CN113684468A - 一种石英件保护层及其制备方法 - Google Patents

一种石英件保护层及其制备方法 Download PDF

Info

Publication number
CN113684468A
CN113684468A CN202110797409.0A CN202110797409A CN113684468A CN 113684468 A CN113684468 A CN 113684468A CN 202110797409 A CN202110797409 A CN 202110797409A CN 113684468 A CN113684468 A CN 113684468A
Authority
CN
China
Prior art keywords
nitrogen
protective layer
quartz
layer
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110797409.0A
Other languages
English (en)
Other versions
CN113684468B (zh
Inventor
庞爱锁
林佳继
刘群
朱太荣
张武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Laplace Energy Technology Co Ltd
Original Assignee
Shenzhen Laplace Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Laplace Energy Technology Co Ltd filed Critical Shenzhen Laplace Energy Technology Co Ltd
Priority to CN202110797409.0A priority Critical patent/CN113684468B/zh
Publication of CN113684468A publication Critical patent/CN113684468A/zh
Application granted granted Critical
Publication of CN113684468B publication Critical patent/CN113684468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种石英件保护层,所述保护层位于石英件表面,所述保护层的热膨胀系数大小介于石英与镀膜层热膨胀系数之间。本发明还公开了一种石英件保护层的制备方法,所述方法为LPCVD方法沉积保护层或/和喷涂烧结的方法沉积保护层;或者所述方法为采用LPCVD方法直接生长SiO2,再逐渐减少供氧物质的含量比例,提高镀膜层物质的比例,直至最后全是镀膜层物质。本发明中,石英件保护层(即过渡层)能够隔离镀膜层与石英件的直接接触;由于过渡层的存在,相互之间的热应力都能降低,极大的延长了石英件的寿命,降低了维护成本和工作量;减少了设备维护工作和时间,提高了设备使用率。

Description

一种石英件保护层及其制备方法
技术领域
本发明具体涉及一种石英件保护层及其制备方法。
背景技术
随着半导体技术和太阳能光伏发电技术越来越受到重视,相关电池技术的需求越来越高,从而对相关设备的要求越来越高,并且随着对成本的要求,对相关设备和耗材的要求越来越高。在太阳能光伏制造工艺包括常压和低压的硼扩散\磷扩散\退火\氧化等工艺,以及低压化学气相沉积和等离子增强化学气相沉积等。其中化学气相沉积和等离子增强化学气相沉积会在石英件包括炉管内壁沉积一些薄膜。随着设备的运行,薄膜的厚度随之增加。运行工艺过程\工艺腔体炉门的开关\工艺产品的进出,炉内的石英件的温度会产生波动,由于石英件与表层的薄膜热膨胀系数差异大,使得石英和薄膜产生较大的热应力。随着薄膜厚度的增加,热应力增大,达到临界时,石英件会产生裂纹和破裂,从而损坏石英件。导致设备故障,损坏产品。
常规的处理方式有三种:
第一种方式是定期拆卸石英件对其进行表面腐蚀去除薄膜层。可使用酸洗或碱洗。其中酸洗使用硝酸\氢氟酸,由于用酸浓度高,清洗过程中耗量大,产物污染大,氢氟酸使用过程中存在较大风险。碱洗危害略小,但产物中有氢气,需要对反应产物处理好,避免发生事故。这种定期拆卸清洗石英件的维护方式,由于需要拆卸很多法兰结构,以及一些冷却管道和特气管道接头,拆卸和安装都存在石英件破损风险,所以每次维护后都需要大量的检查工作,而且该方式维护周期短。
第二种方式是通入含氟气体如NF3或ClF3等,在工艺腔体中与石英件表层的产物反应刻蚀带走,这种方式是在线处理,不需要拆卸各种石英件,但需要频繁处理,需要大量的NF3或ClF3这类高价格气体,产物对反应腔体内部分金属件会产生腐蚀,并且设备需要安装相应的气体管道以及危险气体泄漏检测等防护措施,含F尾气也需要处理。且需要严格控制反应条件,减少对石英件的腐蚀。这种方式成本高,存在安全风险。
第三种方式是常用的定期更换石英件,即根据统计,在石英件使用一定时间后,在石英件损坏前更换石英件。此种方式以一定的成本和人工的代价保持设备稳定运行。
发明内容
针对上述情况,为克服现有技术的缺陷,本发明提供一种石英件保护层及其制备方法。
为了实现上述目的,本发明提供以下技术方案:
一种石英件保护层,所述保护层位于石英件表面,所述保护层的热膨胀系数大小介于石英与镀膜层热膨胀系数之间,或所述石英件保护层为一种相对疏松的缓冲层。此处,相对疏松指的是相对石英件来说是疏松的,保护层的结构致密性差一些。
进一步地,所述保护层为连续式过渡层或/和阶梯式过渡层。
进一步地,采用LPCVD方法沉积保护层或/和喷涂烧结的方法沉积保护层;
或者采用LPCVD方法直接生长SiO2,再逐渐减少供氧物质的含量比例,提高供Si物质的比例,直至最后全是Si层。
进一步地,石英件保护层为在石英件表面沉积SiO2或Si3N4或SiO2和Si3N4的多层结构;
或者喷涂烧结SiO2或Na2SiO4或Al2O3或Si3N4或ZrO2或Y2O3或以上两种或多种物质的多层结构,或者以上一种或多种物质为主体的混合物结构。
一种石英件保护层的制备方法,所述制备方法能够用于制备以上所述的石英件保护层,所述方法为LPCVD方法沉积保护层或/和喷涂烧结的方法沉积保护层;
或者所述方法为采用LPCVD方法直接生长SiO2,再逐渐减少供氧物质的含量比例,提高镀膜层物质的比例,直至最后全是镀膜层物质。比如先采用LPCVD方法直接生长SiO2,再逐渐减少供氧物质的含量比例,提高供Si物质的比例,直至最后全是Si层。
一种石英件保护层的制备方法,包括以下步骤:
(1)将石英件载入炉管内;
(2)控制炉管内恒温,恒温温度范围350-500℃,通入氮气至恒压,恒压范围100-1000mtorr;
(3)通入氮气稀释的硅烷和氮气稀释的氧气;其中,硅烷和氮气合并后进入炉管,硅烷与氮气流量比为1:6-30,硅烷流量为80-300sccm;氧气和氮气合并后进入炉管,氧气与氮气的流量比为1:4-20,氧气流量200-500sccm;
在一些实施方式中,硅烷与氮气的混合气体,氧气和氮气的混合气体,两种混合气体同时通入炉管内,在其他实施方式中,先通入氧气和氮气的混合气体,再通入硅烷与氮气的混合气体。
(4)控制反应温度为350-500℃,炉管内压力为100-1000mtorr,沉积时间为100-350min;
(5)抽真空,排尽硅烷,氮气吹扫,充氮气回到常压;
(6)完成石英件表面二氧化硅膜层生长。
一种石英件保护层的制备方法,包括以下步骤:
(1)将石英件载入炉管内;
(2)控制炉管内恒温,恒温的温度区间在670-750℃,通入氮气至恒压,恒压范围250-1000mtorr;
(3)TEOS源瓶温度控制在30-80℃,打开TEOS进气管道的阀门,TEOS挥发进入炉管;维持炉管恒温,温度范围670-750℃,压力恒压,恒压范围250-1000mtorr,时间80-300分钟;
(4)关闭TEOS管路阀门,炉管抽真空,氮气吹扫,充氮气回到常压;
(5)完成石英件表面二氧化硅膜层生长。
一种石英件保护层的制备方法,包括以下步骤:
(1)将石英件载入炉管内;
(2)控制炉管内温度恒温,恒温的温度区间在530-600℃,通入氮气恒压,恒压的压力范围在350-1000mtorr;
(3)通入氮气稀释的硅烷和氮气稀释的氧气,两种混合气体分别进入炉管后进行反应;
(3.1)氧气和氮气的混合气体中,氧气流量范围为200-500sccm,氧气与氮气流量比为1:4-9,通入时间2min;
(3.2)维持步骤(3.1)的进气,同时通入氮气稀释的硅烷;其中,硅烷流量为80-250sccm,硅烷与氮气流量比为1:9-35,通入时间为20min,在石英件表面生长一层氧化硅层;
(3.3)梯度减少气氛中的氧含量,步骤(3.1)中的氧气和氮气的混合气体中,氧气和氮气流量分别梯度变化至0sccm和500sccm;
梯度增大气氛中的硅烷含量,步骤(3.2)中硅烷和氮气的混合气体中,硅烷和氮气流量分别梯度变化至200-800sccm,和500sccm;
以上梯度变化时间为200min,生长渐变层;
(4)维持步骤(3.3)的终状态通入30min;
(5)抽真空,排尽硅烷,氮气吹扫,充氮气回到常压;
(6)完成石英件表面薄膜层生长。
一种石英件保护层的制备方法,包括以下步骤:
(1)使用SiO2含量10%~30%的硅溶胶,加入氮化硅微粉或者纳米二氧化硅微粉或者氧化铝微粉或以上两种以上为主的混合物,喷涂在石英件表面;
(2)晾干2-5时后,600度烘干30min。
一种石英件保护层的制备方法,包括以下步骤:
(1)将硅酸钠与水配置成25%-35%的溶液,喷涂在石英表面;
(2)晾干2小时后,200度烘干30min。
本发明的有益效果是:
(1)本发明中,石英件保护层(即过渡层)能够隔离镀膜层与石英件的直接接触;由于过渡层的存在,相互之间的热应力都能降低。极大的延长了石英件的寿命,降低了维护成本和工作量。减少了设备维护工作和时间,提高了设备使用率。如LPCVD沉积本征硅或掺杂硅,直接沉积时,石英炉管以及其他石英件表面会沉积硅层,硅层与石英的热膨胀系数不同。时间久了,由于温度变化引起的热应力使得石英件破损。
(2)本发明中,采用LPCVD方法在石英件表面沉积SiO2或Si3N4或SiO2和Si3N4的多层结构等或喷涂烧结SiO2或Si3N4或SiO2和Si3N4的多层结构等。沉积生长的或喷涂烧结的SiO2结构相比石英件的石英结构略疏松,更能释放应力。镀膜层沉积后,过渡层起到缓解作用。
(3)本发明中,过渡层也可由LPCVD方法直接生长100%的SiO2,再逐渐减少供O物质的含量比例,提高供Si物质的比例,直至最后几乎全是Si层。在石英件表明生长过渡层后,那么当采用LPCVD方法沉积本征硅或掺杂硅时,沉积生长的硅会附着在过渡层上,温差引起的热应力会在过渡层上减弱,不会对石英件造成较大的影响,可以保护石英件。
附图说明
图1是本发明石英件保护层的示意图。
图2是已经生长了非晶硅膜层后的样品e、样品a、样品b、样品c、样品d的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。基于本申请提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本申请所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本申请所涉及的技术术语或者科学术语应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。本申请所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本申请所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;本申请所涉及的“连接”、“相连”、“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本申请所涉及的“多个”是指大于或者等于两个。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请所涉及的术语“第一”、“第二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。以下实施例中,所用到的试剂或者设备等均能够提供商业途径购得。
一种石英件保护层,所述保护层位于石英件表面,所述保护层的热膨胀系数大小介于石英与镀膜层热膨胀系数之间,或一种相对疏松的缓存层。所述相对疏松指的是相对于石英件来说是疏松的。
在一些实施方式中,所述镀膜层可以为非晶硅层或者其他镀膜层;在一些优选的方式中,保护层位于石英件与镀膜层之间,保护层作为一种过渡层。
在一些优选的方式中,所述保护层为连续式过渡层或/和阶梯式过渡层。也就是说,所述保护层的材质为连续式过渡或/和阶梯式过渡。在一些优选的方式中,阶梯式过渡指的是:保护层作为一种过渡层,过渡层成分均匀,过渡层具有确定的热膨胀系数,过渡层的热膨胀系数为一数值,该数值大小介于石英与镀膜层热膨胀系数之间。
连续式过渡指的是:保护层作为一种过渡层,所述过渡层为一个复合层,即过渡层的成分逐渐由一种物质转变成镀膜层物质,过渡层的热膨胀系数为一个数值范围,该数值范围大小介于石英与镀膜层热膨胀系数之间。
在一些优选的方式中,可以采用沉积方式在石英件表面生长过渡层或/和采用喷涂料喷涂再烘干的方式在石英件表面生长过渡层,这样生长的过程层即为阶梯式过渡层。
采用LPCVD方法沉积本征硅或掺杂硅,直接沉积时,石英炉管以及其他石英件表面会沉积硅层,硅层与石英的热膨胀系数不同。时间久了,由于温度变化引起的热应力容易造成石英件破损。
(1)采用LPCVD设备沉积过渡层,可以在石英件表面沉积SiO2或Si3N4或SiO2和Si3N4的多层结构等或喷涂烧结或者喷涂烧结SiO2或Na2SiO4或Al2O3或Si3N4或ZrO2或Y2O3或以上两种或多种物质的多层结构,或者以上一种或多种物质为主体的混合物结构等,比如,可以是以SiO2或Si3N4等为主要成分,再加上其他物质,混合在一起,进行喷涂。
沉积生长或喷涂烧结的SiO2结构相比石英件的石英结构略疏松,更能释放应力。镀膜层沉积后,过渡层起到缓解作用。
(2)或者过渡层也可由LPCVD方法直接生长SiO2,再逐渐减少供氧物质的含量比例,提高镀膜层物质的比例,直至最后全是镀膜层。所述镀膜层可以是Si层,也可以是其他成分的膜层。
比如,过渡层也可由LPCVD方法直接生长100%的SiO2,再逐渐减少供氧物质的含量比例,提高供Si物质的比例,直至最后全是Si层。
在石英件表明生长过渡层后,那么当采用LPCVD方法沉积本征硅或掺杂硅时,沉积生长的硅会附着在过渡层上,温差引起的热应力会在过渡层上减弱,不会对石英件造成较大的影响,可以保护石英件。
实施例1
一种石英件保护层的制备方法,包括以下步骤:
(1)将空载的石英件载入石英炉管内;
(2)控制炉管内恒温到450℃,通入氮气恒压至300mtorr;
(3)通入氮气稀释的硅烷和稀释的氧气;
其中,硅烷和氮气合并后进入腔体,硅烷与氮气流量比为1:19,硅烷流量为100sccm;
氧气和氮气合并后进入腔体,氧气与氮气的流量比为1:9,氧气流量300sccm;
在一些实施方式中,硅烷与氮气的混合气体,氧气和氮气的混合气体,两种混合气体同时通入炉管内,在其他实施方式中,先通入氧气和氮气的混合气体,再通入硅烷与氮气的混合气体。本实施例中,同时通入两种混合气体。
(4)控制反应温度为450℃,炉管内压力为360mtorr,沉积时间(反应时间)为250min;沉积完成后便不再通入氮气稀释的硅烷和稀释的氧气;
(5)抽真空,排尽硅烷,充氮气回到常压;
(6)完成石英件表面二氧化硅膜层生长。
实施例2
一种石英件保护层的制备方法,包括以下步骤:
(1)将空载的石英件载入石英炉管内;
(2)控制炉管内恒温到710℃,通入氮气恒压至400mtorr;
(3)TEOS源瓶温度控制在50℃,打开TEOS(正硅酸四乙酯)进气管道的阀门,TEOS(正硅酸乙酯)液体挥发进入炉管;维持炉管710℃,压力400mtorr,时间300分钟;
此处TEOS的阀门打开后,TEOS源瓶中压力会稳定,通过饱和蒸汽压方式通源。
在其他实施方式中,也可以采用惰性载气携带TEOS源,也可以加流量计进行精确控制。
(4)关闭TEOS管路阀门,炉管抽真空,氮气吹扫,充氮气回到常压;
(5)完成石英件表面二氧化硅膜层生长。
Si(OC2H5)4=SiO2+4C2H4+2H2O
实施例3
一种石英件保护层的制备方法,包括以下步骤:
(1)将空载的石英件载入石英炉管内;
(2)控制炉管内温度恒温到560℃,通入氮气恒压至550mtorr;
(3)通入氮气稀释的硅烷和氮气稀释的氧气,气体分别通过炉管内的喷淋管进入炉管后进行反应;
(4)氧气和氮气合并后连接炉管内的第一喷淋管,氧气流量为360sccm,氮气流量为2040sccm,通入时间2min;
(5)维持步骤(4)的进气,同时通入氮气稀释的硅烷至另一根喷淋管即第二喷淋管;硅烷流量为120sccm,氮气流量为3880sccm,通入时间为20min,在石英件表面生长一层氧化硅层;
(6)氧气和氮气的混合气体中,氧气流量360sccm,氮气流量2040sccm;梯度变化至氧气流量0sccm,氮气流量500sccm,
同时,硅烷和氮气的混合气体中,从硅烷流量120sccm,氮气流量3880sccm梯度变化至硅烷流量360sccm,氮气流量500sccm,
以上梯度变化时间为200min,生长渐变层;
(7)维持步骤(6)的终状态通入30min;
(8)抽真空,排尽硅烷,氮气吹扫,充氮气回到常压;
(9)完成石英件表面薄膜层生长。
实施例4
一种石英件保护层的制备方法,包括以下步骤:
(1)取SiO2含量为30%的硅溶胶(mSiO2·nH2O),SiO2平均粒径15nm,加入一定量的平均粒度30nm的纳米二氧化硅粉,硅溶胶与二氧化硅粉的质量比为1:0.3,喷涂在石英件表面;
(2)室温晾干2小时后,600℃烘干30min。
实施例5
一种石英件保护层的制备方法,包括以下步骤:
(1)取SiO2含量为25%的硅溶胶(mSiO2·nH2O),SiO2平均粒径15nm,加入粒径10~70nm的氮化硅微粉,硅溶胶和氮化硅微粉重量比为1:0.4,搅拌均匀,喷涂在要保护的石英件表面;
(2)室温晾干2小时后,650℃,保持30min。
实施例6
一种石英件保护层的制备方法,包括以下步骤:
(1)取粒径为10~70nm的纳米二氧化硅,粒径为10~70nm的纳米氧化铝,分析纯九水合硅酸钠(Na2SiO3·9H2O)。二氧化硅:氧化铝:九水合硅酸钠:水=0.5:0.7:0.1:1.5,搅拌均匀,喷涂在要保护的石英件表面;
(2)室温晾干2小时后,600℃,保持30min。
实施例7
一种石英件保护层的制备方法,包括以下步骤:
(1)取SiO2含量为30%的硅溶胶(mSiO2·nH2O),加入粒径10~70nm的氧化铝微粉,硅溶胶和氧化铝微粉的重量比为1:0.4,搅拌均匀,喷涂在要保护的石英件表面;
(2)室温晾干2小时后,600℃,保持30min。
实施例8
一种石英件保护层的制备方法,包括以下步骤:
(1)将硅酸钠与水配置成质量分数为35%的硅酸钠水溶液,喷涂在石英表面;
(2)室温晾干2小时后,200℃烘干,30min。
实施例9
一种石英件保护层的制备方法,包括以下步骤:
(1)取粒径10~70nm的二氧化硅纳微粉,粒径10~70nm的氮化硅纳微粉,粒径10~70nm的氧化铝钠微粉,硅酸钠,水;其中二氧化硅钠微粉、氮化硅钠微粉、氧化铝纳微粉、硅酸钠、水的质量比例为:0.8:0.2:0.5:0.15:1.6;搅拌均匀,喷涂在要保护的石英件表面;
(2)室温晾干2.5小时后,250℃,保持30min。
实施例1-4分别在200mm*20mm*4mm的石英片上制备保护层后,将其放入LPCVD炉管中随量产机生长非晶硅层,经过30天的非晶硅镀膜。取出样品,分别编号为样品a、b、c、d。
同时放入LPCVD炉管中生长非晶硅层的还有未制备涂层(即保护层)的石英片,此石英片与样品a、b、c、d经过同样的镀膜,作为对比样品e。
如图2,从左到右,样品依次为样品e,样品a,样品b,样品c,样品d。
通过抗折强度测试仪测试样品的抗折强度,对比样品abced的抗折强度,石英片f是未经处理未生长非晶硅的原始石英片。抗折测试的支点距离148mm,石英片宽度20mm,厚度4mm。
表1抗折强度测试结果
Figure BDA0003163340730000101
从表中数据可见,相对于石英片f,样品e(即在石英片上直接生长非晶硅)的抗折强度下降极大。而经过生长过渡薄膜或保护层的石英片的抗折强度虽然下降,但仍有较大的强度,是无过渡层的石英(即样品e)的抗折强度3倍以上,这说明本发明制得的石英件保护层能极大延长石英件寿命。
本领域的技术人员应该明白,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (10)

1.一种石英件保护层,其特征是,所述保护层位于石英件表面,所述保护层的热膨胀系数大小介于石英与镀膜层热膨胀系数之间,或所述保护层为一种相对石英件疏松的缓冲层。
2.根据权利要求1所述的一种石英件保护层,其特征是,所述保护层为阶梯式过渡层或/和连续式过渡层。
3.根据权利要求1所述的一种石英件保护层,其特征是,采用LPCVD方法沉积保护层或/和喷涂烧结的方法沉积保护层;
或者采用LPCVD方法直接生长SiO2,再逐渐减少供氧物质的含量比例,提高供Si物质的比例,直至最后全是Si层。
4.根据权利要求1所述的一种石英件保护层,其特征是,石英件保护层为在石英件表面沉积SiO2或Si3N4或SiO2和Si3N4的多层结构;
或者喷涂烧结SiO2或Na2SiO4或Si3N4或ZrO2或Y2O3或以上两种或多种物质的多层结构,或者以上一种或多种物质为主体的混合物结构。
5.一种石英件保护层的制备方法,其特征是,所述制备方法能够用于制备权利要求1-4中任意一项中所述的石英件保护层,所述方法为LPCVD方法沉积保护层或/和喷涂烧结的方法沉积保护层;
或者所述方法为采用LPCVD方法直接生长SiO2,再逐渐减少供氧物质的含量比例,提高镀膜层物质的比例,直至最后全是镀膜层物质。
6.根据权利要求5所述的一种石英件保护层的制备方法,其特征是,包括以下步骤:
(1)将石英件载入炉管内;
(2)控制炉管内恒温,恒温温度范围350-500℃,通入氮气至恒压,恒压范围100-1000mtorr;
(3)通入氮气稀释的硅烷和氮气稀释的氧气;其中,硅烷和氮气合并后进入炉管,硅烷与氮气流量比为1:6-30,硅烷流量为80-300sccm;氧气和氮气合并后进入炉管,氧气与氮气的流量比为1:4-20,氧气流量200-500sccm;
(4)控制反应温度为350-500℃,炉管内压力为100-1000mtorr,沉积时间为100-350min;
(5)抽真空,排尽硅烷,氮气吹扫,充氮气回到常压;
(6)完成石英件表面二氧化硅膜层生长。
7.根据权利要求5所述的一种石英件保护层的制备方法,其特征是,包括以下步骤:
(1)将石英件载入炉管内;
(2)控制炉管内恒温,恒温的温度区间在670-750℃,通入氮气至恒压,恒压范围250-1000mtorr;
(3)TEOS源瓶温度控制恒定温度,控温范围在30-80℃,打开TEOS进气管道的阀门,TEOS挥发进入炉管;维持炉管恒温,温度范围670-750℃,压力恒压,恒压范围250-1000mtorr,时间80-300分钟;
(4)关闭TEOS管路阀门,炉管抽真空,氮气吹扫,充氮气回到常压;
(5)完成石英件表面二氧化硅膜层生长。
8.根据权利要求5所述的一种石英件保护层的制备方法,其特征是,包括以下步骤:
(1)将石英件载入炉管内;
(2)控制炉管内温度恒温,恒温的温度区间在530-600℃,通入氮气恒压,恒压的压力范围在350-1000mtorr;
(3)通入氮气稀释的硅烷和氮气稀释的氧气,两种混合气体分别进入炉管后进行反应;
(3.1)氧气和氮气的混合气体中,氧气流量范围为200-500sccm,氧气与氮气流量比为1:4-9,通入时间2min;
(3.2)维持步骤(3.1)的进气,同时通入氮气稀释的硅烷;其中,硅烷流量为80-250sccm,硅烷与氮气流量比为1:9-35,通入时间为20min,在石英件表面生长一层氧化硅层;
(3.3)梯度减少气氛中的氧含量,步骤(3.1)中的氧气和氮气的混合气体中,氧气和氮气流量分别梯度变化至0sccm和500sccm;
梯度增大气氛中的硅烷含量,步骤(3.2)中硅烷和氮气的混合气体中,硅烷和氮气流量分别梯度变化至200-800sccm,和500sccm;
以上梯度变化时间为200min,生长渐变层;
(4)维持步骤(3.3)的终状态通入30min;
(5)抽真空,排尽硅烷,氮气吹扫,充氮气回到常压;
(6)完成石英件表面薄膜层生长。
9.根据权利要求5所述的一种石英件保护层的制备方法,其特征是,包括以下步骤:
(1)使用硅溶胶,SiO2含量范围在10%~30%,加入氮化硅微粉或者纳米二氧化硅微粉或以上两种以上为主的混合物,喷涂在石英件表面;
(2)晾干2-5时后,600度烘干30min。
10.根据权利要求5所述的一种石英件保护层的制备方法,其特征是,包括以下步骤:
(1)将硅酸钠与水配置成25%-35%的溶液,喷涂在石英表面;
(2)晾干2小时后,200度烘干30min。
CN202110797409.0A 2021-07-14 2021-07-14 一种石英件保护层及其制备方法 Active CN113684468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110797409.0A CN113684468B (zh) 2021-07-14 2021-07-14 一种石英件保护层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110797409.0A CN113684468B (zh) 2021-07-14 2021-07-14 一种石英件保护层及其制备方法

Publications (2)

Publication Number Publication Date
CN113684468A true CN113684468A (zh) 2021-11-23
CN113684468B CN113684468B (zh) 2024-08-20

Family

ID=78577134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110797409.0A Active CN113684468B (zh) 2021-07-14 2021-07-14 一种石英件保护层及其制备方法

Country Status (1)

Country Link
CN (1) CN113684468B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116364805A (zh) * 2023-03-03 2023-06-30 天合光能股份有限公司 半导体工艺方法和半导体工艺设备
CN118307182A (zh) * 2024-06-11 2024-07-09 浙江美晶新材料股份有限公司 一种半导体级合成石英坩埚及其制备方法和半导体级单晶硅生长方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108843A (en) * 1988-11-30 1992-04-28 Ricoh Company, Ltd. Thin film semiconductor and process for producing the same
JP2003188159A (ja) * 2001-12-19 2003-07-04 Seiko Epson Corp Cvd装置及び半導体装置の製造方法
CN104250726A (zh) * 2013-06-26 2014-12-31 中芯国际集成电路制造(上海)有限公司 石英管的防护方法
TW201504178A (zh) * 2013-05-14 2015-02-01 Heraeus Quarzglas 用於高溫擴散之以SiO為基質之阻障層及塗覆方法
CN208667842U (zh) * 2018-09-11 2019-03-29 德淮半导体有限公司 低压化学气相沉积设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108843A (en) * 1988-11-30 1992-04-28 Ricoh Company, Ltd. Thin film semiconductor and process for producing the same
JP2003188159A (ja) * 2001-12-19 2003-07-04 Seiko Epson Corp Cvd装置及び半導体装置の製造方法
TW201504178A (zh) * 2013-05-14 2015-02-01 Heraeus Quarzglas 用於高溫擴散之以SiO為基質之阻障層及塗覆方法
CN104250726A (zh) * 2013-06-26 2014-12-31 中芯国际集成电路制造(上海)有限公司 石英管的防护方法
CN208667842U (zh) * 2018-09-11 2019-03-29 德淮半导体有限公司 低压化学气相沉积设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116364805A (zh) * 2023-03-03 2023-06-30 天合光能股份有限公司 半导体工艺方法和半导体工艺设备
CN118307182A (zh) * 2024-06-11 2024-07-09 浙江美晶新材料股份有限公司 一种半导体级合成石英坩埚及其制备方法和半导体级单晶硅生长方法

Also Published As

Publication number Publication date
CN113684468B (zh) 2024-08-20

Similar Documents

Publication Publication Date Title
CN113684468B (zh) 一种石英件保护层及其制备方法
US8673790B2 (en) Method of manufacturing a semiconductor device, method of cleaning a process vessel, and substrate processing apparatus
US6164295A (en) CVD apparatus with high throughput and cleaning method therefor
KR0168984B1 (ko) 반도체장치의 제조장치 및 그 클리닝 방법
US5584963A (en) Semiconductor device manufacturing apparatus and cleaning method for the apparatus
KR930011414B1 (ko) 질화규소막의 형성방법
US20070087579A1 (en) Semiconductor device manufacturing method
US20080142046A1 (en) Thermal F2 etch process for cleaning CVD chambers
US7954452B2 (en) Film formation apparatus for semiconductor process and method for using the same
CN1178281C (zh) 一种制作硅氧层的方法
US5807416A (en) Silica glass member with glassy carbon coating method for producing the same
JP2016184685A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20080282976A1 (en) Film formation apparatus and method for using the same
CN104561928A (zh) 一种在玻璃基底上沉积二氧化硅薄膜的方法
TW202136567A (zh) 反應管的洗淨方法,半導體裝置的製造方法及基板處理裝置
JP2016506357A (ja) 多結晶シリコンを堆積させる方法
US7942974B2 (en) Method of cleaning a film-forming apparatus
US6857433B2 (en) Process for cleaning a glass-coating reactor using a reactive gas
JPS6283339A (ja) 光フアイバ被膜形成方法
JP3929140B2 (ja) 耐蝕性部材およびその製造方法
TWI820262B (zh) 半導體裝置之製造方法、表面處理方法、基板處理裝置及程式
CN103305808A (zh) 二氧化硅薄膜的生产设备及其生产方法
CN113680767A (zh) 一种lpcvd炉管在线清洗方法
RU2782306C1 (ru) Способ формирования нанослоя аморфного кремния заданной толщины при гидрофобизации субстрата
US11820700B2 (en) Method of depositing a coating utilizing a coating apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No.1, Jikang Road, Kengzi street, Pingshan District, Shenzhen City, Guangdong Province

Applicant after: Laplace New Energy Technology Co.,Ltd.

Address before: No.1, Jikang Road, Kengzi street, Pingshan District, Shenzhen City, Guangdong Province

Applicant before: SHENZHEN LAPLACE ENERGY TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant