CN113664197B - 一种高强塑性粉末高温合金及其制备方法和应用 - Google Patents
一种高强塑性粉末高温合金及其制备方法和应用 Download PDFInfo
- Publication number
- CN113664197B CN113664197B CN202110932669.4A CN202110932669A CN113664197B CN 113664197 B CN113664197 B CN 113664197B CN 202110932669 A CN202110932669 A CN 202110932669A CN 113664197 B CN113664197 B CN 113664197B
- Authority
- CN
- China
- Prior art keywords
- percent
- pressure
- temperature
- powder
- heat preservation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims abstract description 65
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 title abstract description 19
- 239000000956 alloy Substances 0.000 title abstract description 19
- 238000005245 sintering Methods 0.000 claims abstract description 42
- 238000004321 preservation Methods 0.000 claims abstract description 35
- 230000010355 oscillation Effects 0.000 claims abstract description 33
- 229910000601 superalloy Inorganic materials 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims description 22
- 238000000465 moulding Methods 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 12
- 229910002804 graphite Inorganic materials 0.000 abstract description 11
- 239000010439 graphite Substances 0.000 abstract description 11
- 239000002245 particle Substances 0.000 abstract description 6
- 238000011161 development Methods 0.000 abstract description 3
- 230000009471 action Effects 0.000 abstract description 2
- 230000001808 coupling effect Effects 0.000 abstract description 2
- 239000011148 porous material Substances 0.000 abstract description 2
- 230000008707 rearrangement Effects 0.000 abstract description 2
- 238000003825 pressing Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 238000001513 hot isostatic pressing Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010275 isothermal forging Methods 0.000 description 3
- 238000000280 densification Methods 0.000 description 2
- 238000001192 hot extrusion Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/03—Press-moulding apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/009—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2202/00—Treatment under specific physical conditions
- B22F2202/01—Use of vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种高强塑性粉末高温合金的制备方法,通过两步保温振荡压力烧结的方法,使粉末高温合金在高温石墨模具内经热场和力场的多场耦合作用,在循环压力作用下,促使粉体重排和气孔排出,从而烧结成形。本发明还公开了上述方法制备得到的粉末高温合金,其具有原始颗粒边界缺陷等级低、晶粒细化均匀、致密度高的特点。本发明得到的烧结态粉末高温合金的屈服强度、抗拉强度和延伸率高达955MPa、1437MPa、31.9%,具有较高的强度和塑性。本发明还公开了上述粉末高温合金在航空发动机涡轮盘中的应用,具有良好的发展潜力。
Description
技术领域
本发明属于粉末冶金高温合金领域,涉及一种高强塑性粉末高温合金及其制备方法和应用。
背景技术
目前,镍基高温合金具有优异的高温强度、良好的延展性与断裂韧性,已广泛应用于航空发动机涡轮盘等热端部件。粉末高温合金制备加工工艺路线主要为a.直接热等静压,b.热等静压与等温锻造结合,c.热等静压、热挤压与等温锻造结合。直接热等静压路线工艺简单、制备周期短且成本低,是未来的发展方向。但目前由于该路线未能有效解决“组织和缺陷协同控制”问题,如晶粒粗化和原始颗粒边界缺陷形成,采用该方法制备出的涡轮盘服役期间存在安全隐患,因而该方法未得到广泛应用。
为解决上述问题,热挤压和等温锻造既增加了制备成本和工序的复杂性,也存在热加工时烧结坯开裂的风险,上述问题均限制了粉末高温合金的应用。在烧结过程中解决“组织和缺陷控制”问题是促进“直接热等静压”路线制备粉末高温合金得以广泛使用的关键。因此,寻找一种克服上述问题以制备高性能粉末高温合金的方法至关重要。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种高强塑性粉末高温合金的制备方法,该方法制备得到的粉末高温合金具有原始颗粒边界缺陷等级低和晶粒细小的特点。
本发明的目的之二在于提供一种高强塑性粉末高温合金。
本发明的目的之三在于提供上述高强塑性粉末高温合金的应用。
本发明的目的之一采用如下技术方案实现:
一种高强塑性粉末高温合金的制备方法,包括以下步骤:
(1)取预制粉体装入模具中,然后进行冷压成型;所述预制粉体由以下重量百分比的原料组成:铬12.0-17.0%、钴7.0-14.0%、钨3.30-4.20%、铌0.05-3.50%、铝2.00-3.70%、钛2.30-3.90%、碳0.02-0.07%、锆0.025-0.070%、硼0.006-0.020%、铁≤0.50%、锰≤0.150%、硅≤0.150%、硫≤0.015%、磷≤0.015%,余量为镍;
(2)将步骤(1)冷压成型后装有预制粉体的模具放入振荡压力烧结炉中,对样品施加恒定压力P1,升温对样品进行加热;当烧结炉内达到烧结温度T1后进入第一阶段保温,同时升压至振荡压力中值,随后对样品施加振荡压力;第一阶段保温结束后继续升温至烧结温度T2,进入第二阶段保温;所述振荡压力作用至第二阶段保温结束;
(3)保温结束后停止加热,降温的同时将振荡压力降压,改为恒定压力P2直至降温结束,即得成品。
进一步地,所述步骤(2)中烧结的升温速率为8℃/min,烧结温度T1为950~1050℃,烧结温度T2为1100~1200℃,第一阶段、第二阶段保温时间为1~3h。
进一步地,所述步骤(2)振荡压力中值为60~100MPa,振幅±5~±10MPa,振荡频率1~10Hz。
进一步地,所述步骤(2)、(3)的恒定压力P1、P2均为5MPa,步骤(3)降压速率为10MPa/min。
进一步地,所述步骤(1)中冷压成型的压力为10MPa,时间3min。
进一步地,所述步骤(1)预制粉体粒度<53μm。
进一步地,所述步骤(2)、(3)在真空环境中进行。
本发明的目的之二采用如下技术方案实现:
一种由上述方法制备得到高强塑性粉末高温合金。
本发明的目的之三采用如下技术方案实现:
上述高强塑性粉末高温合金在航空发动机涡轮盘中的应用。
相比现有技术,本发明的有益效果在于:
本发明提供了一种高强塑性粉末高温合金的制备方法,通过两步保温振荡压力烧结的方法,使粉末高温合金在高温石墨模具内经热场和力场的多场耦合作用,在循环压力作用下,促使粉体重排和气孔排出,从而烧结成形。本发明还提供了上述方法制备得到的粉末高温合金,其具有原始颗粒边界缺陷等级低、晶粒细化均匀、致密度高的特点。本发明得到的烧结态粉末高温合金的屈服强度、抗拉强度和延伸率高达955MPa、1437MPa、31.9%,具有较高的强度和塑性。本发明还提供了上述粉末高温合金在航空发动机涡轮盘中的应用,具有良好的发展潜力。
附图说明
图1为本发明实施例1至3、对比例1至3制备得到的粉末高温合金的室温拉伸应力-应变曲线图;
图2为本发明实施例1制备得到的粉末高温合金的微观组织图;
图3为本发明对比例1制备得到的粉末高温合金的微观组织图。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
实施例1
一种高强塑性粉末高温合金的制备方法,包括以下步骤:
(1)取预制粉体装入涂抹氮化硼涂层的高纯石墨压制模具中,然后进行冷压成型,压力10MPa下预压成型3min;压制成圆柱片状,直径40mm,厚度6mm。所述预制粉体由以下重量百分比的原料组成:铬15.0%、钴10.0%、钨3.50%、铌1.50%、铝3.00%、钛3.00%、碳0.05%、锆0.050%、硼0.010%、铁0.10%、锰0.100%、硅0.100%、硫0.010%、磷0.010%,余量为镍;预制粉体粒度<53μm。
(2)将步骤(1)冷压成型后装有预制粉体的石墨压制模具放入振荡压力烧结炉中,对样品施加恒定压力5MPa,升温对样品进行加热;当烧结炉内达到1000℃后进入第一阶段保温,保温时间2h;同时升压至振荡压力中值70MPa,随后对样品施加振荡循环压力;振幅±10MPa,振荡频率为5Hz;第一阶段保温结束后继续升温至1120℃,进入第二阶段保温,保温时间1h;上述升温过程的升温速率均为8℃/min,所述振荡压力作用至第二阶段保温结束;
(3)保温结束后停止加热,降温的同时将振荡压力改为恒定压力5MPa直至降温结束,烧结炉内腔随炉自然冷却降至室温,通过破真空打开炉腔门,同时缓慢卸去压头对石墨模具的压力,取出模具,最后获得模具内的样品,即得高强塑性粉末高温合金。
实施例2
一种高强塑性粉末高温合金的制备方法,包括以下步骤:
(1)取预制粉体装入涂抹氮化硼涂层的高纯石墨压制模具中,然后进行冷压成型,压力10MPa下预压成型3min;压制成圆柱片状,直径40mm,厚度6mm。所述预制粉体由以下重量百分比的原料组成:铬12.0%、钴7.0%、钨3.30%、铌0.05%、铝2.00%、钛2.30%、碳0.02%、锆0.025%、硼0.006%、铁0.30%、锰0.050%、硅0.130%、硫0.012%、磷0.005%,余量为镍;预制粉体粒度<53μm。
(2)将步骤(1)冷压成型后装有预制粉体的石墨压制模具放入振荡压力烧结炉中,对样品施加恒定压力5MPa,升温对样品进行加热;当烧结炉内达到950℃后进入第一阶段保温,保温时间3h;同时升压至振荡压力中值70MPa,随后对样品施加振荡循环压力;振幅±5MPa,振荡频率为1Hz;第一阶段保温结束后继续升温至1150℃,进入第二阶段保温,保温时间1h;上述升温过程的升温速率均为8℃/min,所述振荡压力作用至第二阶段保温结束;
(3)保温结束后停止加热,降温的同时将振荡压力改为恒定压力5MPa直至降温结束,烧结炉内腔随炉自然冷却降至室温,通过破真空打开炉腔门,同时缓慢卸去压头对石墨模具的压力,取出模具,最后获得模具内的样品,即得高强塑性粉末高温合金。
实施例3
一种高强塑性粉末高温合金的制备方法,包括以下步骤:
(1)取预制粉体装入涂抹氮化硼涂层的高纯石墨压制模具中,然后进行冷压成型,压力10MPa下预压成型3min;压制成圆柱片状,直径40mm,厚度6mm。所述预制粉体由以下重量百分比的原料组成:铬17.0%、钴14.0%、钨4.20%、铌3.50%、铝3.70%、钛3.90%、碳0.07%、锆0.070%、硼0.020%、铁0.20%、锰0.050%、硅0.080%、硫0.050%、磷0.050%,余量为镍;预制粉体粒度<53μm。
(2)将步骤(1)冷压成型后装有预制粉体的石墨压制模具放入振荡压力烧结炉中,对样品施加恒定压力5MPa,升温对样品进行加热;当烧结炉内达到1050℃后进入第一阶段保温,保温时间3h;同时升压至振荡压力中值70MPa,随后对样品施加振荡循环压力;振幅±8MPa,振荡频率为10Hz;第一阶段保温结束后继续升温至1100℃,进入第二阶段保温,保温时间3h;上述升温过程的升温速率均为8℃/min,所述振荡压力作用至第二阶段保温结束。
(3)保温结束后停止加热,降温的同时将振荡压力改为恒定压力5MPa直至降温结束,烧结炉内腔随炉自然冷却降至室温,通过破真空打开炉腔门,同时缓慢卸去压头对石墨模具的压力,取出模具,最后获得模具内的样品,即得高强塑性粉末高温合金。
对比例1
对比例1与实施例1的区别在于:将步骤(3)中两阶段升温保温、施加振荡压力的过程调整为一步恒定压力烧结过程,其中烧结温度为1120℃,恒定压力80MPa,保温2h。其余与实施例1相同,最终得到成品。
对比例2
对比例2与实施例1的区别在于:将步骤(3)中两阶段升温保温、施加振荡压力的过程调整为两步恒定压力烧结过程,其中烧结温度T1为1000℃,第一阶段保温1h;烧结温度T2为1120℃,保温时间1h,烧结全程施加恒定压力80MPa,保温1h。其余与实施例1相同,最终得到成品。
对比例3
对比例3与实施例1的区别在于:将步骤(3)中两阶段升温保温、施加振荡压力的过程调整为一步振荡热压烧结过程,其中烧结温度为1120℃,保温1h,烧结全程施加振荡压力,振荡压力中值为70MPa,振幅10MPa,振荡频率5Hz。其余与实施例1相同,最终得到成品。
实验例
对本发明实施例1至实施例3、对比例1至对比例3得到的成品进行室温拉伸性能测试、原始颗粒边界缺陷等级评估及致密度测试。
通过万能试验机对实施例1至实施例3、对比例1至对比例3得到的成品进行室温拉伸性能测试,结果如图1所示,实施例1至实施例3样品的平均屈服强度、抗拉强度和延伸率分别为955MPa、1437MPa、31.9%,对比例1至对比例3样品的平均屈服强度、抗拉强度和延伸率分别为902MPa、1370MPa、25.6%。由上可知本发明采用的两步保温振荡压力烧结方法可显著提高粉末高温合金的强度和塑性。
对本发明实施例1、对比例1得到的成品进行原始颗粒边界缺陷等级评估,评估前需要对上述样品进行腐蚀处理。如图2、图3所示,一步恒定压力烧结得到的样品原始颗粒边界缺陷较为严重,圆形或近圆形粉末边界轮廓清晰可见;而本发明采用的两步保温振荡压力烧结得到的样品原始颗粒边界缺陷较轻,由此可知本发明的制备方法可有效降低原始颗粒边界缺陷等级。
致密度测试结果表明,本发明实施例1至实施例3得到的样品致密度高达99.5%以上,基本达到了完全致密化,且高温烧结时间较短。
综上,本发明提供的高强塑性粉末高温合金制备方法制备得到的粉末高温合金致密度达99.5%以上,基本达到了完全致密化,并且高温烧结时间较短,原始颗粒边界较轻,且晶粒细化均匀,具有良好的强度和塑形,能够适用于航空发动机涡轮盘中。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
Claims (6)
1.一种高强塑性粉末高温合金的制备方法,其特征在于,包括以下步骤:
(1)取预制粉体装入模具中,然后进行冷压成型;所述预制粉体由以下重量百分比的原料组成:铬12.0-17.0%、钴7.0-14.0%、钨3.30-4.20%、铌0.05-3.50%、铝2.00-3.70%、钛2.30-3.90%、碳0.02-0.07%、锆0.025-0.070%、硼0.006-0.020%、铁≤0.50%、锰≤0.150%、硅≤0.150%、硫≤0.015%、磷≤0.015%,余量为镍;
(2)将步骤(1)冷压成型后装有预制粉体的模具放入振荡压力烧结炉中,对样品施加恒定压力P1,升温对样品进行加热;当烧结炉内达到烧结温度T1后进入第一阶段保温,同时升压至振荡压力中值,随后对样品施加振荡压力;第一阶段保温结束后继续升温至烧结温度T2,进入第二阶段保温;所述振荡压力作用至第二阶段保温结束;
(3)保温结束后停止加热,降温的同时将振荡压力降压,改为恒定压力P2直至降温结束,即得成品;
其中,所述步骤(2)中烧结的升温速率为8℃/min,烧结温度T1为950~1050℃,烧结温度T2为1100~1200℃,第一阶段、第二阶段保温时间均为1~3h;
所述步骤(2)振荡压力中值为60~100MPa,振幅±5~±10MPa,振荡频率1~10Hz;
所述步骤(2)中恒定压力P1为5MPa,步骤(3)中恒定压力P2为5MPa,步骤(3)降压速率为10MPa/min。
2.如权利要求1所述的高强塑性粉末高温合金的制备方法,其特征在于,所述步骤(1)中冷压成型的压力为10MPa,时间3min。
3.如权利要求1所述的高强塑性粉末高温合金的制备方法,其特征在于,所述步骤(1)预制粉体粒度<53μm。
4.如权利要求1所述的高强塑性粉末高温合金的制备方法,其特征在于,所述步骤(2)和步骤(3)均在真空环境中进行。
5.一种高强塑性粉末高温合金,其特征在于,由权利要求1至4任一项所述的制备方法制备得到。
6.如权利要求5所述的高强塑性粉末高温合金在航空发动机涡轮盘中的应用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110932669.4A CN113664197B (zh) | 2021-08-13 | 2021-08-13 | 一种高强塑性粉末高温合金及其制备方法和应用 |
US17/864,207 US20230049935A1 (en) | 2021-08-13 | 2022-07-13 | Powder metallurgy (pm) superalloy with high strength and plasticity and preparation method and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110932669.4A CN113664197B (zh) | 2021-08-13 | 2021-08-13 | 一种高强塑性粉末高温合金及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113664197A CN113664197A (zh) | 2021-11-19 |
CN113664197B true CN113664197B (zh) | 2023-04-07 |
Family
ID=78542837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110932669.4A Active CN113664197B (zh) | 2021-08-13 | 2021-08-13 | 一种高强塑性粉末高温合金及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230049935A1 (zh) |
CN (1) | CN113664197B (zh) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3888663A (en) * | 1972-10-27 | 1975-06-10 | Federal Mogul Corp | Metal powder sintering process |
US4066449A (en) * | 1974-09-26 | 1978-01-03 | Havel Charles J | Method for processing and densifying metal powder |
US4063940A (en) * | 1975-05-19 | 1977-12-20 | Richard James Dain | Making of articles from metallic powder |
US20170304944A1 (en) * | 2016-04-26 | 2017-10-26 | Velo3D, Inc. | Three dimensional objects comprising robust alloys |
RU2695854C2 (ru) * | 2018-01-15 | 2019-07-29 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ изготовления высокотемпературного композиционного антифрикционного материала |
CN109676124B (zh) * | 2018-12-24 | 2020-02-28 | 北京科技大学 | 一种金属材料的烧结致密化及晶粒尺寸控制方法 |
CN111020334B (zh) * | 2020-01-08 | 2020-10-20 | 郑州航空工业管理学院 | 一种高致密化钨铜难熔合金的制备方法 |
CN111304476B (zh) * | 2020-02-29 | 2021-03-26 | 郑州航空工业管理学院 | 一种抑制原始颗粒边界形成的细晶粉末高温合金的制备方法 |
-
2021
- 2021-08-13 CN CN202110932669.4A patent/CN113664197B/zh active Active
-
2022
- 2022-07-13 US US17/864,207 patent/US20230049935A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN113664197A (zh) | 2021-11-19 |
US20230049935A1 (en) | 2023-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110607464B (zh) | 一种Ti2AlNb合金粉末的热等静压工艺 | |
US4714587A (en) | Method for producing very fine microstructures in titanium alloy powder compacts | |
US4066449A (en) | Method for processing and densifying metal powder | |
JP3884618B2 (ja) | 凝集した球形金属粉を単軸圧縮する方法 | |
CN112322933B (zh) | 一种高性能近α高温钛合金及其粉末冶金制备方法 | |
CN111304476B (zh) | 一种抑制原始颗粒边界形成的细晶粉末高温合金的制备方法 | |
CN111188000B (zh) | 一种Ti2AlNb合金构件的去应力退火热处理工艺 | |
JP2007031836A (ja) | タービンエンジン用の粉末金属回転構成部品及びその処理方法 | |
CN106002131B (zh) | 一种镶嵌合金高性能剪切圆刀及其加工方法 | |
EP1900833B1 (en) | High strain rate forming of dispersion strengthened aluminium alloys | |
CN111906314A (zh) | 一种同步提升粉末冶金材料致密度和延伸率的方法 | |
US3982904A (en) | Metal rings made by the method of particle ring-rolling | |
CN113664197B (zh) | 一种高强塑性粉末高温合金及其制备方法和应用 | |
JP2007131886A (ja) | 耐磨耗性に優れた繊維強化金属の製造方法 | |
US4851053A (en) | Method to produce dispersion strengthened titanium alloy articles with high creep resistance | |
US4479833A (en) | Process for manufacturing a semi-finished product or a finished component from a metallic material by hot working | |
US3702791A (en) | Method of forming superalloys | |
CN117620172A (zh) | 一种高品质tc4钛合金棒材的锻造工艺 | |
US4923671A (en) | Method of producing powder-metallurgical objects, specifically elongate objects such as rods, sections, tubes or the like | |
CN109402424B (zh) | 应用于行星轧机轧制铜及铜合金的高温合金芯棒及其制备方法 | |
JP4133078B2 (ja) | 繊維強化金属の製造方法 | |
US4808250A (en) | Method for refining microstructures of blended elemental titanium powder compacts | |
CN113652569B (zh) | 一种梯度增强的钛基复合材料制备方法 | |
US3987658A (en) | Graphite forging die | |
US6015446A (en) | PM hot-work steel and method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |