CN113704922B - 一种基于声振及纹理特征预测表面粗糙度的方法 - Google Patents
一种基于声振及纹理特征预测表面粗糙度的方法 Download PDFInfo
- Publication number
- CN113704922B CN113704922B CN202111017732.8A CN202111017732A CN113704922B CN 113704922 B CN113704922 B CN 113704922B CN 202111017732 A CN202111017732 A CN 202111017732A CN 113704922 B CN113704922 B CN 113704922B
- Authority
- CN
- China
- Prior art keywords
- roughness
- value
- milling
- root mean
- mean square
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000003746 surface roughness Effects 0.000 title claims abstract description 17
- 238000003801 milling Methods 0.000 claims abstract description 75
- 230000001133 acceleration Effects 0.000 claims abstract description 51
- 238000012360 testing method Methods 0.000 claims abstract description 34
- 238000012843 least square support vector machine Methods 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims description 44
- 230000006870 function Effects 0.000 claims description 33
- 238000005457 optimization Methods 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 16
- 238000012549 training Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000006978 adaptation Effects 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 238000012706 support-vector machine Methods 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 238000013139 quantization Methods 0.000 claims description 3
- 238000012847 principal component analysis method Methods 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/25—Design optimisation, verification or simulation using particle-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/10—Noise analysis or noise optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Geometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111017732.8A CN113704922B (zh) | 2021-09-01 | 2021-09-01 | 一种基于声振及纹理特征预测表面粗糙度的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111017732.8A CN113704922B (zh) | 2021-09-01 | 2021-09-01 | 一种基于声振及纹理特征预测表面粗糙度的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113704922A CN113704922A (zh) | 2021-11-26 |
CN113704922B true CN113704922B (zh) | 2024-02-02 |
Family
ID=78658489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111017732.8A Active CN113704922B (zh) | 2021-09-01 | 2021-09-01 | 一种基于声振及纹理特征预测表面粗糙度的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113704922B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114492527A (zh) * | 2022-01-27 | 2022-05-13 | 上海理工大学 | 基于模糊神经网络与主成分分析表面粗糙度在线预测方法 |
CN116089818B (zh) * | 2023-01-10 | 2023-10-27 | 南京航空航天大学 | 机械加工过程中工件表面粗糙度预测方法、系统及产品 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103761429A (zh) * | 2014-01-10 | 2014-04-30 | 大连理工大学 | 铣削加工工件表面粗糙度的预测方法 |
CN104583912A (zh) * | 2012-08-20 | 2015-04-29 | 三星电子株式会社 | 用于感知具有多形态反馈的图像的系统和方法 |
CN104625265A (zh) * | 2014-12-24 | 2015-05-20 | 北方工业大学 | 一种超硬材料刀具表面凹坑微织构纹理的新型加工方法 |
JP2017026485A (ja) * | 2015-07-23 | 2017-02-02 | 日清オイリオグループ株式会社 | パラメータを用いた多孔性食品の食感評価方法及び評価システム |
JP2017026484A (ja) * | 2015-07-23 | 2017-02-02 | 日清オイリオグループ株式会社 | 回帰式を用いた多孔性食品の食感評価方法及び評価システム |
CN106847257A (zh) * | 2015-09-16 | 2017-06-13 | 汤姆逊许可公司 | 合成声音的方法和装置 |
CN108381306A (zh) * | 2018-05-02 | 2018-08-10 | 吉林大学 | 一种三组超声振子成锥体结构的超声加工机床及控制方法 |
CN108406324A (zh) * | 2018-03-22 | 2018-08-17 | 长春理工大学 | 旋转超声三维椭圆振动浸抛光液铣削加工装置及方法 |
CN109753632A (zh) * | 2018-11-01 | 2019-05-14 | 北京理工大学 | 一种基于数据挖掘的表面粗糙度监测模型及构建方法 |
CN109934206A (zh) * | 2019-04-08 | 2019-06-25 | 中国矿业大学(北京) | 一种非平稳工况下的旋转机械故障诊断方法 |
CN110090967A (zh) * | 2019-04-23 | 2019-08-06 | 天津大学 | 基于多自由度振动的高表面质量超精密切削成形方法 |
CN110091216A (zh) * | 2019-05-13 | 2019-08-06 | 江苏师范大学 | 铣削噪声与铣削振动的监测及其相关性分析系统及方法 |
CN110348075A (zh) * | 2019-06-20 | 2019-10-18 | 湖南科技大学 | 一种基于改进支持向量机算法的磨削表面粗糙度预测方法 |
CN110509186A (zh) * | 2019-08-29 | 2019-11-29 | 华中科技大学 | 一种基于加工振动特征的机器人磨抛质量表征方法 |
CN111487046A (zh) * | 2020-02-27 | 2020-08-04 | 广西电网有限责任公司电力科学研究院 | 一种断路器声纹及振动熵特征融合的故障诊断方法 |
CN112222540A (zh) * | 2020-09-28 | 2021-01-15 | 天津理工大学 | 一种螺旋锥齿轮旋转超声磨齿加工装置的设计方法 |
CN112264844A (zh) * | 2020-09-29 | 2021-01-26 | 郑州大学 | 一种超声振动圆柱形疲劳试样整体式轴向纹理研磨机 |
-
2021
- 2021-09-01 CN CN202111017732.8A patent/CN113704922B/zh active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104583912A (zh) * | 2012-08-20 | 2015-04-29 | 三星电子株式会社 | 用于感知具有多形态反馈的图像的系统和方法 |
CN103761429A (zh) * | 2014-01-10 | 2014-04-30 | 大连理工大学 | 铣削加工工件表面粗糙度的预测方法 |
CN104625265A (zh) * | 2014-12-24 | 2015-05-20 | 北方工业大学 | 一种超硬材料刀具表面凹坑微织构纹理的新型加工方法 |
JP2017026485A (ja) * | 2015-07-23 | 2017-02-02 | 日清オイリオグループ株式会社 | パラメータを用いた多孔性食品の食感評価方法及び評価システム |
JP2017026484A (ja) * | 2015-07-23 | 2017-02-02 | 日清オイリオグループ株式会社 | 回帰式を用いた多孔性食品の食感評価方法及び評価システム |
CN106847257A (zh) * | 2015-09-16 | 2017-06-13 | 汤姆逊许可公司 | 合成声音的方法和装置 |
CN108406324A (zh) * | 2018-03-22 | 2018-08-17 | 长春理工大学 | 旋转超声三维椭圆振动浸抛光液铣削加工装置及方法 |
CN108381306A (zh) * | 2018-05-02 | 2018-08-10 | 吉林大学 | 一种三组超声振子成锥体结构的超声加工机床及控制方法 |
CN109753632A (zh) * | 2018-11-01 | 2019-05-14 | 北京理工大学 | 一种基于数据挖掘的表面粗糙度监测模型及构建方法 |
CN109934206A (zh) * | 2019-04-08 | 2019-06-25 | 中国矿业大学(北京) | 一种非平稳工况下的旋转机械故障诊断方法 |
CN110090967A (zh) * | 2019-04-23 | 2019-08-06 | 天津大学 | 基于多自由度振动的高表面质量超精密切削成形方法 |
CN110091216A (zh) * | 2019-05-13 | 2019-08-06 | 江苏师范大学 | 铣削噪声与铣削振动的监测及其相关性分析系统及方法 |
CN110348075A (zh) * | 2019-06-20 | 2019-10-18 | 湖南科技大学 | 一种基于改进支持向量机算法的磨削表面粗糙度预测方法 |
CN110509186A (zh) * | 2019-08-29 | 2019-11-29 | 华中科技大学 | 一种基于加工振动特征的机器人磨抛质量表征方法 |
CN111487046A (zh) * | 2020-02-27 | 2020-08-04 | 广西电网有限责任公司电力科学研究院 | 一种断路器声纹及振动熵特征融合的故障诊断方法 |
CN112222540A (zh) * | 2020-09-28 | 2021-01-15 | 天津理工大学 | 一种螺旋锥齿轮旋转超声磨齿加工装置的设计方法 |
CN112264844A (zh) * | 2020-09-29 | 2021-01-26 | 郑州大学 | 一种超声振动圆柱形疲劳试样整体式轴向纹理研磨机 |
Non-Patent Citations (1)
Title |
---|
复合梁变幅杆单激励超声椭圆振动切削基础研究;殷振;中国博士学位论文全文数据库(第01期);B022-183 * |
Also Published As
Publication number | Publication date |
---|---|
CN113704922A (zh) | 2021-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113704922B (zh) | 一种基于声振及纹理特征预测表面粗糙度的方法 | |
WO2021004154A1 (zh) | 一种数控机床刀具剩余寿命预测方法 | |
CN114139772B (zh) | 一种基于优化广义回归神经网络预测工件表面质量的方法 | |
CN112247674B (zh) | 一种刀具磨损预测方法 | |
CN106842922B (zh) | 一种数控加工误差优化方法 | |
CN113051831B (zh) | 机床热误差自学习预测模型建模方法及热误差控制方法 | |
WO2019084948A1 (zh) | 一种卧式数控车床的主轴径向热漂移误差建模及补偿方法 | |
Ruijun et al. | The thermal error optimization models for CNC machine tools | |
CN107942934A (zh) | 一种卧式数控车床的主轴径向热漂移误差建模及补偿方法 | |
CN110889091A (zh) | 基于温度敏感区间分段的机床热误差预测方法与系统 | |
CN110509186B (zh) | 一种基于加工振动特征的机器人磨抛质量表征方法 | |
CN112926152B (zh) | 一种数字孪生驱动的薄壁件装夹力精准控制与优化方法 | |
CN113688534B (zh) | 一种基于多特征融合模型寻找最优铣削参数的研究方法 | |
CN112734858B (zh) | 一种双目标定精度在线检测方法及装置 | |
CN116578832B (zh) | 预测机械加工零件表面粗糙度的装置 | |
CN112475410A (zh) | 一种铣削温度与多元影响因子的关联分析系统及方法 | |
Li et al. | Roughness prediction model of milling noise-vibration-surface texture multi-dimensional feature fusion for N6 nickel metal | |
Zhou et al. | Prediction of cutting force in milling process using vibration signals of machine tool | |
CN115016403A (zh) | 一种滚动轴承外圈内滚道的磨削加工过程控制方法及系统 | |
CN112757052A (zh) | 不同磨损刀具的车削热与多元影响因子的相关性分析方法 | |
CN114758176A (zh) | 基于工业机器人本体信息的打磨状态在线监测方法 | |
CN116643020A (zh) | 基于高密度水基泡沫切削液提高铣削工件表面质量的方法 | |
CN112966560A (zh) | 基于反卷积成像的电主轴故障诊断方法和装置 | |
CN116124047A (zh) | 一种基于法向量统计特性的粗糙度各向异性参数测量方法 | |
CN114819311B (zh) | 一种数控加工表面粗糙度预测模型的构建方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240305 Address after: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui. Patentee after: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd. Country or region after: China Address before: 221116 No. 101 Shanghai Road, Tongshan District, Xuzhou City, Jiangsu Province Patentee before: Jiangsu Normal University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240401 Address after: No. 602 Taoyuan South Avenue, Pingyuan County Economic Development Zone, Dezhou City, Shandong Province, 253100 Patentee after: Pingyuan power supply company of State Grid Shandong electric power Co. Country or region after: China Address before: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui. Patentee before: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd. Country or region before: China |