CN113691181B - 电机电感检测方法、装置以及电机控制器、存储介质 - Google Patents

电机电感检测方法、装置以及电机控制器、存储介质 Download PDF

Info

Publication number
CN113691181B
CN113691181B CN202010421967.2A CN202010421967A CN113691181B CN 113691181 B CN113691181 B CN 113691181B CN 202010421967 A CN202010421967 A CN 202010421967A CN 113691181 B CN113691181 B CN 113691181B
Authority
CN
China
Prior art keywords
current
disturbance signal
axis
inductance
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010421967.2A
Other languages
English (en)
Other versions
CN113691181A (zh
Inventor
双波
诸自强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Welling Motor Manufacturing Co Ltd
Midea Welling Motor Technology Shanghai Co Ltd
Original Assignee
Guangdong Welling Motor Manufacturing Co Ltd
Midea Welling Motor Technology Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Welling Motor Manufacturing Co Ltd, Midea Welling Motor Technology Shanghai Co Ltd filed Critical Guangdong Welling Motor Manufacturing Co Ltd
Priority to CN202010421967.2A priority Critical patent/CN113691181B/zh
Publication of CN113691181A publication Critical patent/CN113691181A/zh
Application granted granted Critical
Publication of CN113691181B publication Critical patent/CN113691181B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference

Abstract

本发明提出一种电机电感检测方法、装置以及电机控制器、存储介质,其中,方法包括:以预设的直轴电流及交轴电流驱动目标电机运行;在第一预设时间间隔后,向直轴电流注入第一扰动信号,并获取第一电流幅值;在第二预设的时间间隔后,向交轴电流注入第二扰动信号,并获取第二电流幅值;在第三预设的时间间隔后,向目标电机的驱动电路中注入第三扰动信号,并获取第三电流幅值;根据第一电流幅值、第二电流幅值、第三电流幅值及第三扰动信号的幅值和频率,计算目标电机的增量电感。该方法在目标电机驱动电路的三个不同位置分别注入扰动信号,通过扰动信号计算增量电感,从而实现增量电感的现场检测,有利于提高增量电感的检测准确性。

Description

电机电感检测方法、装置以及电机控制器、存储介质
技术领域
本发明涉及电机技术领域,尤其涉及一种电机电感检测方法、装置以及电机控制器、存储介质。
背景技术
永磁同步电机或同步磁阻电机具有功率密度大、效率高的优点,在家用电器和电动汽车中得到了广泛应用。在同步磁阻电机和永磁同步电机的应用中,电机的电流和磁链之间具有强的非线性关联,其中磁饱和和交互磁化效应十分突出。电机的直轴磁通链和交轴磁通链分别随着直轴电流和交轴电流而变化,但是由于直轴和交轴正交耦合磁化的影响,直轴磁通链会随着交轴电流而变化,交轴磁通链会随着直轴电流而变化。其中,直轴磁通链和交轴磁通链分别相对于直轴电流和交轴电流的变化率即为电机工作点的直轴和交轴增量电感,直轴磁通量相对于交轴电流以及交轴磁通量相对于直轴电流的变化率为直轴和交轴交互耦合效应的增量电感。
对于电机正确的闭环控制尤其是基于电机凸极性的无速度传感器控制而言,掌握电机任意工作点的增量电感是至关重要的。
相关技术中,增量电感可以预先依据电机的磁路模型进行有限元仿真获得,但是由于电机装配误差以及现场使用条件的变化,导致获得的增量电感准确性大大降低。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种电机电感检测方法,以在目标电机驱动电路的三个不同位置分别注入扰动信号,通过扰动信号计算增量电感,从而实现增量电感的现场检测,有利于提高增量电感的检测准确性。
本发明的第二个目的在于提出一种电机电感检测装置。
本发明的第三个目的在于提出一种电机控制器。
本发明的第四个目的在于提出一种可读存储介质。
为达上述目的,本发明第一方面实施例提出了一种电机电感检测方法,包括:以预设的直轴电流及交轴电流驱动目标电机运行;在第一预设时间间隔后,向所述直轴电流注入第一扰动信号,并获取所述第一扰动信号对应的第一电流幅值;在第二预设的时间间隔后,向所述交轴电流注入第二扰动信号,并获取所述第二扰动信号对应的第二电流幅值;在第三预设的时间间隔后,向所述目标电机的驱动电路中注入第三扰动信号,并获取所述第三扰动信号对应的第三电流幅值,其中,第三扰动信号为正交的正弦信号;根据所述第一电流幅值、第二电流幅值、第三电流幅值及所述第三扰动信号的幅值和频率,计算所述目标电机在所述预设的直轴电流及交轴电流下的增量电感。
根据本发明实施例的电机电感检测方法,首先,以预设的直轴电流及交轴电流驱动目标电机运行,然后,在第一预设时间间隔后,向直轴电流注入第一扰动信号,并获取第一扰动信号对应的第一电流幅值;在第二预设的时间间隔后,向交轴电流注入第二扰动信号,并获取第二扰动信号对应的第二电流幅值;在第三预设时间间隔后,向目标电机的驱动电路中注入第三扰动信号,并获取第三扰动信号对应的第三电流幅值,其中,第三扰动信号为正交的正弦信号;最后,根据第一电流幅值、第二电流幅值、第三电流幅值及第三扰动信号的幅值和频率,计算目标电机在预设的直轴电流及交轴电流下的增量电感。由此,该方法在目标电机驱动电路的三个不同位置分别注入扰动信号,通过扰动信号计算增量电感,从而实现了增量电感的现场检测,有利于提高增量电感的检测准确性。
另外,根据本发明上述实施例的电机电感检测方法还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述以预设的直轴电流及交轴电流驱动目标电机运行之前,还包括:将所述目标电机的转轴固定。
根据本发明的一个实施例,所述第一扰动信号的频率为f,其中,所述获取所述第一扰动信号对应的第一电流幅值,包括:获取注入所述第一扰动信号后,所述目标电机驱动电流中频率为f的直轴电流分量幅值。
根据本发明的一个实施例,在所述以预设的直轴电流及交轴电流驱动目标电机运行之前,还包括:根据所述目标电机的工作特性,确定所述预设的直轴电流及交轴电流。
根据本发明的一个实施例,在所述向所述交轴电流注入第二扰动信号之前,还包括:将所述第一扰动信号置零;在所述向所述目标电机的驱动电路中注入第三扰动信号之前,还包括:将所述第二扰动信号置零。
根据本发明的一个实施例,所述根据所述第一电流幅值、第二电流幅值、第三电流幅值及所述第三扰动信号的幅值和频率,计算所述目标电机当前的电感,包括:
根据计算所述目标电机当前的直轴电感;
根据计算所述目标电机当前的直轴电感;
根据计算所述目标电机当前的交互耦合增量电感;
其中,Vh为所述第三扰动信号的幅值,ωh为所述第三扰动信号的频率,I1为所述第一电流幅值,I2为所述第二电流幅值,Ip为所述第三电流幅值中的正序分量,In为所述第三电流幅值中的负序分量。
根据本发明的一个实施例,所述电机电感检测方法,还包括:将所述目标电机的驱动电流中的直轴分量及交轴分量,分别进行低通滤波处理,获取直轴电流反馈量及交轴电流反馈量;将所述直轴电流反馈量及所述交轴电流反馈量,分别反馈至预设的直轴电流输入端及交轴电流输入端。
为达上述目的,本发明第二方面实施例提出了一种电机电感检测装置,包括:驱动模块,用于以预设的直轴电流及交轴电流驱动目标电机运行;第一处理模块,用于在第一预设时间间隔后,向所述驱动模块的直轴电流中注入第一扰动信号,并从所述驱动模块的输出端获取所述第一扰动信号对应的第一电流幅值;第二处理模块,用于在第二预设的时间间隔后,向所述驱动模块的交轴电流注入第二扰动信号,并从所述驱动模块的输出端获取所述第二扰动信号对应的第二电流幅值;第三处理模块,用于在第三预设的时间间隔后,向所述目标电机的驱动电路中注入第三扰动信号,并从所述驱动模块的输出端获取所述第三扰动信号对应的第三电流幅值,其中,第三扰动信号为正交的正弦信号;计算模块,用于根据所述第一电流幅值、第二电流幅值、第三电流幅值及第三扰动信号的幅值和频率,计算目标电机在预设的直轴电流及交轴电流下的增量电感。
根据本发明实施例的电机电感检测装置,通过驱动模块以预设的直轴电流及交轴电流驱动目标电机运行;通过第一处理模块在第一预设时间间隔后,向驱动模块的直轴电流中注入第一扰动信号,并从驱动模块的输出端获取第一扰动信号对应的第一电流幅值;通过第二处理模块在第二预设的时间间隔后,向驱动模块的交轴电流注入第二扰动信号,并从驱动模块的输出端获取第二扰动信号对应的第二电流幅值;以及通过第三处理模块在第三预设的时间间隔后,向目标电机的驱动电路中注入第三扰动信号,并从驱动模块的输出端获取第三扰动信号对应的第三电流幅值,其中,第三扰动信号为正交的正弦信号;通过计算模块根据第一电流幅值、第二电流幅值、第三电流幅值及第三扰动信号的幅值和频率,计算目标电机在预设的直轴电流及交轴电流下的增量电感。由此,该装置在目标电机驱动电路的三个不同位置分别注入扰动信号,通过扰动信号计算增量电感,从而实现增量电感的现场检测,有利于提高增量电感的检测准确性。
另外,根据本发明上述实施例的电机电感检测装置还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述第一处理模块,还用于在所述第二处理模块所述向所述交轴电流注入第二扰动信号之前,将所述第一扰动信号置零;所述第二处理模块,还用于在所述第三处理模块向所述目标电机的驱动电路中注入第三扰动信号之前,将所述第二扰动信号置零。
为达上述目的,本发明第三方面实施提出了一种电机控制器,包括本发明第二方面实施例所提出的电机电感检测装置。
本发明实施例的电机控制器,通过本发明实施例的电机电感检测装置,能够通过在目标电机驱动电路的三个不同位置分别注入的扰动信号,计算增量电感,从而实现增量电感的现场检测,有利于提高增量电感的检测准确性。
为达上述目的,本发明第四方面实施提出了一种可读存储介质,其上存储有电机电感检测程序,该程序被处理器执行时,实现本发明第一方面实施例所提出的电机电感检测方法。
本发明实施例的可读存储介质,在其上存储的电机电感检测程序被处理器执行时,能够通过在目标电机驱动电路的三个不同位置分别注入的扰动信号,计算增量电感,从而实现增量电感的现场检测,有利于提高增量电感的检测准确性。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的电机电感检测方法的流程图;
图2是根据本发明一个实施例的目标电机的驱动原理图;
图3是根据本发明实施例的电机电感检测装置的结构框图;
图4是根据本发明一个实施例的电机电感检测装置的结构示意图;
图5是根据本发明实施例的电机控制器的结构框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的电机电感检测方法、装置以及电机控制器、存储介质。
需要说明的是,在该实施例中,可定义两相静止坐标系α-β,在电机转子上建立一个两相旋转坐标系d-q,进而该坐标系d-q与转子同步转动,d轴(直轴)即为转子磁场的方向、q轴(交轴)即为垂直于转子磁场的方向。该实施例中的电机电感检测方法、装置以及电机控制器可适用于永磁同步电机和同步磁阻电机。
图1是根据本发明实施例的电机电感检测方法的流程图。
如图1所示,该方法包括以下步骤:
S101,以预设的直轴电流及交轴电流驱动目标电机运行。
具体地,分别给直轴和交轴施加预设的直轴电流id *和交轴电流iq *,以使目标电机产生驱动转矩。具体而言,如图2所示,可将预设的直轴电流id *进行PI(ProportionalIntegral,比例积分)调节以输出直轴电压ud *、将预设的交轴电流iq *进行PI调节以输出交轴电压uq *,将该直轴电压ud *和交轴电压uq *进行派克逆变换(PARK-1变换)得到α、β轴分别对应的电压uα *、uβ *,根据电压uα *和uβ *采用空间矢量调制技术对目标电机进行控制,以驱动目标电机运行,并开始进行计时。
S102,在第一预设时间间隔后,向直轴电流注入第一扰动信号,并获取第一扰动信号对应的第一电流幅值。其中,第一扰动信号可以是高频正弦电压信号。
具体地,参照图2,在计时时间达到第一预设时间时,将第一扰动信号注入直轴电流对应的PI调节器的输出端,即将第一高频正弦电压udh *叠加到直轴电压ud *上。之后,该高频正弦电压udh *经过派克逆变换、空间电压矢量调制后,转换为目标电机的驱动电压,以驱动目标电机运行。本申请实施例中,可以通过对采样的目标电机的驱动电流进行解析处理,以确定其中的高频电流信号幅值,即第一电流幅值。
其中,第一预设时间间隔的设置是为了保证目标电机的实际的直轴电流及交轴电流达到步骤S101中的预设的直轴电流id *和预设的交轴电流iq *,可根据PI调节的参数(比例参数、积分参数)确定第一预设时间。
S103,在第二预设的时间间隔后,向交轴电流注入第二扰动信号,并获取第二扰动信号对应的第二电流幅值。其中,第二扰动信号可以是高频正弦电压信号。
具体地,参照图2,在计时时间达到第二预设时间时,将第二扰动信号注入交轴电流对应的PI调节器的输出端,即将第二高频正弦电压uqh *叠加到交轴电压uq *上。之后,该高频正弦电压uqh *依次经过派克逆变换、空间电压矢量调制后,转换为目标电机的驱动电压,以驱动目标电机运行。其中,第二预设时间间隔的设置是为了保证已可靠获取到第一电流幅值。通常情况下,在加入扰动信号后的几个周期内,电机的驱动电流就可以达到稳定,因此,第二预设的时间间隔,可以根据扰动信号的周期设置,比如为3个扰动信号周期长、或者为5个扰动信号周期长、或者为6个扰动信号周期长等等,本申请对此不做限定。
该实施例中,可以通过对采样的电机的驱动电流进行解析处理,以确定其中的高频电流信号幅值,即第二电流幅值。
其中,第二高频正弦电压uqh *可以和第一高频正弦电压udh *相等。
S104,在第三预设的时间间隔后,向目标电机的驱动电路中注入第三扰动信号,并获取第三扰动信号对应的第三电流幅值,其中,第三扰动信号为正交的高频正弦旋转电压信号。
具体地,在计时时间达到第三预设时间时,将第三扰动信号注入目标电机的驱动电路,即将高频正弦旋转电压uαh *和uβh *叠加到电压uα *和uβ *上。之后,该高频正弦旋转电压uαh *和uβh *依次经过空间电压矢量调制后转换为目标电机的驱动电压,以驱动目标电机运行,可以通过对采样的目标电机的驱动电流进行解析处理,以确定其中的高频电流信号幅值,即为第三电流幅值,其中,第三电流幅值包括正序分量Ip和负序分量In
S105,根据第一电流幅值、第二电流幅值、第三电流幅值及第三扰动信号的幅值和频率,计算目标电机在预设的直轴电流及交轴电流下的增量电感。其中,增量电感包括直轴的增量电感、交轴的增量电感以及交互耦合增量电感。
具体地,根据第一电流幅值I1、第二电流幅值i1、第三电流幅值的正序分量Ip和负序分量In、第三扰动信号的幅值Vh和频率ωh,计算目标电机在预设的直轴电流id *及交轴电流iq *下的直轴的增量电感、交轴的增量电感以及交互耦合增量电感。
一般而言,在步骤S102、步骤S103、步骤S104中,在注入高频电压信号几个周期后电流响应就可以达到稳定,此时即可获取对应的电流幅值。可以理解的是,分别在步骤S102中获得第一电流幅值后、步骤S103中获得第二电流幅值后、以及步骤S104中获得第三电流幅值的正序分量及负序分量后,可将第一电流幅值、第二电流幅值和第三电流幅值的正序分量及负序分量存储于存储器中,以在实施步骤S105中进行调用。
本发明实施例的电机电感检测方法,相较于相关技术中通过磁路模型来检测增量电感的方案,能够在目标电机的运行现场实现增量电感的检测,进而有利于避免电机装配误差以及现场使用条件导致的增量电感的检测准确度降低的现象。
由此,该方法在目标电机驱动电路的三个不同位置分别注入扰动信号,通过扰动信号计算增量电感,从而实现增量电感的现场检测,有利于提高增量电感的检测准确性。
在本发明的一个实施例中,以预设的直轴电流及交轴电流驱动目标电机运行之前,即在实施上述步骤S101之前,还可包括:将目标电机的转轴固定。
具体地,由于目标电机的电感检测(自调试)在其静止的情况下进行,因此需要在目标电机产生驱动转矩(即id *≠0、iq *≠0,且id *≠iq *)前,就将目标电机的转轴通过机械装置固定在任意的角度,使得目标电机不会因为工作点的改变而发生转动,从而有利于后续的电感检测。
在本发明的一个实施例中,第一扰动信号的频率可为f,相应的,步骤S102中的获取第一扰动信号对应的第一电流幅值,包括:获取注入第一扰动信号后,目标电机驱动电流中频率为f的直轴电流分量幅值。
具体地,第一扰动信号的频率f为高频(1000Hz~2000Hz),在注入第一扰动信号之前,目标电机的直轴驱动电流中没有高频电流,因此,在注入第一扰动信号后获取驱动电流中频率为高频f的直轴电流分量幅值,即为第一电流幅值。
类似地,第二扰动信号的频率也为高频,在注入第二扰动信号之前,目标电机的交轴驱动电流中没有高频电流,因此,在注入第一扰动信号后获取驱动电流中频率为高频的交轴电流分量幅值,即可获取到第二电流幅值。
在本发明的一个实施例中,在以预设的直轴电流及交轴电流驱动目标电机运行之前,即在实施上述步骤S101之前,还可包括:根据目标电机的工作特性,确定预设的直轴电流及交轴电流。
具体地,根据目标电机的工作特性可知,在目标电机运行时,目标电机的不同工作点对应不同的直轴电流和交轴电流,因此为了确保以预设的直轴电流及交轴电流驱动目标电机时,目标电机能够正常运行,可以根据目标电机的工作特性确定预设的直轴电流和交轴电流。
在本发明的一个实施例中,在上述步骤S103中的向交轴电流注入第二扰动信号之前,还可包括:将第一扰动信号置零;相应的,在上述步骤S104中的向目标电机的驱动电路中注入第三扰动信号之前,还包括:将第二扰动信号置零。
具体地,在第二预设的时间间隔后,为了避免第一扰动信号对第二扰动信号的影响,需将第一扰动信号置零后注入第二扰动信号;在第三预设的时间间隔后,为了避免第二扰动信号对第三扰动信号的影响,需将第二扰动信号置零后注入第三扰动信号。
在本发明的一个示例中,根据第一电流幅值、第二电流幅值、第三电流幅值及第三扰动信号的幅值和频率,计算目标电机当前的电感,即上述步骤S105,可包括:根据公式:
计算目标电机当前的直轴电感;根据公式:
计算目标电机当前的交轴电感;根据公式:
计算目标电机当前的交互耦合增量电感,其中,Vh为第三扰动信号的幅值,ωh为第三扰动信号的频率,I1为第一电流幅值,I2为第二电流幅值,Ip为第三电流幅值中的正序分量,In为第三电流幅值中的负序分量。
具体而言,可分别根据第一高频正弦电压udh*、第二高频正弦电压uqh*、高频正弦旋转电压uαh *和uβh *求出第一电流幅值I1的公式、第一电流幅值I2的公式、第三电流幅值中的正序风量Ip以及负序分量In的公式。然后根据第一电流幅值I1的公式、第一电流幅值I2的公式、第三电流幅值中的正序风量Ip以及负序分量In的公式变换得到公式(19)、(20)以及(21),从而分别根据公式(19)、(20)以及(21)计算目标电机当前的直轴电感、交轴电感以及交互耦合增量电感。具体变换过程如下:
注入的第一高频正弦电压udh*为:
根据公式:
计算第一电流幅值I1,公式(2)中的Ldh和Lqh分别为直轴和交轴的增量电感、Ldqn为直轴和交轴的交互耦合效应的增量电感、为PWM(Pulse Width Modulation,脉冲宽度调制)生成和硬件导致的延时所对应的相位。
注入的第二高频正弦电压uqh*为:
根据公式:
计算第二电流幅值I2
根据公式(2)和公式(4)可以求得直轴的增量电感Ldh和交轴的增量电感Lqh之间的相互关系式:
注入的高频正弦旋转电压uαh *和uβh *分别为:
其所对应的高频电流iα和iβ的公式为:
根据公式:
计算第三电流幅值中的正序分量Ip。其中,
根据公式:
计算第三电流幅值中的负序分量In。其中,
利用正序分量Ip的平方值减去负序分量In的平方值可以得到公式:
将公式(12)代入公式(10)可得到直轴电感Ldh和交轴电感Lqh之间的和的公式,并定义为电感基准值Lbase,从而可得到公式:
将公式(11)中的用公式(12)替换,得到直轴电感Ldh和交轴电感Lqh之间的积的公式:
定义直轴的增量电感Ldh、交轴的增量电感Lqh、交互耦合效应的增量电感Ldqh的归一化电感值分别为:
将公式(13)和公式(14)的左侧用公式(15)中的归一化电感值表示可得到公式:
求解公式(16)中的直轴电感Ldh、交轴的增量电感Lqh的归一化电感,得到公式:
将公式(17)中的代入公式(12),可以得到交互耦合增量电感的归一化值:
根据公式(17)、(18)求得的归一化电感、公式(13)求得的电感基准值Lbase、以及公式(5)求得的的值,可以得到直轴增量电感Ldh、交轴增量电感Lqh以及交互耦合增量电感Ldqn分别为:
其中,公式(21)中的交互耦合增量电感的Ldqh的符号与预设的交轴电流iq *的符号相反。
由于注入的第一高频正弦电压udh*、第二高频正弦电压uqh*、高频正弦旋转电压uαh *和uβh *均是已知的,因此,高频正弦旋转电压uβh *的幅值Vh和频率Vh是已知的,第一电流幅值、第二电流幅值、第三电流幅值中的正序分量Ip和负序分量In是已知的,因此,上述公式(19)、(20)以及(21)的右侧参数均是已知的,由此分别计算出目标电机在预设的直轴电流id *及交轴电流iq *下的直轴电感Ldh、交轴电感Lqh和交互耦合增量电感Ldqh
可以看出,上述公式(19)、(20)以及(21)中没有因相位延时导致的相位延时也就是说,计算目标电机的增量电感时无需考虑驱动电路中的相位延时,只需考虑到注入的第一高频正弦电压udh*、第二高频正弦电压uqh*、高频正弦旋转电压uαh *和uβh *分别对应的幅值即可,由此,避免了驱动电路中的相位延时对增量电感计算精度的影响,从而保证了电机电感检测的准确性,且检测过程较简单,无需引入额外的硬件测量设备(例如闭环观测器)来实现增量电感的检测,从而使得增量电感的检测过程简单、易实现。
在本发明的一个示例中,电机电感检测方法还可包括:将目标电机的驱动电流中的直轴分量及交轴分量,分别进行低通滤波处理,获取直轴电流反馈量及交轴电流反馈量;将直轴电流反馈量及交轴电流反馈量,分别反馈至预设的直轴电流输入端及交轴电流输入端。
具体地,在目标电机的运行过程中,通过驱动电流对目标电机进行闭环控制,具体而言,检测并获取实际的驱动电流的三相电流,并将该三相电流进行克拉克变换后转换为α轴电流分量iα和β轴电流分量iβ,α轴电流分量iα和β轴电流分量iβ经派克变换后转换为直轴电流分量id和交轴电流分量iq,获取该直轴电流分量id和交轴电流分量iq,并通过低通滤波器对该直轴电流分量id和交轴电流分量iq进行低通滤波处理,以滤除其中的高频电流(即扰动信号)以获取直轴电流反馈量及交轴电流反馈量,并将直轴电流反馈量反馈至直轴电流输入端,将交轴电流反馈量反馈至交轴电流输入端,从而实现对目标电机的闭环控制。由此,避免扰动信号掺杂在直轴电流反馈量和交轴电流反馈量中而影响目标电机的运行。
综上所述,本发明实施例的电机电感检测方法,在目标电机驱动电路的三个不同位置分别注入扰动信号,通过扰动信号计算增量电感,从而实现增量电感的现场检测,且避免了驱动电路中相位延时对增量电感检测的影响,能够提高增量电感的检测准确性。
为了实现上述实施例,本发明还提出一种电机电感检测装置。图3是根据本发明实施例的电机电感检测装置的结构框图。
如图3所示,电机电感检测装置100包括:驱动模块10、第一处理模块20、第二处理模块30、第三处理模块40和计算模块50。
其中,驱动模块10用于以预设的直轴电流及交轴电流驱动目标电机运行;第一处理模块20用于在第一预设时间间隔后,向驱动模块10的直轴电流中注入第一扰动信号,并从驱动模块10的输出端获取第一扰动信号对应的第一电流幅值;第二处理模块30用于在第二预设的时间间隔后,向驱动模块的交轴电流注入第二扰动信号,并从驱动模块的输出端获取第二扰动信号对应的第二电流幅值;第三处理模块40用于在第三预设的时间间隔后,向目标电机的驱动电路中注入第三扰动信号,并从驱动模块的输出端获取第三扰动信号对应的第三电流幅值,其中,第三扰动信号为正交的正弦信号;计算模块50用于根据第一电流幅值、第二电流幅值、第三电流幅值及第三扰动信号的幅值和频率,计算目标电机在预设的直轴电流及交轴电流下的增量电感。
需要说明的是,在该实施例中,如图4所示,驱动模块10可包括:第一电流调节器11、第二电流调节器12、坐标变换器13和空间电压矢量调制单元14;计算模块50可包括:克拉克变换器51、增量电感计算单元52、派克变换器53和低通滤波器54。其中,第一电流调节器和第二电流调节器均可以为PI(Proportional Integral,比例积分)调节器,坐标变换器13为派克逆变换器。
参照图4,第一电流调节器11的第一输入端与直轴输入电流连接;第二电流调节器12的第一输入端与交轴输入电流连接;第一电流调节器11的输出端,与坐标变换器13的第一输入端及第一处理模块20连接;第二电流调节器12的输出端,与坐标变换器13的第二输入端及第二处理模块30连接;坐标变换器13的输出端,与空间电压矢量调制单元14的输入端及第三处理模块40连接;空间电压矢量调制单元14的输出端与克拉克变换器51的输入端连接;克拉克变换器51与空间电压矢量调制单元14的输出端连接的;克拉克变换器51的输出端,与增量电感计算单元52的第一输入端及派克变换器53的输入端连接;派克变换器53的第一输出端,与增量电感计算单元52的第二输入端及低通滤波器54的第一输入端连接;派克变换器53的第二输出端,与增量电感计算单元52的第三输入端及低通滤波器54的第二输入端连接;低通滤波器54的第一输出端与第一电流调节器11的第二输入端连接;低通滤波器54的第二输出端与第二电流调节器12的第二输入端连接。
具体地,首先,可将预设的直轴电流id *和交轴电流iq *分别输入第一调节器11和第二调节器22的输入端,以使第一调节器11输出直轴电压ud *、第二调节器12输出交轴电压uq *,该直轴电压ud *和交轴电压uq *经坐标变换器13进行派克逆变换后得到α、β轴分别对应的电压uα *、uβ *,将电压uα *、uβ *输入空间电压矢量调制单元14,以使空间电压矢量调制单元14根据电压uα *和uβ *采用空间矢量调制技术对目标电机进行控制,以驱动目标电机运行,并开始进行计时。
然后,在第一预设时间间隔后,通过第一处理模块20向驱动模块10的直轴电流中注入第一扰动信号,并从空间电压矢量调制单元14的输出端获取第一扰动信号对应的第一电流幅值。其中,第一扰动信号可以是高频正弦电压信号;在第二预设的时间间隔后,通过第二处理模块30向驱动模块10的交轴电流注入第二扰动信号,并从空间电压矢量调制单元14的输出端获取第二扰动信号对应的第二电流幅值。其中,第二扰动信号可以是高频正弦电压信号;在第三预设的时间间隔后,通过第三处理模块40向目标电机的驱动电路中注入第三扰动信号,并从空间电压矢量调制单元14的输出端获取第三扰动信号对应的第三电流幅值,其中,第三扰动信号可以为正交的高频正弦旋转电压信号。
最后,计算模块50根据第一电流幅值、第二电流幅值、第三电流幅值及第三扰动信号的幅值和频率,计算目标电机在预设的直轴电流及交轴电流下的增量电感。其中,增量电感包括直轴的增量电感、交轴的增量电感以及交互耦合增量电感。
在本发明的一个实施例中,第一处理模块20还用于在第二处理模块向交轴电流注入第二扰动信号之前,将第一扰动信号置零;第二处理模块30还用于在第三处理模块向目标电机的驱动电路中注入第三扰动信号之前,将第二扰动信号置零。
具体地,在第二预设的时间间隔后,为了避免第一扰动信号对第二扰动信号的影响,需通过第一处理模块20将第一扰动信号置零,然后通过第二处理模块30注入第二扰动信号;在第三预设的时间间隔后,为了避免第二扰动信号对第三扰动信号的影响,需通过第二处理模块30将第二扰动信号置零,然后通过第三处理模块40注入第三扰动信号。
需要说明的是,前述对电机电感检测方法实施例的解释说明也适用于该实施例的电机电感检测装置,此处不再赘述。
本发明实施例的电机电感检测装置,在目标电机驱动电路的三个不同位置分别注入扰动信号,通过扰动信号计算增量电感,从而实现增量电感的现场检测,有利于提高增量电感的检测准确性。
图5是根据本发明实施例的电机控制器的结构框图。
如图5所示,该电机控制器1000包括本发明上述实施例的电机电感检测装置100。
本发明实施例的电机控制器,通过本发明实施例的电机电感检测装置,在目标电机驱动电路的三个不同位置分别注入扰动信号,通过扰动信号计算增量电感,从而实现增量电感的现场检测,有利于提高增量电感的检测准确性。
进一步地,本发明还提出了一种可读存储介质,其上存储有电机电感检测程序,该程序被处理器执行时,实现本发明上述实施例的电机电感检测方法。
该可读存储介质,在其上存储的电机电感检测程序被处理器执行时,能够通过在目标电机驱动电路的三个不同位置分别注入的扰动信号,计算增量电感,从而实现增量电感的现场检测,有利于提高增量电感的检测准确性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

1.一种电机电感检测方法,其特征在于,包括:
以预设的直轴电流及交轴电流驱动目标电机运行;
在第一预设时间间隔后,向所述直轴电流注入第一扰动信号,并获取所述第一扰动信号对应的第一电流幅值,其中,所述第一扰动信号的频率为f,所述第一电流幅值为在注入第一扰动信号后获取驱动电流中频率为f的直轴电流分量幅值;
在第二预设的时间间隔后,向所述交轴电流注入第二扰动信号,并获取所述第二扰动信号对应的第二电流幅值,其中,在向所述交轴电流注入第二扰动信号之前,将所述第一扰动信号置零;
在第三预设的时间间隔后,向所述目标电机的驱动电路中注入第三扰动信号,并获取所述第三扰动信号对应的第三电流幅值,其中,在向所述目标电机的驱动电路中注入第三扰动信号之前,将所述第二扰动信号置零,所述第三扰动信号为正交的正弦信号;
根据所述第一电流幅值、第二电流幅值、第三电流幅值及所述第三扰动信号的幅值和频率,计算所述目标电机在所述预设的直轴电流及交轴电流下的增量电感;
根据所述第一电流幅值、第二电流幅值、第三电流幅值及所述第三扰动信号的幅值和频率,计算所述目标电机当前的电感,包括:
根据,计算所述目标电机当前的直轴电感;
根据,计算所述目标电机当前的交轴电感;
根据,计算所述目标电机当前的交互耦合增量电感;
其中,Vh为所述第三扰动信号的幅值,ωh为所述第三扰动信号的频率,I1为所述第一电流幅值,I2为所述第二电流幅值,Ip为所述第三电流幅值中的正序分量,In为所述第三电流幅值中的负序分量。
2.如权利要求1所述的方法,其特征在于,所述以预设的直轴电流及交轴电流驱动目标电机运行之前,还包括:
将所述目标电机的转轴固定。
3.如权利要求1所述的方法,其特征在于,在所述以预设的直轴电流及交轴电流驱动目标电机运行之前,还包括:
根据所述目标电机的工作特性,确定所述预设的直轴电流及交轴电流。
4.如权利要求1-3任一所述的方法,其特征在于,还包括:
将所述目标电机的驱动电流中的直轴分量及交轴分量,分别进行低通滤波处理,获取直轴电流反馈量及交轴电流反馈量;
将所述直轴电流反馈量及所述交轴电流反馈量,分别反馈至预设的直轴电流输入端及交轴电流输入端。
5.一种电机电感检测装置,其特征在于,包括:
驱动模块,用于以预设的直轴电流及交轴电流驱动目标电机运行;
第一处理模块,用于在第一预设时间间隔后,向所述驱动模块的直轴电流中注入第一扰动信号,并从所述驱动模块的输出端获取所述第一扰动信号对应的第一电流幅值,其中,所述第一扰动信号的频率为f,所述第一电流幅值为在注入第一扰动信号后获取驱动电流中频率为f的直轴电流分量幅值;
第二处理模块,用于在第二预设的时间间隔后,向所述驱动模块的交轴电流注入第二扰动信号,并从所述驱动模块的输出端获取所述第二扰动信号对应的第二电流幅值,其中,在向所述交轴电流注入第二扰动信号之前,将所述第一扰动信号置零;
第三处理模块,用于在第三预设的时间间隔后,向所述目标电机的驱动电路中注入第三扰动信号,并从所述驱动模块的输出端获取所述第三扰动信号对应的第三电流幅值,其中,在向所述目标电机的驱动电路中注入第三扰动信号之前,将所述第二扰动信号置零,所述第三扰动信号为正交的正弦信号;
计算模块,用于根据所述第一电流幅值、第二电流幅值、第三电流幅值及第三扰动信号的幅值和频率,计算目标电机在预设的直轴电流及交轴电流下的增量电感;
根据所述第一电流幅值、第二电流幅值、第三电流幅值及所述第三扰动信号的幅值和频率,计算所述目标电机当前的电感,包括:
根据,计算所述目标电机当前的直轴电感;
根据,计算所述目标电机当前的交轴电感;
根据,计算所述目标电机当前的交互耦合增量电感;
其中,Vh为所述第三扰动信号的幅值,ωh为所述第三扰动信号的频率,I1为所述第一电流幅值,I2为所述第二电流幅值,Ip为所述第三电流幅值中的正序分量,In为所述第三电流幅值中的负序分量。
6.一种电机控制器,其特征在于,包括如权利要求5所述的电机电感检测装置。
7.一种可读存储介质,其特征在于,其上存储有电机电感检测程序,该程序被处理器执行时,实现如权利要求1-4中任一项所述的电机电感检测方法。
CN202010421967.2A 2020-05-18 2020-05-18 电机电感检测方法、装置以及电机控制器、存储介质 Active CN113691181B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010421967.2A CN113691181B (zh) 2020-05-18 2020-05-18 电机电感检测方法、装置以及电机控制器、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010421967.2A CN113691181B (zh) 2020-05-18 2020-05-18 电机电感检测方法、装置以及电机控制器、存储介质

Publications (2)

Publication Number Publication Date
CN113691181A CN113691181A (zh) 2021-11-23
CN113691181B true CN113691181B (zh) 2024-03-19

Family

ID=78575720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010421967.2A Active CN113691181B (zh) 2020-05-18 2020-05-18 电机电感检测方法、装置以及电机控制器、存储介质

Country Status (1)

Country Link
CN (1) CN113691181B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114194074A (zh) * 2021-12-30 2022-03-18 重庆长安新能源汽车科技有限公司 一种动力电池的脉冲加热电流控制方法及控制系统
CN117650732A (zh) * 2024-01-29 2024-03-05 深圳麦格米特电气股份有限公司 一种永磁同步电机的电感检测方法、装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811115A (zh) * 2015-04-15 2015-07-29 哈尔滨工业大学 基于准比例谐振控制的永磁同步电机电感参数辨识系统及方法
CN104901598A (zh) * 2015-06-24 2015-09-09 广东威灵电机制造有限公司 电机驱动装置、方法及电机
CN106788026A (zh) * 2016-11-25 2017-05-31 江苏大学 一种空间矢量信号注入永磁同步电机最大转矩电流比控制方法
CN107171608A (zh) * 2017-07-20 2017-09-15 北京航空航天大学 一种永磁同步电机的无传感器初始位置检测方法
CN107508518A (zh) * 2017-09-05 2017-12-22 南京工程学院 一种用于飞轮储能系统的自抗扰控制方法
CN109274304A (zh) * 2017-07-18 2019-01-25 上海大郡动力控制技术有限公司 电动汽车内嵌式永磁同步电机电感参数矩阵的辨识方法
CN109639202A (zh) * 2018-11-28 2019-04-16 上海大学 一种永磁同步电机转子磁极极性判断方法
CN110112973A (zh) * 2019-05-13 2019-08-09 南京邮电大学 基于高频旋转电压注入的永磁同步电机电感参数辨识方法
CN110429886A (zh) * 2019-07-19 2019-11-08 江苏大学 一种永磁同步电机低速域转子位置辨识方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788062B (zh) * 2017-02-24 2023-08-18 上海晶丰明源半导体股份有限公司 一种无刷直流电机的控制装置、系统和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811115A (zh) * 2015-04-15 2015-07-29 哈尔滨工业大学 基于准比例谐振控制的永磁同步电机电感参数辨识系统及方法
CN104901598A (zh) * 2015-06-24 2015-09-09 广东威灵电机制造有限公司 电机驱动装置、方法及电机
CN106788026A (zh) * 2016-11-25 2017-05-31 江苏大学 一种空间矢量信号注入永磁同步电机最大转矩电流比控制方法
CN109274304A (zh) * 2017-07-18 2019-01-25 上海大郡动力控制技术有限公司 电动汽车内嵌式永磁同步电机电感参数矩阵的辨识方法
CN107171608A (zh) * 2017-07-20 2017-09-15 北京航空航天大学 一种永磁同步电机的无传感器初始位置检测方法
CN107508518A (zh) * 2017-09-05 2017-12-22 南京工程学院 一种用于飞轮储能系统的自抗扰控制方法
CN109639202A (zh) * 2018-11-28 2019-04-16 上海大学 一种永磁同步电机转子磁极极性判断方法
CN110112973A (zh) * 2019-05-13 2019-08-09 南京邮电大学 基于高频旋转电压注入的永磁同步电机电感参数辨识方法
CN110429886A (zh) * 2019-07-19 2019-11-08 江苏大学 一种永磁同步电机低速域转子位置辨识方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于高频信号注入的内置式永磁同步电机电感参数辨识;梅柏杉;张鹏;;微特电机;20191228(第12期);57-60、68 *
采用Kalman滤波器进行信号处理的高频信号注入法在电动机控制中的应用;郑泽东;李永东;Maurice Fadel;;电工技术学报;20100226(第02期);58-63、70 *

Also Published As

Publication number Publication date
CN113691181A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
US9825564B2 (en) Circuits and methods of determining position and velocity of a rotor
US8941339B2 (en) Apparatus and method for measuring position deviation of rotor of permanent magnet synchronous motor
Cupertino et al. Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects
CN103185839B (zh) 永磁电机电感参数测量装置及其方法
US9379654B2 (en) Self-commissioning procedure for inductance estimation in an electrical machine
US8400088B2 (en) Sensorless control of salient-pole machines
JP2011050198A (ja) 永久磁石同期電動機の駆動装置
CN104426447B (zh) 用于确定电子换向电机的磁极转子位置的方法和装置
CN113691181B (zh) 电机电感检测方法、装置以及电机控制器、存储介质
CN106026820B (zh) 自动调谐电机参数方法和系统
CN103516283A (zh) 用于估算电机转子的角位置和/或角速度的方法、系统和设备
CN106788127A (zh) 基于二维查表与插值法的逆变器非线性谐波补偿方法
CN113241986B (zh) 一种电机的控制方法、控制系统和存储介质
US11394327B2 (en) Methods and systems for detecting a rotor position and rotor speed of an alternating current electrical machine
CN109274304A (zh) 电动汽车内嵌式永磁同步电机电感参数矩阵的辨识方法
CN105262399A (zh) 电感测量方法、控制方法、电感测量装置及控制系统
CN104393812B (zh) 永磁同步电机的磁链系数辨识方法
CN104539204A (zh) 一种步进电机的干扰转矩测定方法及其低速振动抑制方法
CN112910352A (zh) 电机旋变初始转子位置标定方法、装置、电子设备及介质
CN104767451A (zh) 电梯门机无位置传感器电机转子初始位置的检测方法
CN104393813B (zh) 永磁同步电机的直轴电感测量方法
Kraemer et al. Sensorless vector control of PMSM with observer-based phase current reconstruction using only a DC-link current sensor
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动系统控制方法
WO2021232615A1 (zh) 电机转子位置检测方法、装置以及电机控制器
CN111800048B (zh) 一种感应电机参数静止辨识方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant