CN113664197B - 一种高强塑性粉末高温合金及其制备方法和应用 - Google Patents

一种高强塑性粉末高温合金及其制备方法和应用 Download PDF

Info

Publication number
CN113664197B
CN113664197B CN202110932669.4A CN202110932669A CN113664197B CN 113664197 B CN113664197 B CN 113664197B CN 202110932669 A CN202110932669 A CN 202110932669A CN 113664197 B CN113664197 B CN 113664197B
Authority
CN
China
Prior art keywords
percent
pressure
temperature
powder
heat preservation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110932669.4A
Other languages
English (en)
Other versions
CN113664197A (zh
Inventor
孙德建
高卡
康佳臣
李贵忠
张赞
高阳
樊磊
郭晓琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN202110932669.4A priority Critical patent/CN113664197B/zh
Publication of CN113664197A publication Critical patent/CN113664197A/zh
Priority to US17/864,207 priority patent/US20230049935A1/en
Application granted granted Critical
Publication of CN113664197B publication Critical patent/CN113664197B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种高强塑性粉末高温合金的制备方法,通过两步保温振荡压力烧结的方法,使粉末高温合金在高温石墨模具内经热场和力场的多场耦合作用,在循环压力作用下,促使粉体重排和气孔排出,从而烧结成形。本发明还公开了上述方法制备得到的粉末高温合金,其具有原始颗粒边界缺陷等级低、晶粒细化均匀、致密度高的特点。本发明得到的烧结态粉末高温合金的屈服强度、抗拉强度和延伸率高达955MPa、1437MPa、31.9%,具有较高的强度和塑性。本发明还公开了上述粉末高温合金在航空发动机涡轮盘中的应用,具有良好的发展潜力。

Description

一种高强塑性粉末高温合金及其制备方法和应用
技术领域
本发明属于粉末冶金高温合金领域,涉及一种高强塑性粉末高温合金及其制备方法和应用。
背景技术
目前,镍基高温合金具有优异的高温强度、良好的延展性与断裂韧性,已广泛应用于航空发动机涡轮盘等热端部件。粉末高温合金制备加工工艺路线主要为a.直接热等静压,b.热等静压与等温锻造结合,c.热等静压、热挤压与等温锻造结合。直接热等静压路线工艺简单、制备周期短且成本低,是未来的发展方向。但目前由于该路线未能有效解决“组织和缺陷协同控制”问题,如晶粒粗化和原始颗粒边界缺陷形成,采用该方法制备出的涡轮盘服役期间存在安全隐患,因而该方法未得到广泛应用。
为解决上述问题,热挤压和等温锻造既增加了制备成本和工序的复杂性,也存在热加工时烧结坯开裂的风险,上述问题均限制了粉末高温合金的应用。在烧结过程中解决“组织和缺陷控制”问题是促进“直接热等静压”路线制备粉末高温合金得以广泛使用的关键。因此,寻找一种克服上述问题以制备高性能粉末高温合金的方法至关重要。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种高强塑性粉末高温合金的制备方法,该方法制备得到的粉末高温合金具有原始颗粒边界缺陷等级低和晶粒细小的特点。
本发明的目的之二在于提供一种高强塑性粉末高温合金。
本发明的目的之三在于提供上述高强塑性粉末高温合金的应用。
本发明的目的之一采用如下技术方案实现:
一种高强塑性粉末高温合金的制备方法,包括以下步骤:
(1)取预制粉体装入模具中,然后进行冷压成型;所述预制粉体由以下重量百分比的原料组成:铬12.0-17.0%、钴7.0-14.0%、钨3.30-4.20%、铌0.05-3.50%、铝2.00-3.70%、钛2.30-3.90%、碳0.02-0.07%、锆0.025-0.070%、硼0.006-0.020%、铁≤0.50%、锰≤0.150%、硅≤0.150%、硫≤0.015%、磷≤0.015%,余量为镍;
(2)将步骤(1)冷压成型后装有预制粉体的模具放入振荡压力烧结炉中,对样品施加恒定压力P1,升温对样品进行加热;当烧结炉内达到烧结温度T1后进入第一阶段保温,同时升压至振荡压力中值,随后对样品施加振荡压力;第一阶段保温结束后继续升温至烧结温度T2,进入第二阶段保温;所述振荡压力作用至第二阶段保温结束;
(3)保温结束后停止加热,降温的同时将振荡压力降压,改为恒定压力P2直至降温结束,即得成品。
进一步地,所述步骤(2)中烧结的升温速率为8℃/min,烧结温度T1为950~1050℃,烧结温度T2为1100~1200℃,第一阶段、第二阶段保温时间为1~3h。
进一步地,所述步骤(2)振荡压力中值为60~100MPa,振幅±5~±10MPa,振荡频率1~10Hz。
进一步地,所述步骤(2)、(3)的恒定压力P1、P2均为5MPa,步骤(3)降压速率为10MPa/min。
进一步地,所述步骤(1)中冷压成型的压力为10MPa,时间3min。
进一步地,所述步骤(1)预制粉体粒度<53μm。
进一步地,所述步骤(2)、(3)在真空环境中进行。
本发明的目的之二采用如下技术方案实现:
一种由上述方法制备得到高强塑性粉末高温合金。
本发明的目的之三采用如下技术方案实现:
上述高强塑性粉末高温合金在航空发动机涡轮盘中的应用。
相比现有技术,本发明的有益效果在于:
本发明提供了一种高强塑性粉末高温合金的制备方法,通过两步保温振荡压力烧结的方法,使粉末高温合金在高温石墨模具内经热场和力场的多场耦合作用,在循环压力作用下,促使粉体重排和气孔排出,从而烧结成形。本发明还提供了上述方法制备得到的粉末高温合金,其具有原始颗粒边界缺陷等级低、晶粒细化均匀、致密度高的特点。本发明得到的烧结态粉末高温合金的屈服强度、抗拉强度和延伸率高达955MPa、1437MPa、31.9%,具有较高的强度和塑性。本发明还提供了上述粉末高温合金在航空发动机涡轮盘中的应用,具有良好的发展潜力。
附图说明
图1为本发明实施例1至3、对比例1至3制备得到的粉末高温合金的室温拉伸应力-应变曲线图;
图2为本发明实施例1制备得到的粉末高温合金的微观组织图;
图3为本发明对比例1制备得到的粉末高温合金的微观组织图。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
实施例1
一种高强塑性粉末高温合金的制备方法,包括以下步骤:
(1)取预制粉体装入涂抹氮化硼涂层的高纯石墨压制模具中,然后进行冷压成型,压力10MPa下预压成型3min;压制成圆柱片状,直径40mm,厚度6mm。所述预制粉体由以下重量百分比的原料组成:铬15.0%、钴10.0%、钨3.50%、铌1.50%、铝3.00%、钛3.00%、碳0.05%、锆0.050%、硼0.010%、铁0.10%、锰0.100%、硅0.100%、硫0.010%、磷0.010%,余量为镍;预制粉体粒度<53μm。
(2)将步骤(1)冷压成型后装有预制粉体的石墨压制模具放入振荡压力烧结炉中,对样品施加恒定压力5MPa,升温对样品进行加热;当烧结炉内达到1000℃后进入第一阶段保温,保温时间2h;同时升压至振荡压力中值70MPa,随后对样品施加振荡循环压力;振幅±10MPa,振荡频率为5Hz;第一阶段保温结束后继续升温至1120℃,进入第二阶段保温,保温时间1h;上述升温过程的升温速率均为8℃/min,所述振荡压力作用至第二阶段保温结束;
(3)保温结束后停止加热,降温的同时将振荡压力改为恒定压力5MPa直至降温结束,烧结炉内腔随炉自然冷却降至室温,通过破真空打开炉腔门,同时缓慢卸去压头对石墨模具的压力,取出模具,最后获得模具内的样品,即得高强塑性粉末高温合金。
实施例2
一种高强塑性粉末高温合金的制备方法,包括以下步骤:
(1)取预制粉体装入涂抹氮化硼涂层的高纯石墨压制模具中,然后进行冷压成型,压力10MPa下预压成型3min;压制成圆柱片状,直径40mm,厚度6mm。所述预制粉体由以下重量百分比的原料组成:铬12.0%、钴7.0%、钨3.30%、铌0.05%、铝2.00%、钛2.30%、碳0.02%、锆0.025%、硼0.006%、铁0.30%、锰0.050%、硅0.130%、硫0.012%、磷0.005%,余量为镍;预制粉体粒度<53μm。
(2)将步骤(1)冷压成型后装有预制粉体的石墨压制模具放入振荡压力烧结炉中,对样品施加恒定压力5MPa,升温对样品进行加热;当烧结炉内达到950℃后进入第一阶段保温,保温时间3h;同时升压至振荡压力中值70MPa,随后对样品施加振荡循环压力;振幅±5MPa,振荡频率为1Hz;第一阶段保温结束后继续升温至1150℃,进入第二阶段保温,保温时间1h;上述升温过程的升温速率均为8℃/min,所述振荡压力作用至第二阶段保温结束;
(3)保温结束后停止加热,降温的同时将振荡压力改为恒定压力5MPa直至降温结束,烧结炉内腔随炉自然冷却降至室温,通过破真空打开炉腔门,同时缓慢卸去压头对石墨模具的压力,取出模具,最后获得模具内的样品,即得高强塑性粉末高温合金。
实施例3
一种高强塑性粉末高温合金的制备方法,包括以下步骤:
(1)取预制粉体装入涂抹氮化硼涂层的高纯石墨压制模具中,然后进行冷压成型,压力10MPa下预压成型3min;压制成圆柱片状,直径40mm,厚度6mm。所述预制粉体由以下重量百分比的原料组成:铬17.0%、钴14.0%、钨4.20%、铌3.50%、铝3.70%、钛3.90%、碳0.07%、锆0.070%、硼0.020%、铁0.20%、锰0.050%、硅0.080%、硫0.050%、磷0.050%,余量为镍;预制粉体粒度<53μm。
(2)将步骤(1)冷压成型后装有预制粉体的石墨压制模具放入振荡压力烧结炉中,对样品施加恒定压力5MPa,升温对样品进行加热;当烧结炉内达到1050℃后进入第一阶段保温,保温时间3h;同时升压至振荡压力中值70MPa,随后对样品施加振荡循环压力;振幅±8MPa,振荡频率为10Hz;第一阶段保温结束后继续升温至1100℃,进入第二阶段保温,保温时间3h;上述升温过程的升温速率均为8℃/min,所述振荡压力作用至第二阶段保温结束。
(3)保温结束后停止加热,降温的同时将振荡压力改为恒定压力5MPa直至降温结束,烧结炉内腔随炉自然冷却降至室温,通过破真空打开炉腔门,同时缓慢卸去压头对石墨模具的压力,取出模具,最后获得模具内的样品,即得高强塑性粉末高温合金。
对比例1
对比例1与实施例1的区别在于:将步骤(3)中两阶段升温保温、施加振荡压力的过程调整为一步恒定压力烧结过程,其中烧结温度为1120℃,恒定压力80MPa,保温2h。其余与实施例1相同,最终得到成品。
对比例2
对比例2与实施例1的区别在于:将步骤(3)中两阶段升温保温、施加振荡压力的过程调整为两步恒定压力烧结过程,其中烧结温度T1为1000℃,第一阶段保温1h;烧结温度T2为1120℃,保温时间1h,烧结全程施加恒定压力80MPa,保温1h。其余与实施例1相同,最终得到成品。
对比例3
对比例3与实施例1的区别在于:将步骤(3)中两阶段升温保温、施加振荡压力的过程调整为一步振荡热压烧结过程,其中烧结温度为1120℃,保温1h,烧结全程施加振荡压力,振荡压力中值为70MPa,振幅10MPa,振荡频率5Hz。其余与实施例1相同,最终得到成品。
实验例
对本发明实施例1至实施例3、对比例1至对比例3得到的成品进行室温拉伸性能测试、原始颗粒边界缺陷等级评估及致密度测试。
通过万能试验机对实施例1至实施例3、对比例1至对比例3得到的成品进行室温拉伸性能测试,结果如图1所示,实施例1至实施例3样品的平均屈服强度、抗拉强度和延伸率分别为955MPa、1437MPa、31.9%,对比例1至对比例3样品的平均屈服强度、抗拉强度和延伸率分别为902MPa、1370MPa、25.6%。由上可知本发明采用的两步保温振荡压力烧结方法可显著提高粉末高温合金的强度和塑性。
对本发明实施例1、对比例1得到的成品进行原始颗粒边界缺陷等级评估,评估前需要对上述样品进行腐蚀处理。如图2、图3所示,一步恒定压力烧结得到的样品原始颗粒边界缺陷较为严重,圆形或近圆形粉末边界轮廓清晰可见;而本发明采用的两步保温振荡压力烧结得到的样品原始颗粒边界缺陷较轻,由此可知本发明的制备方法可有效降低原始颗粒边界缺陷等级。
致密度测试结果表明,本发明实施例1至实施例3得到的样品致密度高达99.5%以上,基本达到了完全致密化,且高温烧结时间较短。
综上,本发明提供的高强塑性粉末高温合金制备方法制备得到的粉末高温合金致密度达99.5%以上,基本达到了完全致密化,并且高温烧结时间较短,原始颗粒边界较轻,且晶粒细化均匀,具有良好的强度和塑形,能够适用于航空发动机涡轮盘中。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (6)

1.一种高强塑性粉末高温合金的制备方法,其特征在于,包括以下步骤:
(1)取预制粉体装入模具中,然后进行冷压成型;所述预制粉体由以下重量百分比的原料组成:铬12.0-17.0%、钴7.0-14.0%、钨3.30-4.20%、铌0.05-3.50%、铝2.00-3.70%、钛2.30-3.90%、碳0.02-0.07%、锆0.025-0.070%、硼0.006-0.020%、铁≤0.50%、锰≤0.150%、硅≤0.150%、硫≤0.015%、磷≤0.015%,余量为镍;
(2)将步骤(1)冷压成型后装有预制粉体的模具放入振荡压力烧结炉中,对样品施加恒定压力P1,升温对样品进行加热;当烧结炉内达到烧结温度T1后进入第一阶段保温,同时升压至振荡压力中值,随后对样品施加振荡压力;第一阶段保温结束后继续升温至烧结温度T2,进入第二阶段保温;所述振荡压力作用至第二阶段保温结束;
(3)保温结束后停止加热,降温的同时将振荡压力降压,改为恒定压力P2直至降温结束,即得成品;
其中,所述步骤(2)中烧结的升温速率为8℃/min,烧结温度T1为950~1050℃,烧结温度T2为1100~1200℃,第一阶段、第二阶段保温时间均为1~3h;
所述步骤(2)振荡压力中值为60~100MPa,振幅±5~±10MPa,振荡频率1~10Hz;
所述步骤(2)中恒定压力P1为5MPa,步骤(3)中恒定压力P2为5MPa,步骤(3)降压速率为10MPa/min。
2.如权利要求1所述的高强塑性粉末高温合金的制备方法,其特征在于,所述步骤(1)中冷压成型的压力为10MPa,时间3min。
3.如权利要求1所述的高强塑性粉末高温合金的制备方法,其特征在于,所述步骤(1)预制粉体粒度<53μm。
4.如权利要求1所述的高强塑性粉末高温合金的制备方法,其特征在于,所述步骤(2)和步骤(3)均在真空环境中进行。
5.一种高强塑性粉末高温合金,其特征在于,由权利要求1至4任一项所述的制备方法制备得到。
6.如权利要求5所述的高强塑性粉末高温合金在航空发动机涡轮盘中的应用。
CN202110932669.4A 2021-08-13 2021-08-13 一种高强塑性粉末高温合金及其制备方法和应用 Active CN113664197B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110932669.4A CN113664197B (zh) 2021-08-13 2021-08-13 一种高强塑性粉末高温合金及其制备方法和应用
US17/864,207 US20230049935A1 (en) 2021-08-13 2022-07-13 Powder metallurgy (pm) superalloy with high strength and plasticity and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110932669.4A CN113664197B (zh) 2021-08-13 2021-08-13 一种高强塑性粉末高温合金及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113664197A CN113664197A (zh) 2021-11-19
CN113664197B true CN113664197B (zh) 2023-04-07

Family

ID=78542837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110932669.4A Active CN113664197B (zh) 2021-08-13 2021-08-13 一种高强塑性粉末高温合金及其制备方法和应用

Country Status (2)

Country Link
US (1) US20230049935A1 (zh)
CN (1) CN113664197B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066449A (en) * 1974-09-26 1978-01-03 Havel Charles J Method for processing and densifying metal powder
US4063940A (en) * 1975-05-19 1977-12-20 Richard James Dain Making of articles from metallic powder
US20170304944A1 (en) * 2016-04-26 2017-10-26 Velo3D, Inc. Three dimensional objects comprising robust alloys
RU2695854C2 (ru) * 2018-01-15 2019-07-29 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления высокотемпературного композиционного антифрикционного материала
CN109676124B (zh) * 2018-12-24 2020-02-28 北京科技大学 一种金属材料的烧结致密化及晶粒尺寸控制方法
CN111020334B (zh) * 2020-01-08 2020-10-20 郑州航空工业管理学院 一种高致密化钨铜难熔合金的制备方法
CN111304476B (zh) * 2020-02-29 2021-03-26 郑州航空工业管理学院 一种抑制原始颗粒边界形成的细晶粉末高温合金的制备方法

Also Published As

Publication number Publication date
CN113664197A (zh) 2021-11-19
US20230049935A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP2782189B2 (ja) ニッケル基超合金鍛造品の製造方法
US4714587A (en) Method for producing very fine microstructures in titanium alloy powder compacts
CN110607464B (zh) 一种Ti2AlNb合金粉末的热等静压工艺
CN112322933B (zh) 一种高性能近α高温钛合金及其粉末冶金制备方法
JP3884618B2 (ja) 凝集した球形金属粉を単軸圧縮する方法
CN111304476B (zh) 一种抑制原始颗粒边界形成的细晶粉末高温合金的制备方法
CN111188000B (zh) 一种Ti2AlNb合金构件的去应力退火热处理工艺
JP2007031836A (ja) タービンエンジン用の粉末金属回転構成部品及びその処理方法
CN106002131B (zh) 一种镶嵌合金高性能剪切圆刀及其加工方法
CN111906314B (zh) 一种同步提升粉末冶金材料致密度和延伸率的方法
EP1900833B1 (en) High strain rate forming of dispersion strengthened aluminium alloys
US3982904A (en) Metal rings made by the method of particle ring-rolling
CN113664197B (zh) 一种高强塑性粉末高温合金及其制备方法和应用
JP2007131886A (ja) 耐磨耗性に優れた繊維強化金属の製造方法
US4851053A (en) Method to produce dispersion strengthened titanium alloy articles with high creep resistance
US4479833A (en) Process for manufacturing a semi-finished product or a finished component from a metallic material by hot working
US3702791A (en) Method of forming superalloys
US4923671A (en) Method of producing powder-metallurgical objects, specifically elongate objects such as rods, sections, tubes or the like
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
CN109402424B (zh) 应用于行星轧机轧制铜及铜合金的高温合金芯棒及其制备方法
JP4133078B2 (ja) 繊維強化金属の製造方法
US4808250A (en) Method for refining microstructures of blended elemental titanium powder compacts
CN113652569B (zh) 一种梯度增强的钛基复合材料制备方法
US3987658A (en) Graphite forging die
US6015446A (en) PM hot-work steel and method of producing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant