CN113675270B - 一种具有逆向导通能力的GaN RC-HEMT - Google Patents

一种具有逆向导通能力的GaN RC-HEMT Download PDF

Info

Publication number
CN113675270B
CN113675270B CN202111000705.XA CN202111000705A CN113675270B CN 113675270 B CN113675270 B CN 113675270B CN 202111000705 A CN202111000705 A CN 202111000705A CN 113675270 B CN113675270 B CN 113675270B
Authority
CN
China
Prior art keywords
barrier layer
conductive material
insulated gate
layer
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111000705.XA
Other languages
English (en)
Other versions
CN113675270A (zh
Inventor
罗小蓉
张�成
廖德尊
邓思宇
杨可萌
魏杰
贾艳江
孙涛
郗路凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111000705.XA priority Critical patent/CN113675270B/zh
Publication of CN113675270A publication Critical patent/CN113675270A/zh
Application granted granted Critical
Publication of CN113675270B publication Critical patent/CN113675270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明属于半导体技术领域,涉及一种具有逆向导通能力的GaN RC‑HEMT器件。本发明在传统MIS栅HEMT器件基础上引入电流阻挡层和多沟道导电通路,并且集成了反向续流肖特基管,降低了反向开启损耗。阻挡层形成2DHG阻断纵向电流通路,实现器件增强型。正向导通时栅极加高电位,栅极侧壁形成反型层使纵向沟道导通,漂移区的多沟道导电通路和栅极下方形成的电子积累层均降低了导通电阻;正向阻断时,阻挡层辅助耗尽漂移区调制电场,降低电场尖峰,此外多沟道区域形成的极化电场可以进一步提高漂移区耐压,有效缓解了导通电阻与耐压之间的矛盾关系;反向续流时集成肖特基管沿2DEG形成电流路径,降低导通损耗的同时相较于常规集成SBD的方法节省了面积。

Description

一种具有逆向导通能力的GaN RC-HEMT
技术领域
本发明属于功率半导体技术领域,具体是指一种具有逆向导通能力的GaN RC-HEMT器件。
背景技术
GaN HEMT比Si基功率MOSFET开关速度更快,在相同耐压下电阻更小,并能承受更高的工作温度。然而相比Si基功率MOSFET,GaN HEMT却不具有体二极管的优势。在工业中应用广泛的逆变电路中,功率MOSFET可以利用其体二极管作为续流二极管,这有效降低了系统成本。如果GaN HEMT能够拥有优异的逆向导通性能,则同样可以更有效地降低系统成本。由于HEMT独特的横向对称结构,GaN E-HEMT虽然不具备和MOSFET一样的PN体二极管,但是仍然可以利用横向的导电沟道反向传导电流,同时具备反向恢复损耗为零的优势。然而在利用GaN E-HEMT双向导电性能时,第三象限开启电压远大于SBD的开启电压,从而增加了反向导通损耗。
为了解决这一问题,通常采用外部反向并联SBD的方法来实现反向续流,但这种方式会增加寄生效应,器件在开启关断过程中的过冲、振荡会更加明显,导通损耗也会相应增加。此外额外的器件会带来成本的增加,系统体积的增大,并且增加了封装难度。因此如何实现低导通损耗、低导通压降并且带来较小寄生效应的反向续流的问题亟需解决。
发明内容
针对上述问题,本发明提出一种具有逆向导通能力的GaN HEMT器件。在传统的集成SBD的HEMT基础上进一步降低了导通损耗,并提高了器件耐压。
本发明的技术方案是:
一种具有逆向导通能力的GaN RC-HEMT,包括沿器件垂直方向自下而上依次层叠设置的衬底材料1、GaN缓冲层2、势垒层3,所述势垒层3和GaN缓冲层2之间形成异质结并产生2DEG,在势垒层3上表面沿器件横向方向依次分布肖特基金属4、源极半导体区、绝缘栅极结构和第一导电材料5;
所述绝缘栅极结构由绝缘栅介质6和第二导电材料7构成,绝缘栅介质6下表面与势垒层3接触,第二导电材料7的侧壁和底部被绝缘栅介质6包围;第二导电材料7、绝缘栅介质6和势垒层3构成MIS结构;所述第二导电材料7上表面引出栅极;
所述源极半导体区一侧与绝缘栅极结构接触,源极半导体区另一侧与肖特基金属4之间具有间距;所述源极半导体区包括自下而上依次层叠的阻挡层8、AlGaN层9和第三导电材料10;第三导电材料10位于AlGaN层9上表面靠近特基金属4的一端,第三导电材料(10与绝缘栅极结构具有间距,第三导电材料10与AlGaN层9为欧姆接触;所述第三导电材料10上表面引出源极;
肖特基金属4与势垒层3为肖特基接触;所述肖特基金属4上表面引出肖特基电极;
第一导电材料5与绝缘栅极结构具有间距,第一导电材料5与势垒层3为欧姆接触;所述第一导电材料5上表面引出漏极;
进一步的,所述绝缘栅极结构和第一导电材料5之间具有多沟道区域11;多沟道区域11由多层依次交错层叠的GaN层和AlGaN层构成,GaN层下表面与势垒层3接触,多沟道区域11一侧与第一导电材料5接触,接触类型为欧姆接触,多沟道区域11另一侧与绝缘栅介质6接触。
进一步的,所述阻挡层8为GaN层,势垒层3为AlGaN层。所述阻挡层8和势垒层3间形成异质结并产生2DHG。
进一步的,所述阻挡层8和势垒层3为不同极化掺杂的AlxGa1-xN材料,AlxGa1-xN阻挡层8中的Al摩尔组分从上至下从0逐渐增大至x(0≤x≤1),形成3DHG等效为P型掺杂,或者,AlxGa1-xN势垒层3中的Al摩尔组分从上至下从x逐渐较小至0,形成3DEG。
本发明的有益效果在于:
1.集成反向续流SBD与HEMT共用了AlGaN势垒层与GaN缓冲层间异质结产生的二维电子气(2DEG)通路,正向导通和反向续流时整个漂移区均全部参与导电,提升了整个器件的电流能力。相较于常规集成反向续流SBD的HEMT在纵向上分离两者导通路径的做法,本发明进一步节省了面积。反向续流时肖特基管的电流路径沿着AlGaN势垒层下方的2DEG到达漏极,降低了导通损耗。势垒层表面的多沟道导电通路进一步降低了漂移区电阻,同时,在耐压时形成的极化电场可以进一步提高漂移区耐压,有效缓解了导通电阻与耐压之间的矛盾关系;
2.绝缘栅下方积累电子提高栅下电子浓度,进一步降低了导通损耗,提升了电流能力。绝缘栅下方维持较高的2DEG浓度时仍能实现增强型器件,消除了MIS栅HEMT刻蚀势垒层对沟道导通电阻的影响,并且避免了传统绝缘栅HEMT结构的阈值电压分布不一致的问题;
3.正向阻断时阻挡层辅助耗尽漂移区,降低了肖特基阳极处的电场,有效提高了耐压。
附图说明
图1是实施例1的结构示意图;
图2是实施例2的结构示意图;
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
实施例1
如图1所示,一种具有逆向导通能力的GaN RC-HEMT,包括沿器件垂直方向自下而上依次层叠设置的衬底材料1、GaN缓冲层2、势垒层3,所述势垒层3和GaN缓冲层2间形成异质结并产生2DEG。沿器件横向方向依次分布肖特基金属4、源极半导体区、绝缘栅极结构和第一导电材料5;
所述绝缘栅极结构由绝缘栅介质6和第二导电材料7构成,下表面与势垒层3接触。第二导电材料7的侧壁和底部被绝缘栅介质6包围。第二导电材料7、绝缘栅介质6和势垒层3构成MIS结构;
所述第二导电材料7上表面引出栅极;
所述源极半导体区位于势垒层3上方,右侧与绝缘栅极结构接触。所述源极半导体区包括自下而上依次层叠的阻挡层8、AlGaN层9和第三导电材料10。第三导电材料10位于源极半导体区左侧,且与绝缘栅极结构有一定间距,下表面与AlGaN层9接触,接触类型为欧姆接触;
所述第三导电材料10上表面引出源极;
第一导电材料5与绝缘栅极结构有一定间距且下表面与势垒层3接触,接触类型为欧姆接触;
所述第一导电材料5上表面引出漏极;
肖特基金属4与源极半导体区有一定间距且下表面与势垒层3接触,接触类型为肖特基接触;
所述肖特基金属4上表面引出肖特基电极;
所述阻挡层8为GaN层,势垒层3为AlGaN层。所述阻挡层8和势垒层3间形成异质结并产生2DHG。
所述绝缘栅极结构和第一导电材料5之间具有多沟道区域11。多沟道区域11位于势垒层3上方,由多层依次交错层叠的GaN层和AlGaN层构成,GaN层下表面与势垒层3接触。多沟道区域11右侧与第一导电材料5接触,接触类型为欧姆接触,左侧与绝缘栅介质6接触。
其特征在于,集成反向续流SBD与HEMT共用了AlGaN势垒层与GaN缓冲层间异质结产生的二维电子气(2DEG)通路,正向导通和反向续流时整个漂移区均全部参与导电,势垒层表面采用多层依次交错层叠的GaN层和AlGaN层构成多沟道导电通路。
本发明提供的具有逆向导通能力的GaN RC-HEMT器件,通过将肖特基结构集成到E-HEMT中实现反向续流,相较于外部反向并联续流二极管具有更小的寄生参数。阻挡层和势垒层之间形成的2DHG阻断导电通路实现增强型,并且在正向阻断时阻挡层辅助耗尽漂移区,降低肖特基阳极电场峰值,提高了器件耐压,进而实现更好的阻断效果。多沟道导电通路进一步降低了漂移区电阻,此外耐压时形成的极化电场可以进一步提高漂移区耐压,有效缓解了导通电阻与耐压之间的矛盾关系。
实施例2
与实施例1相比,本例器件将常规的P型GaN层和AlGaN势垒层替换为极化掺杂的AlxGa1-xN层,解决了GaN中受主杂质Mg的低激活率导致难以实现较高浓度的P型掺杂问题。所述阻挡层AlxGa1-xN中的Al摩尔组分从上至下从0逐渐增大至x(0≤x≤1),形成3DHG等效为P型掺杂,势垒层AlxGa1-xN中的Al摩尔组分从上至下从x逐渐较小至0,形成3DEG。极化掺杂的AlxGa1-xN阻挡层和AlxGa1-xN势垒层由于不存在高浓度的带电施主和受主因此具有相对较高的载流子迁移率,此外避免了载流子的低温冻析效应,减小了温度对器件的影响。

Claims (3)

1.一种具有逆向导通能力的GaN RC-HEMT,其特征在于,包括沿器件垂直方向自下而上依次层叠设置的衬底材料(1)、GaN缓冲层(2)、势垒层(3),所述势垒层(3)和GaN缓冲层(2)之间形成异质结并产生2DEG,在势垒层(3)上表面沿器件横向方向依次分布肖特基金属(4)、源极半导体区、绝缘栅极结构和第一导电材料(5);
所述绝缘栅极结构由绝缘栅介质(6)和第二导电材料(7)构成,绝缘栅介质(6)下表面与势垒层(3)接触,第二导电材料(7)的侧壁和底部被绝缘栅介质(6)包围;第二导电材料(7)、绝缘栅介质(6)和势垒层(3)构成MIS结构;所述第二导电材料(7)上表面引出栅极;
所述源极半导体区一侧与绝缘栅极结构接触,源极半导体区另一侧与肖特基金属(4)之间具有间距;所述源极半导体区包括自下而上依次层叠的阻挡层(8)、AlGaN层(9)和第三导电材料(10);第三导电材料(10)位于AlGaN层(9)上表面靠近肖特基金属(4)的一端,第三导电材料(10与绝缘栅极结构具有间距,第三导电材料(10)与AlGaN层(9)为欧姆接触;所述第三导电材料(10)上表面引出源极;
所述阻挡层(8)为GaN层,势垒层(3)为AlGaN层,所述阻挡层(8)和势垒层(3)间形成异质结并产生2DHG;
肖特基金属(4)与势垒层(3)为肖特基接触;所述肖特基金属(4)上表面引出肖特基电极;
第一导电材料(5)与绝缘栅极结构具有间距,第一导电材料(5)与势垒层(3)为欧姆接触;所述第一导电材料(5)上表面引出漏极。
2.根据权利要求1所述的一种具有逆向导通能力的GaN RC-HEMT,其特征在于,所述绝缘栅极结构和第一导电材料(5)之间具有多沟道区域(11);多沟道区域(11)由多层依次交错层叠的GaN层和AlGaN层构成,GaN层下表面与势垒层(3)接触,多沟道区域(11)一侧与第一导电材料(5)接触,接触类型为欧姆接触,多沟道区域(11)另一侧与绝缘栅介质(6)接触。
3.根据权利要求1所述的一种具有逆向导通能力的GaN RC-HEMT,其特征在于,所述阻挡层(8)和势垒层(3)为不同极化掺杂的AlxGa1-xN材料,AlxGa1-xN阻挡层(8)中的Al摩尔组分从上至下从0逐渐增大至x(0≤x≤1),形成3DHG等效为P型掺杂,或者,AlxGa1-xN势垒层(3)中的Al摩尔组分从上至下从x逐渐减小至0,形成3DEG。
CN202111000705.XA 2021-08-27 2021-08-27 一种具有逆向导通能力的GaN RC-HEMT Active CN113675270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111000705.XA CN113675270B (zh) 2021-08-27 2021-08-27 一种具有逆向导通能力的GaN RC-HEMT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111000705.XA CN113675270B (zh) 2021-08-27 2021-08-27 一种具有逆向导通能力的GaN RC-HEMT

Publications (2)

Publication Number Publication Date
CN113675270A CN113675270A (zh) 2021-11-19
CN113675270B true CN113675270B (zh) 2023-05-05

Family

ID=78547214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111000705.XA Active CN113675270B (zh) 2021-08-27 2021-08-27 一种具有逆向导通能力的GaN RC-HEMT

Country Status (1)

Country Link
CN (1) CN113675270B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447103B (zh) * 2022-01-26 2023-04-25 电子科技大学 一种具有逆向导通能力的GaN RC-HEMT
CN117080255B (zh) * 2023-10-17 2024-01-30 南京大学 一种具有冲击能量释放能力的GaN HEMT晶体管及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074019A1 (ja) * 2004-01-28 2005-08-11 Sanken Electric Co., Ltd. 半導体装置
CN102201441A (zh) * 2010-03-26 2011-09-28 三垦电气株式会社 半导体装置
CN102810559A (zh) * 2012-08-21 2012-12-05 中山大学 一种兼具反向导通的异质结构场效应晶体管及其制作方法
CN103098221A (zh) * 2010-07-28 2013-05-08 谢菲尔德大学 具有二维电子气和二维空穴气的半导体器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564020B2 (en) * 2009-07-27 2013-10-22 The Hong Kong University Of Science And Technology Transistors and rectifiers utilizing hybrid electrodes and methods of fabricating the same
US20130087803A1 (en) * 2011-10-06 2013-04-11 Epowersoft, Inc. Monolithically integrated hemt and schottky diode
US8624667B2 (en) * 2011-12-05 2014-01-07 Mitsubishi Electric Research Laboratories, Inc. High electron mobility transistors with multiple channels
JP2019050344A (ja) * 2017-09-12 2019-03-28 住友電工デバイス・イノベーション株式会社 高電子移動度トランジスタの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074019A1 (ja) * 2004-01-28 2005-08-11 Sanken Electric Co., Ltd. 半導体装置
CN102201441A (zh) * 2010-03-26 2011-09-28 三垦电气株式会社 半导体装置
CN103098221A (zh) * 2010-07-28 2013-05-08 谢菲尔德大学 具有二维电子气和二维空穴气的半导体器件
CN102810559A (zh) * 2012-08-21 2012-12-05 中山大学 一种兼具反向导通的异质结构场效应晶体管及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sheng Li等.Integrated GaN MIS-HEMT with Multi-Channel Heterojunction SBD Structures.Proceedings of the 31st International Symposium on Power Semiconductor Devices &amp ICs.2019,447-450. *

Also Published As

Publication number Publication date
CN113675270A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN110047910B (zh) 一种高耐压能力的异质结半导体器件
CN107482059B (zh) 一种GaN异质结纵向逆导场效应管
CN113675270B (zh) 一种具有逆向导通能力的GaN RC-HEMT
CN113594248B (zh) 一种具有集成续流二极管的双异质结GaN HEMT器件
KR20140023610A (ko) 반도체소자 및 그 제조방법
CN108807510B (zh) 一种逆阻型氮化镓高电子迁移率晶体管
CN112420694B (zh) 集成反向肖特基续流二极管的可逆导碳化硅jfet功率器件
CN113690311B (zh) 一种集成续流二极管的GaN HEMT器件
CN111370470A (zh) 氮化镓mis栅控混合沟道功率场效应晶体管及其制造方法
CN117497601A (zh) 平面型碳化硅晶体管的结构、制造方法及电子设备
CN116913951A (zh) 一种具有P型埋层的双沟道增强型GaN HEMT器件
CN111341850A (zh) 一种GaN纵向逆导结场效应管
CN109065629B (zh) 一种槽栅超结器件
CN113611742B (zh) 一种集成肖特基管的GaN功率器件
KR102585094B1 (ko) 분리 버퍼 구조를 갖는 초접합 igbt
CN111834450B (zh) 一种集成齐纳二极管的soi ligbt器件
CN113594243A (zh) 一种渐变极化掺杂的增强型GaN纵向场效应晶体管
CN114447103B (zh) 一种具有逆向导通能力的GaN RC-HEMT
CN113782588A (zh) 一种具有栅极高耐压低漏电的氮化镓功率器件
CN111293176B (zh) 一种GaN纵向逆导结场效应管
CN114447101B (zh) 一种集成续流沟道二极管的垂直GaN MOSFET
CN114613856B (zh) 一种双异质结GaN RC-HEMT器件
CN114068677B (zh) 一种AlGaN沟槽的增强型高压GaN基垂直HFET装置
CN115117154B (zh) 一种具有高续流能力的鳍式氮化镓器件
US11955477B2 (en) Semiconductor device and semiconductor circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant