CN113650208B - 三层共挤隔膜的热处理系统 - Google Patents

三层共挤隔膜的热处理系统 Download PDF

Info

Publication number
CN113650208B
CN113650208B CN202110910207.2A CN202110910207A CN113650208B CN 113650208 B CN113650208 B CN 113650208B CN 202110910207 A CN202110910207 A CN 202110910207A CN 113650208 B CN113650208 B CN 113650208B
Authority
CN
China
Prior art keywords
extrusion
layer
stretching
diaphragm
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110910207.2A
Other languages
English (en)
Other versions
CN113650208A (zh
Inventor
胡伟
吴磊
李汪洋
张德顺
杨建军
张建安
何祥燕
陈曼
刘久逸
吴庆云
吴明元
彭盼盼
朱江森
吴爱平
郭浩
孙晓华
王若愚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jieshou Tianhong New Material Co ltd
Original Assignee
Jieshou Tianhong New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jieshou Tianhong New Material Co ltd filed Critical Jieshou Tianhong New Material Co ltd
Priority to CN202110910207.2A priority Critical patent/CN113650208B/zh
Publication of CN113650208A publication Critical patent/CN113650208A/zh
Application granted granted Critical
Publication of CN113650208B publication Critical patent/CN113650208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本发明公开了三层共挤隔膜的热处理系统,包括:冷却机构,用于传输和冷却三层共挤隔膜;一级拉伸机构,用于对冷却后的三层共挤隔膜进行加热和预拉伸,预拉伸倍率为1‑1.5倍;二级拉伸机构,用于对预拉伸后的三层共挤隔膜进行再拉伸,再拉伸的倍率为2‑3倍,本发明克服了现有技术的不足,提高了三层共挤薄膜的拉伸效果,使三层共挤隔膜上形成的微孔结构均匀。

Description

三层共挤隔膜的热处理系统
技术领域
本发明涉及热处理系统技术领域,具体属于三层共挤隔膜的热处理系统。
背景技术
近年来,锂离子电池技术发展迅速,隔膜作为电池中的核心材料之一,决定着锂离子电池的性能,因此隔膜材料及制备技术急需被深入研究。目前,商业化的锂电池隔膜以聚烯烙隔膜为主,制备工艺正从干法向湿法过渡,但是近几年已经发展出了不同材料体系,不同制备工艺的隔膜。
隔膜作为锂电池的关键材料,在电池中扮演着电子隔绝的作用,阻止正负极直接接触,允许电解液中锂离子自由通过,同时,隔膜对于保障电池的安全运行也起至关重要的作用。在特殊情况下,如事故、刺穿、电池滥用等,发生隔膜局部破损从而造成正负极的直接接触,从而引发剧烈的电池反应造成电池的起火爆炸。
因此,为了提高锂离子电池的安全性,保证电池的安全平稳运行,涂布在线认为隔膜必须满足以下几个条件︰(1)化学稳定性∶不与电解质、电极材料发生反应;(2)浸润性︰与电解质易于浸润且不伸长、不收缩;(3)热稳定性︰耐受高温,具有较高的熔断隔离性;(4)机械强度:拉伸强度好,以保证自动卷绕时的强度和宽度不变;(5)孔隙率∶较高的孔隙率以满足离子导电的需求。
当前,市场上商业化的锂电池隔膜主要是以聚乙烯(PE)和聚丙烯(PP)为主的微孔聚烯烃隔膜,这类隔膜凭借着较低的成本、良好的机械性能、优异的化学稳定性和电化学稳定性等优点而被广泛地应用在锂电池隔膜中。实际应用中又包括了单层PP或PE隔膜,双层PE/PP复合隔膜,双层PP/PP复合隔膜,以及三层PP/PE/PP复合隔膜。其中三层PP/PE/PP复合隔膜由于力学性能和耐腐蚀性能优异,被广泛用于电池隔膜,但是三层PP/PE/PP复合隔膜加工难度大,形成的微孔结构均一性差,闭孔温度控制难度大,给其应用带来了一定的困难,因此,需要一种加工装置能够提高三层共挤隔膜的拉伸效果和成孔效果。
发明内容
本发明的目的是提供三层共挤隔膜的热处理系统,克服了现有技术的不足,提高了三层共挤薄膜的拉伸效果,使三层共挤隔膜上形成的微孔结构均匀。
为解决上述问题,本发明所采取的技术方案如下:
三层共挤隔膜的热处理系统,包括:
冷却机构,用于传输和冷却三层共挤隔膜;
一级拉伸机构,用于对冷却后的三层共挤隔膜进行加热和预拉伸,预拉伸倍率为1-1.5倍;
二级拉伸机构,用于对预拉伸后的三层共挤隔膜进行再拉伸,再拉伸的倍率为2-3倍。
优选地,所述冷却机构包括包括两对传送辊和一对冷却风腔,其中每对传送辊由两个对应设置的钢辊构成,且两个钢辊相互配合,用于对三层共挤隔膜进行压紧并传输,冷却风腔设置于两对传送辊之间的三层共挤隔膜的两侧,冷却风腔上设置的出风口朝向三层共挤隔膜的表面。
优选地,所述冷却风腔出风口处的空气湿度为90%-100%,温度为20℃-40℃。
优选地,所述冷却风腔倾斜设置,且冷却风腔的内壁上设有排液孔和若干个导流杆,其中导流杆用于对冷却风腔内的空气中凝结的水雾进行拦截,然后导流至排液孔处排出冷却风腔。
优选地,所述一级拉伸机构包括第一挤压辊组和第二挤压辊组,第一挤压辊组和第二挤压辊组分别由两个对称设置挤压辊组成,第一挤压辊组和第二挤压辊组用于对三层共挤隔膜进行压紧并拉伸,其中靠近冷却机构一侧的第一挤压辊组的温度为80℃-90℃,而第二挤压辊组的温度为50℃-70℃,第一挤压辊组和第二挤压辊组的辊速比为1:2-2.5。
优选地,所述挤压辊的内部为中空结构,用于通入具有一定温度的空气,以保持挤压辊恒温。
优选地,第一挤压辊组和第二挤压辊组之间的三层共挤隔膜的两侧还设有一对保温风腔,保温风腔的出风口朝向三层共挤隔膜的两侧表面,保温风腔的出风口处的空气湿度为60%-80%。
优选地,所述二级拉伸机构包括一对拉伸辊,两个拉伸辊对称设置,用于对三层共挤隔膜进行压紧并拉伸,所述拉伸辊与第二挤压辊组的辊速比为3-4:1。
优选地,所述拉伸辊与第二挤压辊组之间的三层共挤隔膜的两侧还设有一对干燥风腔,干燥风腔的出风口朝向三层共挤隔膜的两侧表面,干燥风腔出风口处的温度为50℃-70℃,干燥风腔的出风口处的空气湿度为10%-20%。
本发明与现有技术相比较,本发明的实施效果如下:
本发明的系统通过冷却风腔能够对进入冷却机构内的三层共挤隔膜进行降温冷却,同时两对传送辊的辊速比为1,使得冷却过程中的三层共挤隔膜得到了拉伸,而冷却腔内流出的冷却空气内含有大量的水气,使三层共挤隔膜在冷却的过程中,由于分子链的收缩产生的孔隙能够储存冷却空气中的水分,使冷却过程中的三层共挤隔膜表面形成大量的微孔结构,从而使三层共挤隔膜表面的微孔结构均匀;
而经过一级拉伸机构的加热和拉伸,微孔结构得到扩大,同时微孔结构内的水气得到释放,但是在保温风腔的作用下,实现了对微孔结构内的水气的补充,避免了微孔结构处及三层共挤隔膜表面过于干燥的问题,促进了分子链的运动,提高了拉伸的效果,同时有利于保持扩大后的微孔结构;
在二级拉伸机构的拉伸和冷却下,冷却风腔一方面能够将三层共挤隔膜微孔结构内的水气去除,另一方面能够保持拉伸成型后的三层共挤隔膜的结构稳定。
附图说明
图1为本发明的结构示意图;
图2为冷却风腔内部的结构示意图。
附图标记说明:1、钢辊;2、冷却风腔;21、排液孔;22、导流杆;3、从动辊;4、第一挤压辊组;5、保温风腔;6、第二挤压辊组;7、干燥风腔;8、拉伸辊;9、三层共挤隔膜。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的系统或元件必须具有特定的方位以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
如图1-2的三层共挤隔膜的热处理系统,包括:冷却机构、一级拉伸机构和二级拉伸机构。
冷却机构用于传输和冷却三层共挤隔膜;冷却机构包括包括两对传送辊和一对冷却风腔,同时两对传送辊的辊速比为1,其中每对传送辊由两个对应设置的钢辊构成,且两个钢辊相互配合,用于对三层共挤隔膜进行压紧并传输,冷却风腔倾斜设置,位于两对传送辊之间的三层共挤隔膜的两侧,冷却风腔上设置的出风口朝向三层共挤隔膜的表面,冷却风腔出风口处的空气湿度为90%,温度为20℃,且冷却风腔的内壁上设有排液孔和若干个导流杆,其中导流杆用于对冷却风腔内的空气中凝结的水雾进行拦截,然后导流至排液孔处排出冷却风腔。
冷却风腔能够对进入冷却机构内的三层共挤隔膜进行降温冷却,而辊速比为1的传送辊,避免了三层共挤隔膜的降温收缩,使得冷却过程中的三层共挤隔膜得到了拉伸,而冷却腔内流出的冷却空气内含有大量的水气,使三层共挤隔膜在冷却的过程中,由于分子链的收缩产生的孔隙能够储存冷却空气中的水分,使冷却过程中的三层共挤隔膜表面形成大量的微孔结构,从而使三层共挤隔膜表面的微孔结构均匀。
冷却机构与一级拉伸机构之间还设有从动辊,用于引导冷却机构处的三层共挤隔膜进入一级拉伸机构。
一级拉伸机构用于对冷却后的三层共挤隔膜进行加热和预拉伸,预拉伸倍率为1倍,一级拉伸机构包括第一挤压辊组和第二挤压辊组,第一挤压辊组和第二挤压辊组分别由两个对称设置挤压辊组成,挤压辊的内部为中空结构,用于通入具有一定温度的空气,以保持挤压辊恒温,第一挤压辊组和第二挤压辊组用于对三层共挤隔膜进行压紧并拉伸,其中靠近冷却机构一侧的第一挤压辊组的温度为80℃,而第二挤压辊组的温度为50℃,第一挤压辊组和第二挤压辊组的辊速比为1:2,实现1倍的拉伸,经过一级拉伸机构的加热和拉伸,微孔结构得到扩大,同时微孔结构内的水气得到释放。
第一挤压辊组和第二挤压辊组之间的三层共挤隔膜的两侧还设有一对保温风腔,保温风腔的出风口朝向三层共挤隔膜的两侧表面,保温风腔的出风口处的空气湿度为60%,在保温风腔的作用下,实现了对微孔结构内的水气的补充,避免了微孔结构处及三层共挤隔膜表面过于干燥的问题,促进了分子链的运动,提高了拉伸的效果,同时有利于保持扩大后的微孔结构。
二级拉伸机构用于对预拉伸后的三层共挤隔膜进行再拉伸,再拉伸的倍率为2倍。二级拉伸机构包括一对拉伸辊,两个拉伸辊对称设置,用于对三层共挤隔膜进行压紧并拉伸,拉伸辊与第二挤压辊组的辊速比为3:1,拉伸辊与第二挤压辊组之间的三层共挤隔膜的两侧还设有一对干燥风腔,干燥风腔的出风口朝向三层共挤隔膜的两侧表面,干燥风腔出风口处的温度为50℃,干燥风腔的出风口处的空气湿度为10%。在二级拉伸机构的拉伸和冷却下,冷却风腔一方面能够将三层共挤隔膜微孔结构内的水气去除,另一方面能够保持拉伸成型后的三层共挤隔膜的结构稳定,得到的三层共挤隔膜的孔径为26-35nm,孔隙率为54%。
实施例2
如图1-2的三层共挤隔膜的热处理系统,包括:冷却机构、一级拉伸机构和二级拉伸机构。
冷却机构用于传输和冷却三层共挤隔膜;冷却机构包括包括两对传送辊和一对冷却风腔,同时两对传送辊的辊速比为1,其中每对传送辊由两个对应设置的钢辊构成,且两个钢辊相互配合,用于对三层共挤隔膜进行压紧并传输,冷却风腔倾斜设置,位于两对传送辊之间的三层共挤隔膜的两侧,冷却风腔上设置的出风口朝向三层共挤隔膜的表面,冷却风腔出风口处的空气湿度为95%,温度为40℃,且冷却风腔的内壁上设有排液孔和若干个导流杆,其中导流杆用于对冷却风腔内的空气中凝结的水雾进行拦截,然后导流至排液孔处排出冷却风腔。
冷却风腔能够对进入冷却机构内的三层共挤隔膜进行降温冷却,而辊速比为1的传送辊,避免了三层共挤隔膜的降温收缩,使得冷却过程中的三层共挤隔膜得到了拉伸,而冷却腔内流出的冷却空气内含有大量的水气,使三层共挤隔膜在冷却的过程中,由于分子链的收缩产生的孔隙能够储存冷却空气中的水分,使冷却过程中的三层共挤隔膜表面形成大量的微孔结构,从而使三层共挤隔膜表面的微孔结构均匀。
冷却机构与一级拉伸机构之间还设有从动辊,用于引导冷却机构处的三层共挤隔膜进入一级拉伸机构。
一级拉伸机构用于对冷却后的三层共挤隔膜进行加热和预拉伸,预拉伸倍率为1.5倍,一级拉伸机构包括第一挤压辊组和第二挤压辊组,第一挤压辊组和第二挤压辊组分别由两个对称设置挤压辊组成,挤压辊的内部为中空结构,用于通入具有一定温度的空气,以保持挤压辊恒温,第一挤压辊组和第二挤压辊组用于对三层共挤隔膜进行压紧并拉伸,其中靠近冷却机构一侧的第一挤压辊组的温度为90℃,而第二挤压辊组的温度为70℃,第一挤压辊组和第二挤压辊组的辊速比为2.5,实现1.5倍的拉伸,经过一级拉伸机构的加热和拉伸,微孔结构得到扩大,同时微孔结构内的水气得到释放。
第一挤压辊组和第二挤压辊组之间的三层共挤隔膜的两侧还设有一对保温风腔,保温风腔的出风口朝向三层共挤隔膜的两侧表面,保温风腔的出风口处的空气湿度为80%,在保温风腔的作用下,实现了对微孔结构内的水气的补充,避免了微孔结构处及三层共挤隔膜表面过于干燥的问题,促进了分子链的运动,提高了拉伸的效果,同时有利于保持扩大后的微孔结构。
二级拉伸机构用于对预拉伸后的三层共挤隔膜进行再拉伸,再拉伸的倍率为3倍。二级拉伸机构包括一对拉伸辊,两个拉伸辊对称设置,用于对三层共挤隔膜进行压紧并拉伸,拉伸辊与第二挤压辊组的辊速比为4:1,拉伸辊与第二挤压辊组之间的三层共挤隔膜的两侧还设有一对干燥风腔,干燥风腔的出风口朝向三层共挤隔膜的两侧表面,干燥风腔出风口处的温度为70℃,干燥风腔的出风口处的空气湿度为20%。在二级拉伸机构的拉伸和冷却下,冷却风腔一方面能够将三层共挤隔膜微孔结构内的水气去除,另一方面能够保持拉伸成型后的三层共挤隔膜的结构稳定,得到的三层共挤隔膜的孔径为21-29nm,孔隙率为61%。
对比例1
与实施例2的区别在于冷却风腔出气口的空气湿度为40%,得到的三层共挤隔膜的孔径为36-102nm,孔隙率为38%。
对比例2
与实施例2的区别在于保温风腔出气口的空气湿度为30%,得到的三层共挤隔膜的孔径为27-49nm,孔隙率为49%。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (1)

1.三层共挤隔膜的热处理系统,其特征在于,包括:
冷却机构,用于传输和冷却三层共挤隔膜;
一级拉伸机构,用于对冷却后的三层共挤隔膜进行加热和预拉伸,预拉伸倍率为1-1.5倍;
二级拉伸机构,用于对预拉伸后的三层共挤隔膜进行再拉伸,再拉伸的倍率为2-3倍;
所述冷却机构包括两对传送辊和一对冷却风腔,其中每对传送辊由两个对应设置的钢辊构成,且两个钢辊相互配合,用于对三层共挤隔膜进行压紧并传输,冷却风腔设置于两对传送辊之间的三层共挤隔膜的两侧,冷却风腔上设置的出风口朝向三层共挤隔膜的表面;
所述冷却风腔出风口处的空气湿度为90%-100%,温度为20℃-40℃;
所述一级拉伸机构包括第一挤压辊组和第二挤压辊组,第一挤压辊组和第二挤压辊组分别由两个对称设置挤压辊组成,第一挤压辊组和第二挤压辊组用于对三层共挤隔膜进行压紧并拉伸,其中靠近冷却机构一侧的第一挤压辊组的温度为80℃-90℃,而第二挤压辊组的温度为50℃-70℃,第一挤压辊组和第二挤压辊组的辊速比为1:2-2.5;
第一挤压辊组和第二挤压辊组之间的三层共挤隔膜的两侧还设有一对保温风腔,保温风腔的出风口朝向三层共挤隔膜的两侧表面,保温风腔的出风口处的空气湿度为60%-80%;
所述二级拉伸机构包括一对拉伸辊,两个拉伸辊对称设置,用于对三层共挤隔膜进行压紧并拉伸,所述拉伸辊与第二挤压辊组的辊速比为3-4:1;
所述拉伸辊与第二挤压辊组之间的三层共挤隔膜的两侧还设有一对干燥风腔,干燥风腔的出风口朝向三层共挤隔膜的两侧表面,干燥风腔出风口处的温度为50℃-70℃,干燥风腔的出风口处的空气湿度为10%-20%。
CN202110910207.2A 2021-08-09 2021-08-09 三层共挤隔膜的热处理系统 Active CN113650208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110910207.2A CN113650208B (zh) 2021-08-09 2021-08-09 三层共挤隔膜的热处理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110910207.2A CN113650208B (zh) 2021-08-09 2021-08-09 三层共挤隔膜的热处理系统

Publications (2)

Publication Number Publication Date
CN113650208A CN113650208A (zh) 2021-11-16
CN113650208B true CN113650208B (zh) 2023-05-02

Family

ID=78478650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110910207.2A Active CN113650208B (zh) 2021-08-09 2021-08-09 三层共挤隔膜的热处理系统

Country Status (1)

Country Link
CN (1) CN113650208B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464477B1 (en) * 1996-01-22 2007-04-04 Pall Corporation Method of preparing a highly porous polyvinylidene difluoride membrane
CN107249852A (zh) * 2015-02-20 2017-10-13 东丽株式会社 微多孔塑料膜的制造方法

Also Published As

Publication number Publication date
CN113650208A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
JP3885100B2 (ja) 多成分系複合フィルム及びその製造方法
KR101672815B1 (ko) 전기화학소자용 분리막
US4359510A (en) Hydrophilic polymer coated microporous membranes capable of use as a battery separator
US7087343B2 (en) High melt integrity battery separator for lithium ion batteries
CN106029380B (zh) 聚烯烃多层微多孔膜及电池用隔膜
CN103531735B (zh) 一种锂离子电池用聚烯烃多层微多孔膜及其制备方法
CN107403954A (zh) 固体电解质膜及其制备方法、锂离子电池
JP2010500718A (ja) 耐熱性超極細繊維層を有する分離膜及びそれを利用した二次電池
KR100406689B1 (ko) 전기화학 소자를 위한 다성분계 복합 필름 및 그의 제조방법
CN106848150B (zh) 一种锂电池用改性隔膜的制备方法
JP5207569B2 (ja) リチウム電池用セパレータ
CN106965356B (zh) 加热辊以及膜制造方法
CN113650208B (zh) 三层共挤隔膜的热处理系统
JP2012209197A (ja) 多層セパレータ及びリチウムイオン2次電池
KR101914249B1 (ko) 이차전지용 분리막의 제조방법
WO2023045312A1 (zh) 一种高孔均匀性微多孔膜及其制备方法、电池
CN113659289B (zh) 一种降低锂电池隔膜闭孔温度的三层共挤隔膜
CN106558662A (zh) 离子传导膜、应用该离子传导膜的液流电池及制备方法
KR20160051167A (ko) 다공성 코팅 복합 분리막의 제조방법 및 그 제조방법에 의하여 제조된 분리막
KR20140086842A (ko) 분리막의 제조 방법과 그 분리막, 및 이를 이용한 전지
CN113635532B (zh) Pp/pe/pp三层共挤锂电池动力隔膜流延装置
Nonjola et al. Membrane separators for electrochemical energy storage technologies
CN113659281B (zh) 锂电池用三层共挤隔膜及其拉伸工艺
CN106876631A (zh) 一种离子交换膜在锂硫二次电池中的应用
CN113650256B (zh) 一种挤出厚度均匀的锂电池三层共挤隔膜用模头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant