CN113721548A - 一种数控铣头热误差补偿方法及系统 - Google Patents

一种数控铣头热误差补偿方法及系统 Download PDF

Info

Publication number
CN113721548A
CN113721548A CN202111040927.4A CN202111040927A CN113721548A CN 113721548 A CN113721548 A CN 113721548A CN 202111040927 A CN202111040927 A CN 202111040927A CN 113721548 A CN113721548 A CN 113721548A
Authority
CN
China
Prior art keywords
milling head
thermal
error
numerical control
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111040927.4A
Other languages
English (en)
Other versions
CN113721548B (zh
Inventor
戴野
陶学士
李兆龙
鲍玉冬
刘广东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202111040927.4A priority Critical patent/CN113721548B/zh
Publication of CN113721548A publication Critical patent/CN113721548A/zh
Application granted granted Critical
Publication of CN113721548B publication Critical patent/CN113721548B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35408Calculate new position data from actual data to compensate for contour error

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

本发明公开了一种数控铣头热误差补偿方法及系统,考虑了无误差情况和实际状态下铣头的热误差,并通过建立热误差补偿数学模型,得到了实际加工情况下各误差补偿量;通过将所建立的数学模型导入到热误差补偿系统中,基于温度传感器采集的数据经模/数转换器模块传递到铣头控制系统,分析计算热误差补偿值,进而对铣头实际工作中的热误差进行补偿;通过编写执行程序,经循环加工以满足精度要求,实现了实际条件下的铣头热误差实时补偿和有效控制,有效提高了数控铣头的加工精度。

Description

一种数控铣头热误差补偿方法及系统
技术领域
本发明涉及一种数控铣头的热误差分析领域,特别地涉及一种数控铣头热误差补偿方法及系统。
背景技术
随着数控机床加工技术的不断精密化,直驱式数控铣头技术的快速发展,这对机械加工精度和可靠性提出了更高的要求。误差是评价机床精度的主要指标,其中数控机床几何误差和由温度引起的热误差两者约占机床总误差的50%以上,有效控制热误差对提高数控铣头加工精度来说至关重要。目前关于铣头的误差分析与补偿主要是针对几何误差,由于几何误差相对稳定,易于进行误差补偿,因此只有少数对铣头自身的热误差进行分析及补偿研究,并且对于数控铣头热误差建模与补偿的方法尚未成熟。
发明内容
本发明目的在于克服上述现有技术中的不足,提供了一种数控铣头热误差补偿方法及系统,考虑了无误差情况下和实际状态下铣头的热误差并建立了热误差补偿数学模型,将所建立的数学模型导入热误差补偿控制系统,基于温度传感器采集的数据经模数转换器模块传递到控制系统,进行分析计算热补偿值,对铣头实际工作中的热误差进行补偿,编写了执行程序,经循环加工以满足精度要求,实现铣头的热误差实时补偿。
本发明通过下述技术方案实现技术目标。
本发明提供一种数控铣头热误差补偿方法及系统,由于铣头受热源影响,内部温度分布发生改变,在实际状态下刀具与工件间的定位偏差造成机床加工精度降低,进而导致加工产品不达标。这种偏差可通过建立热误差补偿的数学模型表示,在无误差情况下,忽略机床坐标的变化及主轴热变形,求解铣头受热变形与各分量的联系,针对热误差补偿进行建模。基于温度传感器采集的数据信号,转换传递到控制系统中分析计算热补偿值。同时,通过编写加工程序,实现对铣头实际加工过程中的热误差实时补偿。
所述的热误差补偿数学模型区别于传统方法对几何误差进行误差补偿,由于铣头内部结构紧凑,其工作原理与机床主轴箱相似,因此考虑数控铣头自身热误差的角度,以机床热误差补偿为参考,对铣头的热误差进行分析和有效补偿。
本发明涉及一种实现上述方法的热误差补偿系统,具体包括:直驱式数控铣头、模型编辑键入模块、输出接口、终端、温度传感器节点、中间节点、模/数转换器模块、热误差补偿数学模型、直驱式铣头控制系统、数控系统、编程器、显示模块。通过选取所述直驱式数控铣头关键位置的测温点布置温度传感器,所述温度传感器获取各测点的温度信号,所述温度信号输送至中间节点。
具体的,所述中间节点将温度信号转换为电压信号并放大。通过所述模数转换器模块将模拟信号转换为数字信息,并将其输入至直驱式数控铣头控制系统,所述直驱式数控铣头控制器根据实际加工条件分析热误差补偿的数学模型,计算出最终的热补偿误差,实现对铣头加工过程中产生的热误差的控制和补偿。
进一步的,所述热误差补偿数学模型的分析结果以所述显示模块显示出来。
具体的,所述温度传感器布置,优选地选取关键位置四个测温点,分别为C轴电机转子测点、A轴电机转子测点、铣头轴承测点、铣头壳体测点。
本发明与现有技术相比,具有以下积极效果:
1、通过本发明,建立了考虑铣头分别在无误差和实际状态下的热误差补偿模型,反映铣头当前误差的分布,有效为直驱式数控铣头的热误差补偿值求解提供基础,使系统有较高的精度。
2、本发明建立的热误差补偿系统,有效实现对铣头加工过程中产生的热误差的控制和实时补偿,提高了直驱式数控铣头的加工精度。
附图说明
图1为本发明热误差补偿系统结构示意图;
图2为主轴轴向定位偏差图;
图3为主轴热偏移图;
图4为主轴热倾斜图;
图5为本发明直驱式数控铣头坐标系图;
图6为本发明铣头热误差补偿执行程序图;
其中,1-模型编辑键入模块、2-热误差补偿数学模型、3-数控系统、4-编程器、5-模/数转换器模块、6-直驱式数控铣头、7-温度传感器节点、8-中间节点、9-直驱式数控铣头控制系统、10-输出接口、11-终端、12-显示模块。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种数控铣头热误差补偿方法及系统,以解决上述现有技术存在的问题,使得铣头加工过程中产生的热误差实现有效控制和补偿,提高数控铣头的加工精度。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
在实际工作中,由于受热源影响,铣头内部的温度分布发生改变,引起零件受热产生变形,进而导致定位不准确,从而产生误差称为热误差,造成了刀具与工件间出现定位偏差。在无误差情况下,忽略机床坐标的变化及主轴热变形,求解铣头受热变形与各分量的联系,针对热误差补偿进行建模,具体步骤如下:
如图2所示为某一稳态温度场下铣头所处的位置,并不仅限于此位置,可以是任意位置,设此时铣头产生的热变形量为δ,设铣头热变形在z轴上的投影为δz,在x轴和y轴所构成的平面上的投影为δxoy,δxoy在x轴及y轴上的投影分别为δx和δy;A轴摆动与z轴所形成的夹角为ω;C轴转动与y轴形成的夹角ξ。基于三角函数关系,求解铣头总热变形量为δ情况下的各变形分量,如下式所示:
Figure BDA0003247007200000041
由图2及上式可求解出无误差状态下铣头热误差补偿数学模型如下式所示:
Figure BDA0003247007200000042
通过结合实施例,附图3~5所示的一种数控铣头热误差补偿方法及系统,具体包括以下步骤:
(1)建立铣头坐标系。
设刀尖处为原点O,如图3所示,设x,y,z三个坐标轴方向的热偏移分别为:ωxo(t)、ωyo(t)、ωzo(t);如图4所示,设主轴在XOZ及YOZ两个平面内产生的热倾斜分别为σxo(t)、σyo(t)、σzo(t);设A/C轴沿x,y,z三个坐标轴方向的热偏移分别为:ωxa(t)、ωya(t)、ωza(t)、ωxc(t)、ωyc(t)、ωzc(t);设x,y,z向生成传动副的俯仰误差、偏摆误差、滚转误差分别为:σx(λ)、σy(λ)、σz(λ),λ=(x,y,z);设x,y,z产生的热偏移分别为:Wxx0(t)、Wyx0(t)、ωzx0(t)、ωxy0(t)、ωyy0(t)、ωzy0(t)、ωxz0(t)、ωyz0(t)、ωzz0(t)。式中t代表受热变形过程与温度相关的变量,首位下角标第一个字母为误差方向,第二个字母表示名义上的运动方向,0表示零点偏移。
(2)根据机床运动副误差运动学原理,利用小误差假设可建立铣头的热误差补偿数学模型。
主轴热偏移和热倾斜误差的齐次变换矩阵如下式所示:
Figure BDA0003247007200000051
当A轴转动角为α时,其坐标变换矩阵如下式所示:
Figure BDA0003247007200000052
当C轴转动角为β时,其坐标变换矩阵如下式所示:
Figure BDA0003247007200000053
式中,d1、d2分别为C轴坐标和A轴坐标到坐标系原点O的距离,具体如图5所示。其中,ωλa=[ωxa(t),ωya(t),ωza(t)]T,ωλc=[ωxc(t),ωyc(t),ωzc(t)]T
当x轴受热偏移υ时,其齐次变换矩阵如下式所示:
Figure BDA0003247007200000054
当y轴受热偏移κ时,其齐次变换矩阵如下式所示:
Figure BDA0003247007200000055
当z轴传动副热变形量为γ时,其齐次变换矩阵为:
Figure BDA0003247007200000056
主轴相对于C轴的齐次变换矩阵为
Figure BDA0003247007200000061
设铣头刀尖处坐标系为f,相对于主轴坐标系s的变换矩阵如下式所示:
Figure BDA0003247007200000062
式中:L为刀尖位置处Z向的受热偏移量。
由式(3)~(9)可建立铣头在实际状态下热误差补偿模型如下式所示:
E=P'·Pα·Pβ·Pυ·Pκ·Pγ·Hs·Hf (10)
根据小误差假设,求解铣头综合热误差矩阵为
Figure BDA0003247007200000063
式中:θx,θy,θz分别代表直驱式数控铣头在x,y,z三个方向的转角误差;Wx,Wy,Wz为直驱式数控铣头在x,y,z三个方向的位置误差。
根据小误差补偿运动,θx=-τx,θy=-τy,θz=-τz,求解铣头热误差补偿数学模型为
Figure BDA0003247007200000064
通过上式求得铣头各误差补偿量的数学模型如下式所示:
Figure BDA0003247007200000071
(3)建立热误差补偿系统。
如图1所示,为本实施例涉及一种数控铣头热误差补偿方法及系统,包括:直驱式数控铣头、中间节点、模/数转换器模块、数控系统、热误差补偿数学模型、直驱式数控铣头控制系统、输出接口、终端、模型编辑键入模块、编辑器、温度传感器节点、显示模块。
一种数控铣头热误差补偿方法及系统的工作流程是:
所述热误差补偿数学模型2导入直驱式数控铣头控制系统中,将温度传感器节点7布置在铣头关键位置的四个测温点,其中测温点分别布置在C轴电机转子测点、A轴电机转子测点、铣头轴承测点、铣头壳体测点处,温度数据通过所述温度传感器节点7的初步处理和温度信号的暂存,并将温度信号输送至中心节点8,所述中心节点8将多个温度测点的温度数据进行收集后转换为电压信号并放大,所述模/数转换器5将模拟信号转换为数字信号,并将其输入至直驱式铣头控制系统9,所述直驱式铣头控制系统9根据模型编辑键入模块1输入的实际加工条件分析热误差补偿数学模型2,计算出热补偿值,并通过输出接口10和终端11显示出来,最终实现对铣头加工过程中产生的热误差的控制和补偿。
所述编程器4以温度传感器采集的温度数据结果为标准进行实时热补偿,将加工中心M80热误差补偿代码程序输入进数控系统3中,通过温度传感器的测温结果判断直驱式数控铣头6是否需要热误差补偿,若需要进行热误差补偿,系统自动执行热误差补偿程序,热补偿之后通过软件再次对加工精度进行反馈,若不满足实际生产精度需要则自动循环加工,直到工件满足精度要求,具体执行程序流程如图6所示。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (3)

1.一种数控铣头热误差补偿方法及系统,其特征在于,通过对无误差和实际两种不同情况下进行铣头热误差分析,同时建立热误差补偿数学模型,求解铣头综合热误差运动矩阵,并将所建立的模型导入热误差补偿系统,编写相关执行程序以实现实际加工中热误差的有效补偿。
2.权利要求1中所述的热误差补偿数学模型,其特征在于,步骤为:
A、建立铣头受热变形与各分量的联系,基于三角函数关系得出铣头总热变形量为
Figure FDA0003247007190000011
式中,铣头热变形量为δ,铣头热变形在z轴上的投影为δz,δxoy为在x轴和y轴所构成的平面上的投影,δx和δy分别为δxoy在x轴及y轴上的投影;A轴摆动与z轴所形成的夹角为ω;C轴转动与y轴形成的夹角ξ;
B、求解出无误差状态下铣头热误差补偿数学模型为
Figure FDA0003247007190000012
C、根据机床运动副误差运动学原理主轴热偏移和热倾斜误差的齐次变换矩阵为
Figure FDA0003247007190000013
其中,σxo(t)、σyo(t)、σzo(t)分别为主轴在XOZ及YOZ两个平面内产生的热倾斜,ωxo(t)、ωyo(t)、ωzo(t)分别为x,y,z三个坐标轴方向的热偏移;
D、根据小误差假设,得到实际状态下铣头综合热误差矩阵为
Figure FDA0003247007190000014
其中:θx,θy,θz分别代表直驱式数控铣头在x,y,z三个方向的转角误差;Wx,Wy,Wz为直驱式数控铣头在x,y,z三个方向的位置误差,将主轴热偏移和热倾斜代入模型中,生成铣头综合热误差运动矩阵和不同方向的热误差补偿分量,铣头热误差补偿数学模型为
Figure FDA0003247007190000021
式中:L为刀尖位置处Z向的受热偏移量,d1为A轴与XOY平面的距离,d2为C轴与XOY平面的距离,A轴转动角为α,C轴转动角为β,根据小误差补偿运动,θx=-τx,θy=-τy,θz=-τz,通过上式求得铣头各误差补偿量的数学模型如下式所示:
Figure FDA0003247007190000022
3.一种实现权利要求1中的热误差补偿系统,其特征在于,包括:直驱式数控铣头、模型编辑键入模块、输出接口、终端、温度传感器节点、中间节点、模/数转换器模块、直驱式数控铣头控制系统、热误差补偿数学模型、数控系统、编程器、显示模块,其中:选取直驱式数控铣头上C轴电机转子测点、A轴电机转子测点、铣头轴承测点、铣头壳体测点四个关键位置的测温点布置温度传感器探头,温度传感器获取各测点的温度信号并输送至中心节点,中心节点将温度信号转换为电压信号并放大,模/数转换器将模拟信号转换为数字信息,并将其输入至直驱式数控铣头控制系统,直驱式数控铣头控制系统根据实际加工条件分析热误差补偿的数学模型,计算出热补偿量,实现铣头加工过程中产生的热误差的控制和补偿,提高了直驱式数控铣头的加工精度。
CN202111040927.4A 2021-09-06 2021-09-06 一种数控铣头热误差补偿方法及系统 Active CN113721548B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111040927.4A CN113721548B (zh) 2021-09-06 2021-09-06 一种数控铣头热误差补偿方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111040927.4A CN113721548B (zh) 2021-09-06 2021-09-06 一种数控铣头热误差补偿方法及系统

Publications (2)

Publication Number Publication Date
CN113721548A true CN113721548A (zh) 2021-11-30
CN113721548B CN113721548B (zh) 2022-05-03

Family

ID=78682244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111040927.4A Active CN113721548B (zh) 2021-09-06 2021-09-06 一种数控铣头热误差补偿方法及系统

Country Status (1)

Country Link
CN (1) CN113721548B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115673870A (zh) * 2022-11-14 2023-02-03 齐齐哈尔大学 一种五轴龙门铣ac摆角铣头内部发热量温升检测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100152881A1 (en) * 2008-12-11 2010-06-17 Industrial Technology Research Institute Thermal error compensation method for machine tools
CN103034169A (zh) * 2012-12-26 2013-04-10 西安理工大学 一种数控机床热误差建模与补偿的方法
CN105759718A (zh) * 2016-03-21 2016-07-13 电子科技大学 数控机床热误差在线补偿方法及系统
CN107861470A (zh) * 2017-10-25 2018-03-30 沈阳机床股份有限公司 基于pmc控制的数控机床主轴热伸长误差实时补偿方法
CN111123833A (zh) * 2019-12-03 2020-05-08 三明学院 一种机床的热误差补偿计算方法、装置、设备和存储介质
CN113110295A (zh) * 2021-05-05 2021-07-13 哈尔滨理工大学 一种基于键合图的高速电主轴热误差建模方法
CN113138555A (zh) * 2021-04-22 2021-07-20 哈尔滨理工大学 一种基于遗传算法优化的grnn电主轴热误差建模方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100152881A1 (en) * 2008-12-11 2010-06-17 Industrial Technology Research Institute Thermal error compensation method for machine tools
CN103034169A (zh) * 2012-12-26 2013-04-10 西安理工大学 一种数控机床热误差建模与补偿的方法
CN105759718A (zh) * 2016-03-21 2016-07-13 电子科技大学 数控机床热误差在线补偿方法及系统
CN107861470A (zh) * 2017-10-25 2018-03-30 沈阳机床股份有限公司 基于pmc控制的数控机床主轴热伸长误差实时补偿方法
CN111123833A (zh) * 2019-12-03 2020-05-08 三明学院 一种机床的热误差补偿计算方法、装置、设备和存储介质
CN113138555A (zh) * 2021-04-22 2021-07-20 哈尔滨理工大学 一种基于遗传算法优化的grnn电主轴热误差建模方法
CN113110295A (zh) * 2021-05-05 2021-07-13 哈尔滨理工大学 一种基于键合图的高速电主轴热误差建模方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
戴野 等: ""基于ANFIS的高速电主轴热误差建模研究"", 《仪器仪表学报》 *
罗和平 等: ""A/C数控铣头热变形研究"", 《重型机械》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115673870A (zh) * 2022-11-14 2023-02-03 齐齐哈尔大学 一种五轴龙门铣ac摆角铣头内部发热量温升检测装置及方法

Also Published As

Publication number Publication date
CN113721548B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
Tsutsumi et al. Identification and compensation of systematic deviations particular to 5-axis machining centers
CN109709892B (zh) 一种多轴联动数控机床空间误差在线补偿方法
CN105269404B (zh) 数控机床刀尖动态特性精度检测装置及其方法
CN106078359B (zh) 一种龙门式多主轴制孔组合机床的零点定义与标定方法
CN108334029A (zh) 嵌入误差补偿功能的数控机床设备及其补偿方法
CN103676781B (zh) 一种基于西门子840d二次界面的误差动态补偿系统
CN105806251A (zh) 基于线激光传感器的四轴测量系统及其测量方法
CN108672835A (zh) 一种基于对称度误差在线检测及补偿的人字齿轮插削加工方法
CN106126767A (zh) 用于在计算机控制系统中对全局和局部偏移实施补偿的系统及方法
CN103345199A (zh) 基于人机界面二次开发的数控机床误差补偿系统及方法
JP2018142064A (ja) 工作機械の誤差同定方法
CN107480356B (zh) 基于catia和激光跟踪仪的部件设计检验一体化方法
CN112698625A (zh) 一种面向联动轨迹误差预测的五轴机床数字孪生建模方法
JP2006065716A (ja) 変形誤差の補正方法
CN113721548B (zh) 一种数控铣头热误差补偿方法及系统
CN111552236A (zh) 一种宏微结合的多精度智能数控系统
Tan et al. Geometrical error compensation of precision motion systems using radial basis function
CN107066726B (zh) 一种数控机床旋转轴垂直度误差建模方法
Kidani et al. Design and analysis of a built-in yaw measurement system using dual linear scales for automatic machine tool error compensation
CN113778018A (zh) 一种基于R-test的五轴机床刀轴矢量误差测量方法
CN116909209A (zh) 一种考虑动态热误差的数控机床误差建模和预测方法
Liu et al. Real-time error compensation of a 5-axis machining robot using externally mounted encoder systems
CN114782513B (zh) 一种基于平面的点激光传感器安装位姿标定方法
Chen et al. Synchronous measurement and verification of position-independent geometric errors and position-dependent geometric errors in C-axis on mill-turn machine tools
Liu et al. A line measurement method for geometric error measurement of the vertical machining center

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant