CN113675293A - n型氧化物/p型石墨烯异质pn结紫外光电探测器制备方法 - Google Patents

n型氧化物/p型石墨烯异质pn结紫外光电探测器制备方法 Download PDF

Info

Publication number
CN113675293A
CN113675293A CN202110914231.3A CN202110914231A CN113675293A CN 113675293 A CN113675293 A CN 113675293A CN 202110914231 A CN202110914231 A CN 202110914231A CN 113675293 A CN113675293 A CN 113675293A
Authority
CN
China
Prior art keywords
type
oxide
graphene
junction
gallium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110914231.3A
Other languages
English (en)
Other versions
CN113675293B (zh
Inventor
李炳生
王玉杰
王月飞
徐海阳
刘益春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN202110914231.3A priority Critical patent/CN113675293B/zh
Publication of CN113675293A publication Critical patent/CN113675293A/zh
Application granted granted Critical
Publication of CN113675293B publication Critical patent/CN113675293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种n型氧化物/p型石墨烯异质pn结紫外光电探测器及制备方法,包括衬底、n型氧化物,p型石墨烯连续薄膜,聚甲基丙烯酸甲酯(PMMA)保护层、第一接触电极以及第二接触电极,其特征在于:所述n型氧化物位于所述衬底上,所述n型氧化物一端顶部与所述p型石墨烯连续薄膜中间的底部连接,所述p型石墨烯连续薄膜两端的底部与所述衬底连接,所述p型石墨烯连续薄膜顶部覆盖所述聚甲基丙烯酸甲酯(PMMA)保护层,所述p型石墨烯连续薄膜与所述衬底之间设有第一接触电极,所述n型氧化物另一端与第二接触电极连接。

Description

n型氧化物/p型石墨烯异质pn结紫外光电探测器制备方法
技术领域
本发明涉及半导体光电探测器件制备领域,具体涉及一种n型氧化物/p型石墨烯异质pn结紫外光电探测器及制备方法。
背景技术
众所周知,太阳是天然的紫外线源,会辐射各种波长的紫外线,紫外线根据波可分为近紫外线(低频,UVA),远紫外线(中频,UVB),超短紫外线(高频,UVC),虽然紫外线仅仅占太阳辐照波长的很小部分,但是会极大的影响人类的正常工作生活。工作在紫外波段的探测器被称为紫外探测器。它是一种新兴探测技术,可以将光信号转化成电信号,UVA和UVB波段探测器可用于环境监测器,紫外传感器,光通讯;由于臭氧层的存在,UVC会被大气层吸收,因此该波段被称为“日盲波段”,工作于该波段的探测器可以应用于火焰监测、导弹预警、臭氧空洞监视以及卫星空间通信等领域。即使在地球表面上强烈的阳光干扰下,工作在日盲区域中的探测器也可以最大程度地减少误报的几率。高效的光电探测器必须满足五个要求,即高灵敏度,高信号电流与暗电流之比,高光谱选择性,高响应速度和高热稳定性。除此之外,自供电光电探测器相比较传统探测器而言可以省去外接电源装置,能有效的减少器件体积,减少器件损耗,延长器件寿命甚至可以实现在恶劣环境下(外大气层或者深海探测等)的探测要求等,近来引起了人们的极大关注。
到目前为止,通过带隙调整和合金化工艺可以实现ZnMgO,AlGaN等材料的紫外光电探测器。然而,合金化的过程会引入了高的缺陷密度,从而增加了暗电流并降低探测器的性能。由于氧化镓、氧化锌等宽带隙氧化物半导体存在强自补偿效应和受主固溶度低,离化能高等原因导致p型掺杂难以实现,所以高性能的氧化物同质pn结型光电探测器难以制备。
发明内容
本发明设计了一种n型氧化物/p型石墨烯异质pn结紫外光电探测器及制备方法,其解决的技术问题是目前氧化镓、氧化锌等宽带隙氧化物半导体存在强自补偿效应和受主固溶度低,离化能高等原因导致p型掺杂难以实现,所以高性能的氧化物同质pn结型光电探测器难以制备。
为了解决上述存在的技术问题,本发明采用了以下方案:
一种基于n型氧化物/p型石墨烯pn结型光电探测器,包括衬底、n型氧化物,p型石墨烯连续薄膜,聚甲基丙烯酸甲酯(PMMA)保护层、第一接触电极以及第二接触电极,所述n型氧化物位于所述衬底上,所述n型氧化物一端顶部与所述p型石墨烯连续薄膜中间的底部连接,所述p型石墨烯连续薄膜两端的底部与所述衬底连接,所述p型石墨烯连续薄膜顶部覆盖所述聚甲基丙烯酸甲酯(PMMA)保护层,所述p型石墨烯连续薄膜与所述衬底之间设有第一接触电极,所述n型氧化物另一端与第二接触电极连接。
优选地,所述n型氧化物为氧化镓、氧化锌或二氧化锡。
优选地,所述p型石墨烯为掺氮石墨烯连续薄膜。
优选地,所述衬底为刚性绝缘衬底或者柔性绝缘衬底;所述刚性衬底包括:石英玻璃、蓝宝石、SiO2;所述柔性衬底为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷或云母。
优选地,所述第一接触电极和所述第二接触电极为金属接触电极或者透明导电氧化物薄膜接触电极;
所述接触金属电极选自铟、铝、金、银、铂、镍、钛中的一种形成的单层金属或者多种形成金属复合层;所述透明导电氧化物薄膜接触电极材质为掺氟氧化锡(FTO)或氧化铟锡(ITO)。
优选地,当光电探测器有源区是n型氧化镓时,响应波段对应深紫外UVC波段;
或者;当光电探测器n型材料为氧化锌和二氧化锡时,相应波段为340nm,对应UVB波段;
p型石墨烯连续薄膜起到空穴传输作用,对紫外波段没有明显光响应。
一种n型氧化物/p型石墨烯异质pn结紫外光电探测器的制备方法,包括以下步骤:
步骤1、n型氧化物的制备;
步骤2、pn结的制备;
步骤3、电极的制备。
优选地,所述步骤1中的n型氧化物为氧化镓、氧化锌或二氧化锡,所述氧化镓为氧化镓微米线或氧化镓薄膜,所述氧化镓微米线由热碳还原的方法生长;所述氧化镓薄膜由磁控溅射或MOCVD大型设备生长;
所述氧化镓微米线的制备:取质量比为1:1的氧化镓粉末和碳粉充分研磨使其混合均匀;取适量上述混合粉末放入刚玉舟中,将清洗过的衬底置于粉末正上方,将盛有混合粉末的刚玉舟放入石英管中,然后将石英管放入高温管式炉中生长,在生长过程中通入惰性气体作为载气,惰性气体流量为50-200sccm;生长压强为常压,生长温度在1000-1200℃,待生长结束后自然冷却至室温,得到氧化镓微米线;氧化镓微米线为单斜相,形状为柱形,微米线长度为0.5-2cm,截面宽度为3-15μm,截面厚度为3-15μm。
优选地,所述步骤2中使用聚甲基丙烯酸甲酯PMMA将铜基p型掺氮石墨烯连续薄膜旋涂后,然后放入化学刻蚀液中将Cu衬底完全刻蚀,将清洗干净的p型石墨烯与步骤1所得的n型氧化镓微米线结合,但是不去除聚甲基丙烯酸甲酯PMMA,聚甲基丙烯酸甲酯PMMA形成的层结构阻隔石墨烯与空气直接接触,有助于增强器件的稳定性;然后干燥并采用梯度加热的方法,使其借助范德华力紧密接触;
所述步骤2中的化学刻蚀液为三氯化铁或过硫酸铵等氧化剂,其浓度为1-10mol/L;
所述步骤2中的干燥在鼓风干燥箱中进行并且分别在20-30℃、40-50℃、60-70℃保持恒温10-30min,以减少转移过程中水分蒸发而产生的气泡,有助于减少微米线与石墨烯之间的距离;
所述步骤2中的梯度加热在恒温加热台中完成,恒温加热台加热温度为110-160℃,保证微米线与石墨烯之间的范德华力更加紧密。
优选地,步骤3中接触电极的制备:分别在n型氧化镓和p型石墨烯两端使用磁控溅射、热蒸发等方法制备电极,得到n型氧化镓/p型石墨烯异质pn结的自供电紫外光电探测器。
该n型氧化物/p型石墨烯异质pn结紫外光电探测器及制备方法具有以下有益效果:
(1)本发明中石墨烯的透过率较高,而且不对任何波段响应,其有源区是由氧化物提供,使得探测器截止边在紫外波段,保证器件的有源区在日盲区域,有利于提高光电探测器的探测效率。p型石墨烯与n型氧化镓结合形成空间电荷区,当光照时,器件会产生大量的光生电子-空穴对,由于内建电场的存在,使得器件在不用施加外加电源的情况下也可以使电子-空穴对有效分离。
(2)本发明的日盲紫外光电探测器的制备方法简单,仅需要将商用铜基p型石墨烯转移至氧化镓上,其载体PMMA无需去除,简化了石墨烯的转移步骤,减少了有机溶剂的使用,降低成本,同时也可以避免残留的有机物降低器件性能,更重要的是,PMMA可以对石墨烯有一定的支撑和保护作用,避免石墨烯与空气直接接触,从而提高器件的稳定性和可靠性。
(3)本发明制备的n型氧化镓/p型石墨烯异质pn结的紫外光电探测器可以在没有外加电源的情况下工作,可以减少器件体积,减少功耗,延长器件寿命;该器件可以实现日盲波段的自供电探测,可以实现在恶劣环境下的探测要求,实现太空或者深海探测。
附图说明
图1是本发明n型氧化镓微米线/p型石墨烯异质pn结日盲紫外探测器的结构示意图;
图2是本发明n型氧化镓/p型石墨烯pn结在dark和235nm光照下的IV曲线图;
图3是本发明氧化镓微米线/石墨烯异质pn结日盲紫外探测器在0V偏压、235nm光照下的It循环曲线图;
图4是本发明氧化镓微米线/石墨烯异质pn结日盲紫外探测器在0V偏压的光响应和探测率曲线图;
图5是本发明氧化镓微米线/石墨烯异质pn结日盲紫外探测器在不同偏压下的响应度曲线图。
附图标记说明:
1—衬底;2—p型石墨烯连续薄膜;3—n型氧化镓微米线;4—第一接触金属电极;5—第二接触金属电极。
具体实施方式
下面结合图1至图5,对本发明做进一步说明:
如图1所示,一种基于n型氧化物/p型石墨烯pn结型光电探测器,包括衬底1、n型氧化镓微米线3,p型石墨烯连续薄膜2,聚甲基丙烯酸甲酯(PMMA)保护层、第一接触金属电极4以及第二接触金属电极5,n型氧化镓微米线3位于衬底1上,n型氧化镓微米线3一端顶部与p型石墨烯连续薄膜2中间的底部连接,p型石墨烯连续薄膜2两端的底部与衬底1连接,p型石墨烯连续薄膜2顶部覆盖聚甲基丙烯酸甲酯(PMMA)保护层,p型石墨烯连续薄膜2与衬底1之间设有第一接触金属电极4,p型石墨烯连续薄膜2另一端与第二接触金属电极5连接。
实施例1;
步骤1、微米线制备:取质量比为1:1的高纯氧化镓粉末和碳粉,研磨3小时以上,使其混合均匀;取适量上述混合粉末放入刚玉舟中,将衬底依次用洗洁精、丙酮、酒精、去离子水各清洗十分钟,清洗干净后用高纯氮气吹干,置于粉末正上方,将盛有混合粉末的刚玉舟放入石英管中,然后将石英管放入高温管式炉中生长,在生长过程中通入高纯氩气或者氮气作为载气;生长压强为常压;生长温度为1070℃,待生长结束后自然冷却至室温,得到氧化镓微米线。
步骤2、pn结的制备:先用镊子将单根微米线转移至干净的石英玻璃衬底上,一端使用简单按压铟电极的方式固定;将聚甲基丙烯酸甲酯PMMA旋涂在铜基p型掺氮石墨烯连续薄膜顶端,在80℃环境下烘干1小时,然后将其裁剪成尺寸为5mm×5mm,然后放入1mol/L三氯化铁溶液中,待铜完全溶解,然后将清洗干净的p型石墨烯与n型氧化镓微米线结合,但是不去除聚甲基丙烯酸甲酯PMMA,待水分自然蒸发干净,然后将结合后的氧化镓微米线/石墨烯/聚甲基丙烯酸甲酯PMMA放在干燥箱分别以20℃、40℃、60℃环境下干燥30分钟,最后使用恒温加热台恒温120℃加热30分钟,以增强氧化镓微米线与石墨烯之间得范德华力,使其接触的更加紧密。
步骤3、接触电极的制备:在氧化镓和石墨烯两端分别制备电极,得到n型氧化镓微米线/p型石墨烯异质pn结自供电紫外光电探测器。
图2是本发明n型氧化镓/p型石墨烯pn结在dark和235nm光照下的IV曲线图,dark情况不对称的IV曲线可以看出来器件的pn结特性;光照条件下,光生载流子在电场下分离产生较大光电流,器件的光暗比大于105
图3是本发明氧化镓微米线/石墨烯异质pn结日盲紫外探测器在0V偏压、235nm光照下的It循环曲线图,由于内建电场的存在,光生电子-空穴对被可以有效分离,使得器件可以在0V下工作,光源重复打开关闭时,光电流稳定,这可以说明器件稳定可靠;
图4是本发明氧化镓微米线/石墨烯异质pn结日盲紫外探测器在0V偏压的光响应和探测率曲线图,其响应度可以达到270mA/W,响应度在日盲波段,有很好的日盲选择性,同时,器件有较高的探测率,可以达到1012
图5是本发明氧化镓微米线/石墨烯异质pn结日盲紫外探测器在不同偏压下的响应度曲线图。当施加外加偏压时,器件的响应度可以达到10A/W,说明器件可以在不同偏压下工作,同时可以保持良好的日盲选择性,进一步说明器件有较好的稳定性。
实施例2:
本实施例除下述特征外,其他均与实施例1相同;本实施例中步骤1中n型氧化镓可以替换成其他n型氧化物,如氧化锌、二氧化锡等n型材料。
上面结合附图对本发明进行了示例性的描述,显然本发明的实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围内。

Claims (10)

1.一种基于n型氧化物/p型石墨烯pn结型光电探测器,包括衬底、n型氧化物,p型石墨烯连续薄膜,聚甲基丙烯酸甲酯(PMMA)保护层、第一接触电极以及第二接触电极,其特征在于:所述n型氧化物位于所述衬底上,所述n型氧化物一端顶部与所述p型石墨烯连续薄膜中间的底部连接,所述p型石墨烯连续薄膜两端的底部与所述衬底连接,所述p型石墨烯连续薄膜顶部覆盖所述聚甲基丙烯酸甲酯(PMMA)保护层,所述p型石墨烯连续薄膜与所述衬底之间设有第一接触电极,所述n型氧化物另一端与第二接触电极连接。
2.根据权利要求1所述的基于n型氧化物/p型石墨烯pn结型光电探测器,其特征在于:所述n型氧化物为氧化镓、氧化锌或二氧化锡。
3.根据权利要求1所述的基于n型氧化物/p型石墨烯pn结型光电探测器,其特征在于:所述p型石墨烯为掺氮石墨烯连续薄膜。
4.根据权利要求1所述的基于n型氧化物/p型石墨烯pn结型光电探测器,其特征在于:所述衬底为刚性绝缘衬底或者柔性绝缘衬底;所述刚性衬底包括:石英玻璃、蓝宝石、SiO2;所述柔性衬底为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚二甲基硅氧烷或云母。
5.根据权利要求1所述的基于n型氧化物/p型石墨烯pn结型光电探测器,其特征在于:所述第一接触电极和所述第二接触电极为金属接触电极或者透明导电氧化物薄膜接触电极;
所述接触金属电极选自铟、铝、金、银、铂、镍、钛中的一种形成的单层金属或者多种形成金属复合层;所述透明导电氧化物薄膜接触电极材质为掺氟氧化锡(FTO)或氧化铟锡(ITO)。
6.根据权利要求1所述的基于n型氧化物/p型石墨烯pn结型光电探测器,其特征在于:
当光电探测器有源区是n型氧化镓时,响应波段对应深紫外UVC波段;
或者;当光电探测器n型材料为氧化锌和二氧化锡时,相应波段为340nm,对应UVB波段;
p型石墨烯连续薄膜起到空穴传输作用,对紫外波段没有明显光响应。
7.一种n型氧化物/p型石墨烯异质pn结紫外光电探测器的制备方法,包括以下步骤:
步骤1、n型氧化物的制备;
步骤2、pn结的制备;
步骤3、电极的制备。
8.根据权利要求7所述的n型氧化物/p型石墨烯异质pn结紫外光电探测器的制备方法,其特征在于:
所述步骤1中的n型氧化物为氧化镓、氧化锌或二氧化锡,所述氧化镓为氧化镓微米线或氧化镓薄膜,所述氧化镓微米线由热碳还原的方法生长;所述氧化镓薄膜由磁控溅射或MOCVD大型设备生长;
所述氧化镓微米线的制备:取质量比为1:1的氧化镓粉末和碳粉充分研磨使其混合均匀;取适量上述混合粉末放入刚玉舟中,将清洗过的衬底置于粉末正上方,将盛有混合粉末的刚玉舟放入石英管中,然后将石英管放入高温管式炉中生长,在生长过程中通入惰性气体作为载气,惰性气体流量为50-200sccm;生长压强为常压,生长温度在1000-1200℃,待生长结束后自然冷却至室温,得到氧化镓微米线;氧化镓微米线为单斜相,形状为柱形,微米线长度为0.5-2cm,截面宽度为3-15μm,截面厚度为3-15μm。
9.根据权利要求7-8所述的n型氧化物/p型石墨烯异质pn结紫外光电探测器的制备方法,其特征在于:
所述步骤2中使用聚甲基丙烯酸甲酯PMMA将铜基p型掺氮石墨烯连续薄膜旋涂后,然后放入化学刻蚀液中将Cu衬底完全刻蚀,将清洗干净的p型石墨烯与步骤1所得的n型氧化镓微米线结合,但是不去除聚甲基丙烯酸甲酯PMMA,聚甲基丙烯酸甲酯PMMA形成的层结构阻隔石墨烯与空气直接接触,有助于增强器件的稳定性;然后干燥并采用梯度加热的方法,使其借助范德华力紧密接触;
所述步骤2中的化学刻蚀液为三氯化铁或过硫酸铵等氧化剂,其浓度为1-10mol/L;
所述步骤2中的干燥在鼓风干燥箱中进行并且分别在20-30℃、40-50℃、60-70℃保持恒温10-30min,以减少转移过程中水分蒸发而产生的气泡,有助于减少微米线与石墨烯之间的距离;
所述步骤2中的梯度加热在恒温加热台中完成,恒温加热台加热温度为110-160℃,保证微米线与石墨烯之间的范德华力更加紧密。
10.根据权利要求7-9所述的n型氧化物/p型石墨烯异质pn结紫外光电探测器的制备方法,其特征在于:
步骤3中接触电极的制备:分别在n型氧化镓和p型石墨烯两端使用磁控溅射、热蒸发等方法制备电极,得到n型氧化镓/p型石墨烯异质pn结的自供电紫外光电探测器。
CN202110914231.3A 2021-08-10 2021-08-10 n型氧化物/p型石墨烯异质pn结紫外光电探测器制备方法 Active CN113675293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110914231.3A CN113675293B (zh) 2021-08-10 2021-08-10 n型氧化物/p型石墨烯异质pn结紫外光电探测器制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110914231.3A CN113675293B (zh) 2021-08-10 2021-08-10 n型氧化物/p型石墨烯异质pn结紫外光电探测器制备方法

Publications (2)

Publication Number Publication Date
CN113675293A true CN113675293A (zh) 2021-11-19
CN113675293B CN113675293B (zh) 2024-04-12

Family

ID=78542135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110914231.3A Active CN113675293B (zh) 2021-08-10 2021-08-10 n型氧化物/p型石墨烯异质pn结紫外光电探测器制备方法

Country Status (1)

Country Link
CN (1) CN113675293B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859858A (zh) * 2010-05-07 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 基于石墨烯的透明导电电极及其制法与应用
KR20110069560A (ko) * 2009-12-17 2011-06-23 한양대학교 산학협력단 산화아연 나노로드 - 그래핀 박막의 하이브리드 구조체 및 그 제조 방법
JP2012138451A (ja) * 2010-12-27 2012-07-19 Hitachi Ltd グラフェン膜と金属電極とが電気的接合した回路装置
US20130082241A1 (en) * 2011-09-29 2013-04-04 Francis J. Kub Graphene on Semiconductor Detector
CN104692362A (zh) * 2013-12-05 2015-06-10 常州二维碳素科技有限公司 一种保护石墨烯的方法以及含有保护层的石墨烯薄膜
KR20160098643A (ko) * 2015-02-10 2016-08-19 인하대학교 산학협력단 센서용 전극의 제조방법 및 이에 따라 제조되는 센서
KR20180050189A (ko) * 2016-11-04 2018-05-14 주식회사 가온인터내셔널 그래핀을 이용한 oled(organic light emitting diode) 제작 방법
WO2020039212A1 (en) * 2018-08-23 2020-02-27 Nanoco 2D Materials Limited Photodetectors based on two-dimensional quantum dots
CN111072057A (zh) * 2018-10-22 2020-04-28 哈尔滨工业大学 一种氧化镓微米线的制备方法
CN113113499A (zh) * 2021-03-29 2021-07-13 金华紫芯科技有限公司 一种pn结型氧化镓基自供电紫外探测器及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110069560A (ko) * 2009-12-17 2011-06-23 한양대학교 산학협력단 산화아연 나노로드 - 그래핀 박막의 하이브리드 구조체 및 그 제조 방법
CN101859858A (zh) * 2010-05-07 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 基于石墨烯的透明导电电极及其制法与应用
JP2012138451A (ja) * 2010-12-27 2012-07-19 Hitachi Ltd グラフェン膜と金属電極とが電気的接合した回路装置
US20130082241A1 (en) * 2011-09-29 2013-04-04 Francis J. Kub Graphene on Semiconductor Detector
CN104692362A (zh) * 2013-12-05 2015-06-10 常州二维碳素科技有限公司 一种保护石墨烯的方法以及含有保护层的石墨烯薄膜
KR20160098643A (ko) * 2015-02-10 2016-08-19 인하대학교 산학협력단 센서용 전극의 제조방법 및 이에 따라 제조되는 센서
KR20180050189A (ko) * 2016-11-04 2018-05-14 주식회사 가온인터내셔널 그래핀을 이용한 oled(organic light emitting diode) 제작 방법
WO2020039212A1 (en) * 2018-08-23 2020-02-27 Nanoco 2D Materials Limited Photodetectors based on two-dimensional quantum dots
CN111072057A (zh) * 2018-10-22 2020-04-28 哈尔滨工业大学 一种氧化镓微米线的制备方法
CN113113499A (zh) * 2021-03-29 2021-07-13 金华紫芯科技有限公司 一种pn结型氧化镓基自供电紫外探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KWON Y T;KANG S O, CHEON J A ET AL: "Fabrication of a Graphene/ZnO based pn junction device and its Ultraviolet photoresponse properties", APPLIED SURFACE SCIENCE, vol. 415, pages 2 - 7 *
王贺彬: "氧化镓微米线的生长及自驱动日盲紫外光探 测器性能研究", 无, pages 9 - 45 *

Also Published As

Publication number Publication date
CN113675293B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
Kumar et al. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes
Boruah Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN110047957B (zh) 一种中红外光探测器及其制备方法
CN106601857A (zh) 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
CN106784122A (zh) 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
CN109449225A (zh) 二硒化钯薄膜/n-型硅异质结光电探测器及其制备方法
CN109698278A (zh) 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
CN109256471A (zh) 一种无铅全无机钙钛矿铯铋碘薄膜/n-型硅异质结光电探测器及其制备方法
Yin et al. Enhanced performance of UV photodetector based on ZnO nanorod arrays via TiO2 as electrons trap layer
Hsueh et al. Crystalline-Si photovoltaic devices with ZnO nanowires
CN109411562A (zh) 二硒化铂薄膜/n-型锗异质结近红外光探测器及其制备方法
Liu et al. High-performance self-driven ultraviolet photodetector based on SnO2 pn homojunction
Huang et al. Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
Ghosh et al. High performance broad-band ultraviolet-B to visible photodetection based on planar Al-Zn2SnO4-Al structure
CN207977318U (zh) 一种多功能器件
CN110491966B (zh) 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法
CN110350043B (zh) 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法
Jiao et al. Self-powered flexible UV photodetectors based on MOCVD-grown Ga2O3 films on mica
CN113675293B (zh) n型氧化物/p型石墨烯异质pn结紫外光电探测器制备方法
CN108258081B (zh) CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
CN111952401B (zh) 一种基于范德瓦尔斯异质结的颜色探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant