CN113630734B - 一种智能电网供电系统的计算卸载与资源分配方法 - Google Patents

一种智能电网供电系统的计算卸载与资源分配方法 Download PDF

Info

Publication number
CN113630734B
CN113630734B CN202110907044.2A CN202110907044A CN113630734B CN 113630734 B CN113630734 B CN 113630734B CN 202110907044 A CN202110907044 A CN 202110907044A CN 113630734 B CN113630734 B CN 113630734B
Authority
CN
China
Prior art keywords
user
representing
power
energy
objective function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110907044.2A
Other languages
English (en)
Other versions
CN113630734A (zh
Inventor
焦战威
李娜娜
郝万明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Haiwei Optoelectronic Technology Co ltd
Zhengzhou University
Original Assignee
Zhengzhou Haiwei Optoelectronic Technology Co ltd
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Haiwei Optoelectronic Technology Co ltd, Zhengzhou University filed Critical Zhengzhou Haiwei Optoelectronic Technology Co ltd
Priority to CN202110907044.2A priority Critical patent/CN113630734B/zh
Publication of CN113630734A publication Critical patent/CN113630734A/zh
Application granted granted Critical
Publication of CN113630734B publication Critical patent/CN113630734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/35Services specially adapted for particular environments, situations or purposes for the management of goods or merchandise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种智能电网供电系统的计算卸载与资源分配方法,用以解决现有技术只是从用户的角度研究MEC系统的性能指标,增加了实时能源成本的问题;其步骤为:首先,搭建无线供电移动边缘计算系统模型,包括N个天线阵列的BS和K个单天线用户集;其次,在用户时延限制下,以BS的传输功率和实时能量需求的总和的最小值为目标构建目标函数,并给出目标函数的约束条件;最后,分别在完备CSI和非完备CSI情况下,求得目标函数的最优解。本发明提出了一种联合实时资源管理和能源交易策略,以降低无线移动通信系统的能源成本,并证明了在完备和非完备CSI场景下,能够提高智能电网供电系统的能效和降低总能耗。

Description

一种智能电网供电系统的计算卸载与资源分配方法
技术领域
本发明涉及智能电网供电系统技术领域,特别是指一种智能电网供电系统的计算卸载与资源分配方法。
背景技术
近年来,随着人工智能、大数据和物联网(IoTs)技术的进步,人们设想,未来的无线网络需要通过实时通信和计算来支持大量低功率的无线设备(如传感器和可穿戴设备)。因此,如何为这些无线设备提供丰富的计算能力和可持续的能源供给成为了一个关键的技术挑战。基于此,提出了两种有效的解决方案,移动边缘计算(MEC)和无线功率传输(WPT)。MEC允许无线设备(WDs)将繁重的计算任务卸载到边缘服务器,提高了计算效率。同时,WPT为低功率电子设备充电提供了一个可行和方便的解决方案。
然而,对于无线充电MEC系统,巨大的能源需求成为主要的运营费用(OPEX)。同时,当基站的能源预算不足时,可能需要电网提供额外的实时能源供应,以满足用户的需求,这就使运营商承担了失去利润的风险。因此,为基站配备可再生能源收集装置以实现绿色通信被认为是一种很有效的解决方案。此外,随着新型智能电网技术的实施,可以建立与电网的双向能源交易,网络可以最大限度地利用本地产生的可再生能源,并将多余的能源卖回电网。
最近,有一些研究考虑了无线充电的MEC系统。例如,文献[1]--[C.You,K.HuangandH.Chae,“EnergyEfficientMobileCloudComputingPoweredbyWirelessEnergyTransfer,”IEEEJ.Sel.AreasCommun.,vol.34,no.5,pp.1757-1771,May2016.]考虑了一个基本的单用户系统,它旨在最大限度地提高用户的成功计算概率,将所提出的优化问题转化为两个等价子问题,并用凸优化理论求解。为了克服移动设备的双重近远效应,文献[2]--[X.Hu,K.WongandK.Yang,“WirelessPoweredCooperation-AssistedMobileEdgeComputing,”IEEETrans.WirelessCommun.,vol.17,no.4,pp.2375-2388,April2018.]研究了协同通信在双用户WPT-MEC系统的计算卸载中的使用,目的是最小化BP的传输能量。对于多用户场景,文献[3]--[S.BiandY.J.Zhang,“ComputationRateMaximizationforWirelessPoweredMobile-EdgeComputingWithBinaryComputationOffloading,”IEEETrans.WirelessCommun.,vol.17,no.6,pp.4177-4190,June2018.]通过联合优化个人计算模式选择和系统传输时间分配,研究了多用户网络中加权和计算率最大化问题,然后,提出了一种基于乘子分解技术交替方向法的低计算复杂度方法。但是,文献[1]-[3]只是从用户的角度研究系统的性能指标。虽然文献[2]中的工作考虑了BS(base station基站)的能源消耗,但没有涉及现货市场的实时能源成本。
发明内容
针对上述背景技术中存在的不足,本发明提出了一种智能电网供电系统的计算卸载与资源分配方法,解决了现有技术只是从用户的角度研究MEC系统的性能指标,增加了实时能源成本的问题。
本发明的技术方案是这样实现的:
一种智能电网供电系统的计算卸载与资源分配方法,其步骤如下:
步骤一:搭建无线供电移动边缘计算系统模型,包括N个天线阵列的BS和K个单天线用户集,每个用户k在相干时间T内计算Lk位输入数据,BS连接到电网,向分布式用户广播无线能量,其中,
步骤二:在用户时延限制下,以BS的传输功率和实时能量需求的总和的最小值为目标构建目标函数,并给出目标函数的约束条件;
步骤三:在完备信道状态信息情况下,目标函数的约束条件为凸约束条件,利用标准凸优化技术求得目标函数的最优解;
步骤四:在非完备信道状态信息情况下,通过引入辅助变量将目标函数的约束条件转化为凸约束条件,再利用标准凸优化技术和迭代方法求得目标函数的最优解。
所述目标函数为:
所述目标函数的约束条件为:
其中,表示BS的传输功率,Breal表示实时能量需求,Pk为用户k的卸载功率,Pmax表示用户处的最大传输功率,PET,max表示BS的最大传输功率,αk代表用户k的卸载数据比例,Rk为用户k处可实现的卸载数据速率,c表示用户数据的计算复杂度,PL表示本地执行的每周期的能耗,μ表示能量转换效率,/>表示发射功率,ck表示在用户k处执行一个输入比特位所需的CPU周期数,Fk表示用户k的计算能力,Pc表示云上执行的每周期的能耗,Pcircuit表示非传输硬件电路的功耗,E表示BS处收集的能源功率,Bahead表示当前已向电网购买的能源,S表示多余的卖给电网的能源。
在完备信道状态信息情况下,利用标准凸优化技术求得目标函数的最优解的方法为:
在完备信道状态信息情况下,线性检测器矩阵由V=HH(HHH)-1决定,用户k的归一化有效信道增益表示为其中,V(k)为V的第k行,Hk为H的第k列,σ2为噪声功率,H∈ΞN×K表示用户与基站之间的整体信道矩阵,信道矩阵的各元素建模为/>gnk表示小尺度衰落系数,βk表示大尺度衰落系数,因此,得到用户k处可实现的卸载数据速率为:
Rk=Blog2(1+Pkhk) (2);
BS分配给用户k的归一化预编码向量为其中,/>设sk∈Ξ表示用户k的零均值单位方差的能量信号,则对应的接收信号可表示为:
其中,表示BS给用户k的发射功率,nk表示加性高斯白噪声,/>表示BS给用户k'的发射功率,wk′表示BS分配给用户k'的归一化预编码向量,sk′表示用户k'的零均值单位方差的能量信号;
根据式(2)和式(4)将式(6d)和(6e)分别转化为:
其中,B表示用户传输带宽;
首先将式(7a)改写为αkLk-TB log2(1+Pkhk)≤0;当αkLk-TB log2(1+Pkhk)=0成立时,得到Pk的最小值
结合式(6b)和(7a),可以得到最优的Pk由式(6g)可知,当等式/>成立时,得到最小的Breal
如果式(7b)改写为/>为了得到更小的/>首先最小化:
通过拉格朗日对偶方法对式(9)进行求解得到其最优解,将部分拉格朗日量表示为:
其中,λk是与αk≤1相关的非负拉格朗日乘子,vk是与相关的非负拉格朗日乘子,由于式(10)是凸优化函数,并且式(10)满足Salterars条件,对偶间隙为零,因此,通过求解式(11)的对偶问题,得到式(10)的最优解:
基于KKT条件,最优原对偶点(αkk,vk)的充要条件是:
其中,表示最优的卸载数据比例,/>和/>均表示非负的拉格朗日乘子;
式(12c)表示互补松弛条件,式(12c)的左侧项是Lk相对的一阶导数,由式(12c)和(12d)可以直接得出:
根据式(13),可得:
利用标准凸优化技术进行求解,可以得到的最优解。
所述在非完备信道状态信息情况下,通过引入辅助变量将目标函数的约束条件转化为凸约束条件,再利用标准凸优化技术和迭代方法求得目标函数的最优解的方法为:
在非完备信道状态信息下,设Pmax表示用户的最大传输功率,采用最小均方误差估计方法,估计的信道状态信息的协方差为其中,τp≥K为导频符号数,βk表示大尺度衰落系数,用户k处可实现的卸载数据速率为:
其中,B表示用户传输带宽,M表示基站天线数,σ2表示噪声功率;
用户k可以获得的总功率为:
其中,为有效噪声的总方差,/>表示在能量收集阶段基站传输给用户k的功率,/>表示在能量收集阶段基站传输给用户k'的功率;
根据式(3)和式(5)将(6d)和(6e)转化为:
其中,hk=(M-K)γk2,h′i=(βii)/σ2
引入了一个辅助变量xk,满足:
式(15a)可以重新表示为:
αkLk≤TBlog2(1+xk) (17);
引入另一个辅助变量y,满足:
其中,
已知xky的上界为:
其中,y[n]表示在第n次迭代时y的值,表示在第n次迭代时xk的值,则式(18)可转换为以下凸约束:
因此,目标函数以及目标函数的约束条件可转换为:
s.t.(6a),(6c),(15b),(6f),(6g),(17),(19),(21);
利用内点法对式(22)进行迭代求解,直至式(22)收敛,得到最优解。
由ck表示在用户k处执行一个输入比特位所需的CPU周期数,PL表示本地执行的每周期的能耗,Pc表示云上执行的每周期的能耗,因此,得到用户k的本地计算总能耗为Elocal,k=(1-αk)LKckPL,云上计算的能耗为Ecloud,k=αkLKckPc;由于Fk为用户k的计算能力,本地执行时间表示为满足tlocal,k≤T;因此,卸载数据比例满足/>
与现有技术相比,本发明产生的有益效果为:本发明提出了一种联合实时资源管理和能源交易策略,以降低无线移动通信系统的能源成本,其中基站由可再生能源和智能电网供电,通过联合优化BS的现货市场能量需求和传输功率、用户卸载数据量和传输功率,最小化BS的总能源成本;对于完备CSI的情况,推导出了一个半封闭的解;对于非完备CSI的情况,采用连续凸逼近技术处理非凸问题;最后通过仿真结果表明,在完备和非完备CSI场景下,本发明在提高能效和降低总能耗方面均优于其他基准方案。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的无线供电系统。
图2为本发明与四种基准方案的仿真结果对比;其中,(a)为目标值与天线数的关系曲线,(b)为目标值与用户和基站间距离的关系曲线,(c)为目标值与用户数的关系曲线,(d)为用户卸载数据比例随用户和基站间距离的变化。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种智能电网供电系统的计算卸载与资源分配方法,具体步骤如下:
步骤一:搭建无线供电移动边缘计算系统模型,包括N个天线阵列的BS和K个单天线用户集,每个用户k在相干时间T内计算Lk位输入数据,BS连接到电网,向分布式用户广播无线能量,其中,为了避免同信道干扰,分别在正交的频段上实现WPT和计算任务卸载。
BS配备了一个或多个能源收集设备(风力涡轮机和/或太阳能电池板),与电网进行双向能源交易。BS处收集的能源功率为E,Bahead表示当前已向电网购买的能源,Breal表示需要向实时现货市场购买的能源,S表示多余的卖给电网的能源。然后,BS处的总能耗约束为:
其中,代表基站总的传输功率,PMEC表示MEC服务器的计算能力,Pcircuit表示非传输硬件电路的功耗。此外,由于计算结果通常较小,忽略了计算结果发送和接收的能量损耗。由于电网内能源供需状况不同,实时现货市场单位能源购买价格高于day-ahead(日前电力)市场,如,πreal≥πahead
在接收机端采用迫零(ZF)技术来恢复用户的信息。H∈ΞN×K表示用户与基站之间的整体信道矩阵,信道矩阵的各元素建模为gnk表示小尺度衰落系数,βk表示大尺度衰落系数。
在完备CSI情况下,线性检测器矩阵由V=HH(HHH)-1决定,用户k的归一化有效信道增益表示为其中,V(k)为V的第k行,Hk为H的第k列,σ2为噪声功率,因此,得到用户k处可实现的卸载数据速率为:
Rk=Blog2(1+Pkhk) (2);
其中,Pk为对应的卸载功率。
在非完备信道状态信息下,设Pmax表示用户的最大传输功率,采用最小均方误差估计方法,估计的信道状态信息的协方差为其中,τp≥K为导频符号数,βk表示大尺度衰落系数,用户k处可实现的卸载数据速率为:
其中,B表示用户传输带宽,M表示基站天线数。
对于天线波束赋形,采用最大比传输(MRT)方法,因为它可以为用户获得最高的直流功率;BS分配给用户k的归一化预编码向量为其中,/>设sk∈Ξ表示用户k的零均值单位方差的能量信号,则对应的接收信号可表示为:
其中,表示BS给用户k的发射功率,nk表示加性高斯白噪声,/>表示BS给用户k'的发射功率,wk′表示BS分配给用户k'的归一化预编码向量,sk′表示用户k'的零均值单位方差的能量信号。
对于非完备的CSI,用户k可以获得的总功率为:
其中,为有效噪声的总方差,/>表示在能量收集阶段基站传输给用户k的功率,/>表示在能量收集阶段基站传输给用户k'的功率。
由ck表示在用户k处执行一个输入比特位所需的CPU周期数,并且这通常取决于应用程序的类型和用户的CPU架构。PL表示本地执行的每周期的能耗,Pc表示云上执行的每周期的能耗,因此,得到用户k的本地计算总能耗为Elocal,k=(1-αk)LkckPL,云上计算的能耗为Ecloud,k=αkLKckPc;由于Fk为用户k的计算能力,本地执行时间表示为满足tlocal,k≤T;因此,卸载数据比例满足/>
步骤二:在用户时延限制下,以BS的传输功率和实时能量需求的总和的最小值为目标构建目标函数,并给出目标函数的约束条件;
所述目标函数为:
所述目标函数的约束条件为:
其中,表示BS的传输功率,Breal表示实时能量需求,Pk为用户k处的卸载功率,Pmax表示用户处的最大传输功率,PET,max表示BS的最大传输功率,αk代表用户k的卸载数据比例,Rk为用户k处可实现的卸载数据速率,c表示用户数据的计算复杂度,PL表示本地执行的每周期的能耗,μ表示能量转换效率,/>表示发射功率,ck表示在用户k处执行一个输入比特位所需的CPU周期数,Fk表示用户k的计算能力,Pc表示云上执行的每周期的能耗,Pcircuit表示非传输硬件电路的功耗,E表示BS处收集的能源功率,Bahead表示当前已向电网购买的能源,S表示多余的卖给电网的能源。PC=Pc/T,式(6g)是基站的功率限制,式(6d)表示用户k的时延限制,式(6e)表示用户k的能耗限制,式(6f)表示用户卸载数据量的限制。
步骤三:在完备信道状态信息情况下,目标函数的约束条件为凸约束条件,利用标准凸优化技术求得目标函数的最优解;在完备CSI情况下的资源分配方法为:
根据式(2)和式(4)将式(6d)和(6e)分别转化为:
其中,B表示用户传输带宽。
首先将式(7a)改写为αkLk-TBlog2(1+Pkhk)≤0;可以看出,式(6)在完备CSI下是一个凸优化问题,因此可以采用标准的凸优化技术求得最优解。
由式(7b)可知,随着Pk的增加而增加。因此,为了最小化/>最好选择一个较小的Pk值。Pk受式(6b)和(7a)约束。首先分析(7a),可以验证/>随着Pk而增加。因此,当αkLk-TBlog2(1+Pkhk)=0成立时,得到Pk的最小值/>
结合式(6b)和(7a),可以得到最优的Pk需要注意的是,如果用户不能满足延迟约束。由式(6g)可知,由于Breal仅受式(6g)约束,当等式成立时,得到最小的Breal
如果式(7b)改写为/>为了得到更小的/>首先最小化:
由于式(9)是一个凸优化问题,通过拉格朗日对偶方法对式(9)进行求解得到其最优解,将部分拉格朗日量表示为:
其中,λk是与αk≤1相关的非负拉格朗日乘子,vk是与相关的非负拉格朗日乘子,由于式(10)是凸优化函数,并且式(10)满足Salterars条件,对偶间隙为零,因此,通过求解式(11)的对偶问题,得到式(10)的最优解:
基于KKT条件,最优原对偶点(αkk,vk)的充要条件是:
其中,表示最优的卸载数据比例,/>和/>均表示非负的拉格朗日乘子。
式(12c)表示互补松弛条件,式(12c)的左侧项是Lk相对的一阶导数,由式(12c)和(12d)可以直接得出:
根据式(13),可得:
利用标准凸优化技术进行求解,可以得到的最优解。
步骤四:在非完备信道状态信息情况下,通过引入辅助变量将目标函数的约束条件转化为凸约束条件,再利用标准凸优化技术和迭代方法求得目标函数的最优解。
对于非完备CSI情况下,引入两个辅助变量x和y来处理非完备CSI下式(6)中的优化问题,根据式(3)和式(5)将(6d)和(6e)转化为:
/>
其中,hk=(M-K)γk2,h′i=(βii)/σ2;由于非凸约束条件(15a),式(6)中的优化问题是非凸的。通过使用先进的凸逼近技术,将非凸约束(15a)转化为凸约束。
引入了一个辅助变量xk,满足:
式(15a)可以重新表示为:
αkLk≤TBlog2(1+xk) (17);
在此基础上,很容易验证约束(15a)是凸的。为了处理式(16),引入另一个辅助变量y,满足:
其中,
已知xky的上界为:
其中,y[n]表示在第n次迭代时y的值,表示在第n次迭代时xk的值,则式(18)可转换为以下凸约束:
因此,目标函数以及目标函数的约束条件可转换为:
s.t.(6a),(6c),(15b),(6f),(6g),(17),(19),(21);
基于此,式(6)中非完备CSI下的原优化问题被转化为凸优化问题,可通过标准的凸优化技术,如内点法进行求解。注意,由于近似过程式(21),需要迭代求解式(22)。具体地说,从初始可行解开始,使用前一次迭代得到的结果求解式(22),迭代更新y[n]以上步骤一直执行到收敛为止。
在每次迭代中,我们求解凸化问题式(22)。得到的最优解将产生的下降值,直到收敛。
本发明需要迭代求解式(22),求解式(22)的计算复杂度是其中4K+2是变量的数量。因此,本发明所提方案的整体计算复杂度为/>其中I2为收敛的迭代次数。
本发明通过仿真研究了所提出方案的性能。参数设置如下:假设基站的可再生能源为E=0.15W,单价为πrenew=£0.02/W,BS可以将多余的能量以πsell=£0.05/W的价格卖回电网。带宽B=1MHz,噪声功率谱密度为N0=-174dBm/Hz。此外,Lk=1Mbits,c=1000cycle/bit,PL=10-15J/cycle,Pc=1.5PLW,T=0.05s,Pmax=0dBm,PET,max=50dBm,πahead=£0.07/W,πreal=£0.15/W,u=0.8。考虑瑞利衰落信道模型,设BS与每个用户之间的无线信道为:
其中,是独立且同分布的随机变量。θ0=6.25×10-4表示参考距离为1米时的信道增益,dk对应BS与用户/>之间的距离,路径损耗指数为3。
为了进行比较,本发明考虑了四种基准方案,并对所有方案采用相同的限制。Local computing only:每个用户都需要在本地完成其计算任务。Full offloading:每个用户/>都需要将其计算任务全部卸载到BS中来完成。Proposed joint designwith ZF:对卸载数据量和无线电资源进行联合优化,在下行能量传输阶段采用ZF预编码。Separate_MEC_WPT:ET上的WPT和用户端的本地计算和数据卸载是独立设计的。图2(a)为目标值与天线数的关系,其中BS与用户的距离d=8,用户数设K=8。仿真结果表明,所有算法的目标函数值均随天线数目的增加而下降。可以解释为:1)用户的卸载功率随着天线数目的增加而下降,用户对能量需求减少;2)能量需求降低,ET传输功率降低。同时,本发明方案在非完备CSI下的性能优于基准方案。这是因为提出的方案联合优化了卸载数据量和无线电资源,而基准方案只优化了用户和ET的发射功率。值得注意的是,本发明所提出的方案具有与Separate_MEC_WPT相同的性能,这是因为最小化ET的传输功率相当于最小化用户的能耗。图2(b)为目标函数值与BS和用户距离的关系,其中天线数M=64,用户数K=8。可以观察到,在所有考虑的方案中,目标函数值都随着BS和用户之间距离的增加而增加。这是因为用户的卸载功率随着BS和用户之间的距离增加,造成了用户需要更多的能量。此外,还可以观察到,本发明所提方案的性能优于所有基准方案,这是因为所提方案的卸载数据量随着BS与用户之间距离的增加而减小。从图2(b)中还可以看出,本发明所提方案在完备CSI下的性能优于非完备CSI下的性能,这是因为在完备CSI下上行链路中用户间的干扰被消除了。同时,与预期的一样,下行MRT预编码方案的性能优于ZF预编码方案。图2(c)为目标函数值与用户数的关系,其中BS与用户的距离d=13m,天线数M=64。随着用户数的增加,所有方案的目标函数值均显著增加。特别的,当K≥23时,Local computing only在非完备CSI下的目标函数值低于Proposed joint design with ZF。图2(d)为用户卸载数据比例随用户和基站间距离的变化。
本发明提出了一种联合实时资源管理和能源交易策略,以降低无线移动通信系统的能源成本,其中基站由可再生能源和智能电网供电。通过联合优化BS的现货市场能量需求和传输功率、用户卸载数据量和传输功率,最小化BS的总能源成本。对于完备CSI的情况,推导出了一个半封闭的解。对于非完备CSI的情况,采用连续凸逼近技术处理非凸问题。仿真结果表明,在完备和非完备CSI场景下,本发明所提方案在提高能效和降低总能耗方面均优于其他基准方案。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种智能电网供电系统的计算卸载与资源分配方法,其特征在于,其步骤如下:
步骤一:搭建无线供电移动边缘计算系统模型,包括N个天线阵列的BS和K个单天线用户集,每个用户k在相干时间T内计算Lk位输入数据,BS连接到电网,向分布式用户广播无线能量,其中,
步骤二:在用户时延限制下,以BS的传输功率和实时能量需求的总和的最小值为目标构建目标函数,并给出目标函数的约束条件;
所述目标函数为:
所述目标函数的约束条件为:
其中,表示BS给用户k的发射功率,Breal表示实时能量需求,Pk为用户k的卸载功率,Pmax表示用户处的最大传输功率,PET,max表示BS的最大传输功率,αk代表用户k的卸载数据比例,Rk为用户k处可实现的卸载数据速率,c表示用户数据的计算复杂度,PL表示本地执行的每周期的能耗,μ表示能量转换效率,/>表示发射功率,ck表示在用户k处执行一个输入比特位所需的CPU周期数,Fk表示用户k的计算能力,Pc表示云上执行的每周期的能耗,Pcircuit表示非传输硬件电路的功耗,E表示BS处收集的能源功率,Bahead表示当前已向电网购买的能源,S表示多余的卖给电网的能源;
步骤三:在完备信道状态信息情况下,目标函数的约束条件为凸约束条件,利用标准凸优化技术求得目标函数的最优解;
在完备信道状态信息情况下,线性检测器矩阵由V=HH(HHH)-1决定,用户k的归一化有效信道增益表示为其中,V(k)为V的第k行,Hk为H的第k列,σ2为噪声功率,H∈ΞN×K表示用户与基站之间的整体信道矩阵,信道矩阵的各元素建模为/>gnk表示小尺度衰落系数,βk表示大尺度衰落系数,因此,得到用户k处可实现的卸载数据速率为:
Rk=Blog2(1+Pkhk) (2);
BS分配给用户k的归一化预编码向量为其中,/>设sk∈Ξ表示用户k的零均值单位方差的能量信号,则对应的接收信号可表示为:
其中,nk表示加性高斯白噪声,表示BS给用户k'的发射功率,wk′表示BS分配给用户k'的归一化预编码向量,sk′表示用户k'的零均值单位方差的能量信号;
根据式(2)和式(4)将式(6d)和(6e)分别转化为:
其中,B表示用户传输带宽;
首先将式(7a)改写为αkLk-TBlog2(1+Pkhk)≤0;当αkLk-TBlog2(1+Pkhk)=0成立时,得到Pk的最小值
结合式(6b)和(7a),可以得到最优的Pk由式(6g)可知,当等式成立时,得到最小的Breal
如果式(7b)改写为/>为了得到更小的/>首先最小化:
通过拉格朗日对偶方法对式(9)进行求解得到其最优解,将部分拉格朗日量表示为:
其中,λk是与αk≤1相关的非负拉格朗日乘子,vk是与相关的非负拉格朗日乘子,由于式(10)是凸优化函数,并且式(10)满足Salterars条件,对偶间隙为零,因此,通过求解式(11)的对偶问题,得到式(10)的最优解:
基于KKT条件,最优原对偶点(αkk,vk)的充要条件是:
其中,表示最优的卸载数据比例,/>和/>均表示非负的拉格朗日乘子;
式(12c)表示互补松弛条件,式(12c)的左侧项是Lk相对的一阶导数,由式(12c)和(12d)可以直接得出:
根据式(13),可得:
利用标准凸优化技术进行求解,可以得到的最优解;
步骤四:在非完备信道状态信息情况下,通过引入辅助变量将目标函数的约束条件转化为凸约束条件,再利用标准凸优化技术和迭代方法求得目标函数的最优解;
在非完备信道状态信息下,设Pmax表示用户的最大传输功率,采用最小均方误差估计方法,估计的信道状态信息的协方差为其中,τp≥K为导频符号数,βk表示大尺度衰落系数,用户k处可实现的卸载数据速率为:
其中,M表示基站天线数,σ2表示噪声功率;
用户k可以获得的总功率为:
其中,为有效噪声的总方差,/>表示在能量收集阶段基站传输给用户k的功率,/>表示在能量收集阶段基站传输给用户k'的功率;
根据式(3)和式(5)将(6d)和(6e)转化为:
其中,hk=(M-K)γk2,h′i=(βii)/σ2
引入了一个辅助变量xk,满足:
式(15a)可以重新表示为:
αkLk≤TBlog2(1+xk) (17);
引入另一个辅助变量y,满足:
其中,
已知xky的上界为:
其中,y[n]表示在第n次迭代时y的值,表示在第n次迭代时xk的值,则式(18)可转换为以下凸约束:
因此,目标函数以及目标函数的约束条件可转换为:
s.t.(6a),(6c),(15b),(6f),(6g),(17),(19),(21);
利用内点法对式(22)进行迭代求解,直至式(22)收敛,得到最优解。
2.根据权利要求1所述的智能电网供电系统的计算卸载与资源分配方法,其特征在于,由ck表示在用户k处执行一个输入比特位所需的CPU周期数,PL表示本地执行的每周期的能耗,Pc表示云上执行的每周期的能耗,因此,得到用户k的本地计算总能耗为Elocal,k=(1-αk)LkckPL,云上计算的能耗为Ecloud,k=αkLKckPc;由于Fk为用户k的计算能力,本地执行时间表示为满足tlocal,k≤T;因此,卸载数据比例满足/>
CN202110907044.2A 2021-08-09 2021-08-09 一种智能电网供电系统的计算卸载与资源分配方法 Active CN113630734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110907044.2A CN113630734B (zh) 2021-08-09 2021-08-09 一种智能电网供电系统的计算卸载与资源分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110907044.2A CN113630734B (zh) 2021-08-09 2021-08-09 一种智能电网供电系统的计算卸载与资源分配方法

Publications (2)

Publication Number Publication Date
CN113630734A CN113630734A (zh) 2021-11-09
CN113630734B true CN113630734B (zh) 2024-05-14

Family

ID=78383531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110907044.2A Active CN113630734B (zh) 2021-08-09 2021-08-09 一种智能电网供电系统的计算卸载与资源分配方法

Country Status (1)

Country Link
CN (1) CN113630734B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2852238A1 (en) * 2013-09-19 2015-03-25 NTT DoCoMo, Inc. Signaling and interference estimation for dynamic fractional reuse
CN108924936A (zh) * 2018-07-12 2018-11-30 南昌大学 无人机辅助无线充电边缘计算网络的资源分配方法
CN110493854A (zh) * 2019-06-11 2019-11-22 成都龙腾中远信息技术有限公司 一种基于优化理论的wpt-mec网络上下行资源分配与功率控制机制
CN111294886A (zh) * 2020-02-10 2020-06-16 广东工业大学 一种基于无线能量驱动的移动边缘计算方法及装置
CN111447619A (zh) * 2020-03-12 2020-07-24 重庆邮电大学 一种移动边缘计算网络中联合任务卸载和资源分配方法
CN111953730A (zh) * 2020-07-02 2020-11-17 华北电力大学(保定) 一种基于noma的服务器协作边缘计算方法
CN111988806A (zh) * 2020-09-01 2020-11-24 重庆邮电大学 一种基于全双工中继的移动边缘计算网络资源分配方法
CN112052086A (zh) * 2020-07-28 2020-12-08 西安交通大学 一种移动边缘计算网络中的多用户安全节能资源分配方法
CN112866012A (zh) * 2021-01-05 2021-05-28 金陵科技学院 非线性能量收集无线供电mec中卸载和能量联合优化算法
CN112990547A (zh) * 2021-02-08 2021-06-18 北京中电飞华通信有限公司 智能电网能量优化方法及装置
CN113115459A (zh) * 2021-04-15 2021-07-13 华北电力大学 一种面向电力物联网海量终端的多尺度多维资源分配方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123326B2 (en) * 2015-03-12 2018-11-06 Ntt Docomo, Inc. Method and apparatus for resource allocation and for scheduling cellular and coordinated multipoint transmissions in heterogeneous wireless networks

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2852238A1 (en) * 2013-09-19 2015-03-25 NTT DoCoMo, Inc. Signaling and interference estimation for dynamic fractional reuse
CN108924936A (zh) * 2018-07-12 2018-11-30 南昌大学 无人机辅助无线充电边缘计算网络的资源分配方法
CN110493854A (zh) * 2019-06-11 2019-11-22 成都龙腾中远信息技术有限公司 一种基于优化理论的wpt-mec网络上下行资源分配与功率控制机制
CN111294886A (zh) * 2020-02-10 2020-06-16 广东工业大学 一种基于无线能量驱动的移动边缘计算方法及装置
CN111447619A (zh) * 2020-03-12 2020-07-24 重庆邮电大学 一种移动边缘计算网络中联合任务卸载和资源分配方法
CN111953730A (zh) * 2020-07-02 2020-11-17 华北电力大学(保定) 一种基于noma的服务器协作边缘计算方法
CN112052086A (zh) * 2020-07-28 2020-12-08 西安交通大学 一种移动边缘计算网络中的多用户安全节能资源分配方法
CN111988806A (zh) * 2020-09-01 2020-11-24 重庆邮电大学 一种基于全双工中继的移动边缘计算网络资源分配方法
CN112866012A (zh) * 2021-01-05 2021-05-28 金陵科技学院 非线性能量收集无线供电mec中卸载和能量联合优化算法
CN112990547A (zh) * 2021-02-08 2021-06-18 北京中电飞华通信有限公司 智能电网能量优化方法及装置
CN113115459A (zh) * 2021-04-15 2021-07-13 华北电力大学 一种面向电力物联网海量终端的多尺度多维资源分配方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"面向5G移动通信网的高精度定位技术探讨";李娜娜;《通信电源技术》;20210110;全文 *
Changsheng You ; Kaibin Huang ; Hyukjin Chae."IEEE Journal on Selected Areas in Communications".《IEEE Journal on Selected Areas in Communications》.2016,全文. *
Jin Jiang ; Jian Xu ; Yao Xie ; Yiwei Zhu ; Zhongbin Li ; Chen Yang."A Cooperative Computation Offloading Scheme for Dense Wireless Sensor-assisted Smart Grid Networks".《2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS)》.2021,全文. *
Ming Zeng ; Wanming Hao ; Octavia A. Dobre ; H. Vincent Poor."Delay Minimization for Massive MIMO Assisted Mobile Edge Computing".《 IEEE Transactions on Vehicular Technology》.2020,全文. *
Ming Zeng ; Wanming Hao ; Octavia A. Dobre ; Zhiguo Ding ; ."Massive MIMO-Assisted Mobile Edge Computing: Exciting Possibilities for Computation Offloading".《IEEE Vehicular Technology Magazine》.2020,全文. *
Suzhi Bi ; Ying Jun Zhang."Computation Rate Maximization for Wireless Powered Mobile-Edge Computing With Binary Computation Offloading".《IEEE Transactions on Wireless Communications》.2018,全文. *
Xiaoyan Hu ; Kai-Kit Wong ; Kun Yang."Wireless Powered Cooperation-Assisted Mobile Edge Computing".《IEEE Transactions on Wireless Communications》.2018,全文. *
刘明月 ; 涂崎 ; 汪洋 ; 孟萨出拉 ; 赵雄文."智能电网中网络切片的资源分配算法研究".《电力信息与通信技术》.2020,全文. *
朱政宇 ; 王梓晅 ; 徐金雷 ; 王忠勇 ; 王宁 ; 郝万明."智能反射面辅助的未来无线通信:现状与展望".《航空学报》.2021,全文. *

Also Published As

Publication number Publication date
CN113630734A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN111010219B (zh) 可重构智能表面辅助的多用户mimo上行链路传输方法
CN108770007B (zh) 基于noma的无线携能通信系统多目标优化方法
CN107613567B (zh) 一种基于无线输能的无线传感网络资源分配方法
CN111835406B (zh) 适用于多波束卫星通信的能效谱效权衡的鲁棒预编码方法
CN105680920B (zh) 一种多用户多天线数能一体化通信网络吞吐量优化方法
CN107592144B (zh) Eh-mimo能量收集及多天线通信系统的节点天线选择方法及装置
CN113825159A (zh) 基于智能反射面的无线携能通信系统鲁棒资源分配方法
CN113630165A (zh) 一种基于可重构智能表面的上行多用户共生通信系统
CN115173901A (zh) 基于irs辅助的miso无线携能通信系统的能效最大化方法
CN114219354A (zh) 一种基于联邦学习资源分配优化方法及系统
Yu et al. Power allocation for energy efficient optimization of distributed MIMO system with beamforming
CN114640379A (zh) 一种基于智能反射面阵元分组的波束优化方法及系统
CN113395095A (zh) 动态超表面天线辅助的大规模mimo上行传输方法
CN113630734B (zh) 一种智能电网供电系统的计算卸载与资源分配方法
CN116033461B (zh) 一种基于star-ris辅助的共生无线电传输方法
CN109039410B (zh) 一种异构云无线接入网络的波束成形方法及通信网络
CN115379478B (zh) 一种基于ris辅助数能同传网络鲁棒能耗优化方法
CN111726803A (zh) 一种基于认知无线电的能量采集方法和装置
CN114845363B (zh) 一种反射面辅助的低功耗数据卸载方法及系统
CN114513235B (zh) 基于b5g通信系统中的平面轨道角动量传输与资源分配方法、系统、介质及设备
CN113395094B (zh) 动态超表面天线辅助的大规模mimo上行统计传输方法
CN115696437A (zh) 基于irs的无线能量传输网络的用户总速率最大化方法
CN117354837B (zh) 空中计算系统的参数联合优化方法、均方误差降低方法
CN112235803B (zh) Wpt-mec系统中用户协作的资源分配联合优化方法
CN115426020B (zh) 一种低复杂度的通感一体化发射预编码优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant