方法与应用
Sun et al. Microwave in-situ liquid-phase deposition of Cu2O/Tg-C3N4 heterojunction for enhancing visible light photocatalytic degradation of tetracycline
CN108079990B (zh) 一种二氧化钛包覆铜纳米复合材料及其制备方法和应用
Wang et al. Preparation of a high-performance N-defect ZnO@ g-C3N4 nanocomposite and its photocatalytic degradation of tetracycline
CN110316806B (zh) 一种用于水中硝酸盐氮去除的纳米复合材料nZVFPG及其制备方法和应用
CN104368338A (zh) 一种具有氨基修饰的Pd/TiO2光催化剂的制备方法
Mukherjee et al. Graphene quantum dots decorated MIL-100 (Fe) composites for dye degradation
CN104826639B (zh) 磷酸银/还原石墨烯/二氧化钛纳米复合材料及制备方法
CN113731387A (zh) 一种处理水中有机污染物的廉价金属/半导体复合光催化剂及制备方法
CN109331803B (zh) 二氧化钛-石墨烯复合材料及其在光触媒纳米溶胶中的应用
CN108620101A (zh) Ag/PbBiO2Cl纳米片复合光催化剂及制备方法
CN109365005B (zh) 高催化降解性能光触媒水溶胶及其生产工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211203

WD01 Invention patent application deemed withdrawn after publication