CN113609549A - 一种格型连续墙支护结构计算方法 - Google Patents

一种格型连续墙支护结构计算方法 Download PDF

Info

Publication number
CN113609549A
CN113609549A CN202110757615.9A CN202110757615A CN113609549A CN 113609549 A CN113609549 A CN 113609549A CN 202110757615 A CN202110757615 A CN 202110757615A CN 113609549 A CN113609549 A CN 113609549A
Authority
CN
China
Prior art keywords
wall
unit
lattice
internal force
lattice type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110757615.9A
Other languages
English (en)
Other versions
CN113609549B (zh
Inventor
孙昌利
杜秀忠
张挺
贾恺
唐捷朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Research Institute of Water Resources and Hydropower
Original Assignee
Guangdong Research Institute of Water Resources and Hydropower
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Research Institute of Water Resources and Hydropower filed Critical Guangdong Research Institute of Water Resources and Hydropower
Priority to CN202110757615.9A priority Critical patent/CN113609549B/zh
Publication of CN113609549A publication Critical patent/CN113609549A/zh
Application granted granted Critical
Publication of CN113609549B publication Critical patent/CN113609549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Architecture (AREA)
  • Mathematical Analysis (AREA)
  • Structural Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

本发明公开了一种格型连续墙支护结构计算方法,包括以下步骤:取格型连续墙的一榀为计算对象;划分计算对象为多个单元,并为各个单元编号;计算各个单元的惯性矩以及抗弯刚度;根据单元之间采用的接头形式对纵墙的整体刚度进行修正;将计算得到的抗弯刚度分配到各幅墙上;通过等效的排桩平面刚架计算模型计算得到各幅墙的内力;根据各个单元的抗弯刚度占整体刚度的比例分配内力,得到各个单元所受到的内力。本发明考虑了各单元之间采用的接头形式并对整体刚度进行修正,通过抗弯刚度分配以及排桩平面刚架计算模型计算各单元所受到的内力,符合工程实际,能降低风险,并且力学概念明确,计算方便,能广泛应用于工程计算领域。

Description

一种格型连续墙支护结构计算方法
技术领域
本发明涉及工程计算领域,尤其是一种格型连续墙支护结构计算方法。
背景技术
格型连续墙支护结构是一种依靠自身整体刚度承担土体侧压力的支护形式,具有整体刚度大、抗渗能力好,不依靠支撑或锚索等优点,可作为临时或者永久挡水挡土结构。常用的结构型式有单格型或双格型。格型连续墙采用分槽段施工,槽段的形状有“T”型、“一”型、“L”型及“十”型,通过将不同槽段之间的连续墙连接形成格型整体结构。
目前对于格型连续墙支护结构的受力分析多采用数值方法。数值方法虽然可以分析格型连续墙的整体受力特性及变化趋势,但仍存在很多局限,比如无法精确计算支护结构的土压力荷载。其中,土体本构关系的选择、计算参数的选取以及桩土接触面之间的模拟方式等因素影响了数值方法的计算精度,使得数值方法在工程设计上难以推广应用。因此,数值方法一般作为一种定性分析方法。
此外,对于格型连续墙支护结构的受力分析通常将支护结构视为一个整体结构来分析,未能考虑到格型连续墙接头之间的连接方式的影响。如果在工程设计中简单地将支护结构视为整体结构而不考虑接头之间的刚度弱化作用,会夸大该支护结构的整体刚度效果,从而产生安全隐患;而且,若将该支护结构视为整体进行受力分析,则无法得到各槽段的内力,因此也无法根据各槽段的内力来进行配筋设计,这也是目前的格型连续墙受力分析方法在工程应用中的一个局限。
发明内容
本发明的目的在于:提供一种新的格型连续墙支护结构计算方法,该计算方法受力明确、计算简便,考虑各槽段的接头影响,能够计算各槽段的内力。
本发明所采取的技术方案是:
一种格型连续墙支护结构计算方法,包括以下步骤:
取所述格型连续墙的一榀为计算对象,所述计算对象中包含多幅墙,所述墙包括横隔墙和纵墙;
根据所述格型连续墙的槽段将所述计算对象划分为多个单元,并为各个所述单元编号;
计算各个所述单元的惯性矩以及抗弯刚度;
根据所述单元之间采用的接头形式对所述纵墙的整体抗弯刚度进行修正;
根据各所述单元的抗弯刚度计算各幅所述墙的抗弯刚度;
采用排桩平面刚架计算模型对格型连续墙进行分析,得到各幅所述墙的内力;
根据各个所述单元的抗弯刚度占其所在的所述墙的抗弯刚度的比例分配内力,得到各个所述单元受到的内力。
进一步,所述计算各个所述单元的惯性矩以及抗弯刚度,包括以下步骤:
计算各个所述单元绕自身形心轴的抗弯刚度EcIi(i为各个所述单元的编号);
计算所述纵墙的整体抗弯刚度EcI
式中,Ec为弹性模量,Ii为各个所述单元的惯性矩,I为所述纵墙的整体惯性矩。
进一步,Ii的计算公式为:
Figure BDA0003147749890000021
式中,Ai为各个所述单元的面积,yi为各个所述单元形心到形心轴的距离。
进一步,所述根据所述单元之间采用的接头形式对所述纵墙的整体抗弯刚度进行修正,包括:
引入刚度修正系数α,当α=0时,ECI=ECI
当α=1时,ECI=ECI
当0<α<1时,ECI=αECI+(1-α)ECI (2)
式中,EcI为所述纵墙修正后的抗弯刚度,EcI为所述纵墙中各个所述单元的抗弯刚度之和。
进一步,所述一种格型连续墙支护结构计算方法,还包括以下步骤:
引入刚度分配系数Wi,Wi的值为EcIi与EcI的比值。
进一步,当所述格型连续墙为单格型连续墙时,所述根据各所述单元的抗弯刚度计算各幅所述墙的抗弯刚度,包括:
所述单格型连续墙包括单格型前墙和单格型后墙;
所述单格型前墙的抗弯刚度为:
Figure BDA0003147749890000031
所述单格型后墙的抗弯刚度为:
Figure BDA0003147749890000032
式中,W3为中隔墙单元的刚度分配系数,所述中隔墙单元为所述纵墙中不与所述横隔墙连接的单元,所述中隔墙单元的抗弯刚度平均分配到所述单格型前墙和所述单格型后墙上。
进一步,当所述格型连续墙为双格型连续墙时,所述根据各所述单元的抗弯刚度计算各幅所述墙的抗弯刚度,包括:
所述双格型连续墙包括双格型前墙、双格型中墙和双格型后墙;
所述双格型前墙的抗弯刚度为:
Figure BDA0003147749890000033
所述双格型中墙的抗弯刚度为:
Figure BDA0003147749890000034
所述双格型后墙的抗弯刚度为:
Figure BDA0003147749890000035
式中,W3、W6分别为第一中隔墙单元和第二中隔墙单元的刚度分配系数,所述第一中隔墙单元和第二中隔墙单元为所述纵墙中不与所述横隔墙连接的单元,所述第一中隔墙单元的抗弯刚度平均分配到所述双格型前墙和所述双格型中墙上,所述第二中隔墙单元的抗弯刚度平均分配到所述双格型中墙和所述双格型后墙上。
进一步,所所述采用排桩平面刚架计算模型对格型连续墙进行分析,得到各幅所述墙的内力,包括:
所述格型连续墙的两侧分别为开挖侧和挡土侧;
将所述格型连续墙分为多个排桩,对应所述墙,所述排桩之间采用链杆连接,所述链杆用于传递侧压力,所述排桩的顶部设置有刚接;
采用主动土压力来模拟所述挡土侧的作用力,采用土弹簧来模拟所述开挖侧的土反力。
进一步,当所述格型连续墙为单格型连续墙时,所述根据各个所述单元的抗弯刚度占其所在的所述墙的抗弯刚度的比例分配内力,得到各个所述单元受到的内力,包括:
引入各所述单元的内力分配系数β;
所述单格型前墙中的单元的内力分配系数:
Figure BDA0003147749890000041
所述单格型后墙中的单元的内力分配系数:
Figure BDA0003147749890000042
所述中隔墙单元的内力分配系数:
Figure BDA0003147749890000043
Figure BDA0003147749890000044
根据各所述单元的内力分配系数计算各所述单元所受到的内力。
进一步,当所述格型连续墙为双格型连续墙时,所述根据各个所述单元的抗弯刚度占其所在的所述墙的抗弯刚度的比例分配内力,得到各个所述单元受到的内力,包括:
引入各单元的内力分配系数β;
所述双格型前墙中的单元的内力分配系数:
Figure BDA0003147749890000045
所述第一中隔墙单元的的内力分配系数:
Figure BDA0003147749890000046
Figure BDA0003147749890000047
所述双格型中墙中的单元的内力分配系数:
Figure BDA0003147749890000048
所述第二中隔墙单元的内力分配系数:
Figure BDA0003147749890000049
Figure BDA00031477498900000410
所述双格型后墙中的单元的内力分配系数:
Figure BDA00031477498900000411
根据各所述单元的内力分配系数计算各所述单元所受到的内力。
本发明的有益效果是:本发明一种格型连续墙支护结构计算方法,包括以下步骤:取格型连续墙的一榀为计算对象;划分所述计算对象为多个单元,并为各个所述单元编号;计算各个所述单元的惯性矩以及抗弯刚度;根据所述单元之间采用的接头形式对所述纵墙的整体刚度进行修正;将计算得到的抗弯刚度分配到各个所述墙上;将格型连续墙等效为排桩平面刚架计算模型,通过排桩平面刚架计算模型计算得到各幅所述墙的内力;根据各个所述单元的抗弯刚度占整体刚度的比例分配内力,得到各个所述单元所受到的内力。本发明考虑了格型连续墙各单元之间采用的接头形式并对整体刚度进行修正,通过抗弯刚度分配以及排桩平面刚架计算模型计算各单元所受到的内力,较常规将格型墙作为整体结构的计算方法,本方法更符合工程实际,能降低工程应用安全风险。且本发明力学概念明确,计算方便,易于工程应用。
附图说明
图1为本发明实施例的一种格型连续墙支护结构的纵向截面图;
图2为本发明实施例的一种双格型连续墙的横向截面图;
图3为本发明实施例的一种双格型连续墙支护结构的计算对象单元划分图;
图4为本发明实施例的一种双格型连续墙支护结构的各单元横向截面图;
图5为本发明实施例的一种单格型连续墙支护结构的计算对象划分图;
图6为本发明实施例的一种单格型连续墙支护结构的各单元横向截面图;
图7为本发明实施例的排桩平面刚架计算模型的结构示意图;
图8为本发明实施例的单格型连续墙的横向截面图;
图9为本发明实施例的单格型连续墙的刚度修正系数与总刚度的关系曲线图;
图10为本发明实施例的单格型连续墙的刚度修正系数与支护结构位移的关系曲线图;
图11为本发明实施例的单格型连续墙的刚度修正系数与支护结构弯矩的关系曲线图。
附图标记:101、纵墙;102、纵隔墙;103、顶板;104、开挖侧;105、挡土侧;201、双格型前墙;202、双格型中墙;203、双格型后墙;204、横隔墙;601、单格型前墙;602、单格型后墙;701、前排桩;702、中排桩;703、后排桩;704、链杆;705、刚接;706、主动土压力;707、土弹簧;708、桩底弹簧;801、腹板。
具体实施方式
一种格型连续墙支护结构计算方法,包括以下步骤:
S101、取所述格型连续墙的一榀为计算对象,所述计算对象中包含多幅墙,所述墙包括纵墙101和横隔墙204;
参照图1和图2,格型连续墙支护结构包含多幅纵墙101和横隔墙204,纵墙101之间通过横隔墙204连接,格型连续墙的顶部设置有顶板103,格型连续墙的两侧分别为开挖侧104和挡土侧105。
具体地,图2中的格型连续墙为双格型连续墙,本发明实施例中以双格型连续墙进行示例说明,取较大虚线框内一榀为计算对象,其中靠近开挖侧104的所述墙为双格型前墙201,靠近挡土侧105的所述墙为双格型后墙203,在双格型前墙201和双格型后墙203之间的墙为双格型中墙202,图2中较小虚线框内为纵墙101,纵墙101包括双格型前墙201、双格型中墙202、双格型后墙203以及纵隔墙102。
S102、根据所述格型连续墙的槽段将所述计算对象划分为多个单元,并为各个所述单元编号;
参照图3和图4,按照双格型连续墙的设计槽段进行单元的划分,并为各个单元标注序号1~8,其中,1、3、4、6、7号单元为纵墙101中的单元,3、6号单元为纵隔墙102中的单元,2、5、8号单元为横隔墙204中的单元。双格型前墙单元(1号单元)的形状为T形、双格型中墙单元(4号单元)的形状为十形,双格型后墙单元(7号单元)的形状为倒T形,连接单元(2、3、5、6、8号单元)的形状为一形。
S103、计算各个所述单元的惯性矩以及抗弯刚度;
(1)计算各个所述单元绕自身形心轴的抗弯刚度EcIi(i为各个所述单元的编号);
其中Ec为混凝土弹性模量(单位:kPa),Ii为各单元的惯性矩(单位为:m)。各单元形状如图4所示,绕形心轴x方向的惯性矩按公式:
Ii=∫Ayi 2dAi (1)
式中,Ai为各单元的面积(单位:m2),yi为各单元形心到形心轴的距离(单位:m)。单元9为由1、3、4、6、7号单元构成的纵墙101的整体结构,按公式(1)计算其绕形心轴x的惯性矩I9
(2)计算所述纵墙101的整体抗弯刚度EcI
若各单元之间的连接方式十分紧密,接头自身强度能承担单元之间的摩擦力,接头之间能完全传递内力,此时纵墙101可以作为整体结构承担外部荷载,整体抗弯刚度ECI=ECI9
S104、根据所述单元之间采用的接头形式对纵墙101的整体抗弯刚度进行修正;
引入刚度修正系数α,当α=0时,EcI=ECI,EcI为所述纵墙101修正后的抗弯刚度,EcI为所述纵墙101中各个所述单元的抗弯刚度之和;
EcI表示各单元之间完全光滑,单元之间不传递内力时的整体抗弯刚度。
ECI=EC(I1+I3+I4+I6+I7) (2)
在工程应用中,根据选用的接头形式,确定EcI。显然,EcI介于EcI与EcI之间。
当α=1时,ECICI
当0<α<1时,ECI=αECI+(1-α)ECI
因此,EcI的计算公式为:
ECI=αECI+(1-α)ECI(0≤α≤1) (3)
如果单元之间的接头为柔性连接,则α=0~0.2,如果单元之间的接头为半刚性连接,则α=0.2~0.5,如果单元之间的接头为刚性连接,则α=0.5~0.8,如果单元之间的接头经过特别处理,能充分传递内力,则可取α=1。
S105、根据各所述单元的抗弯刚度计算各幅所述墙的抗弯刚度;
引入刚度分配系数Wi,Wi的值为EcIi与EcI的比值,因此,Wi的计算公式为:
Figure BDA0003147749890000071
当所述格型连续墙为单格型连续墙时:
参照图5,取虚线框内一榀为计算对象,该计算对象中包括单格型前墙601和单格型后墙602;
所述单格型前墙601的抗弯刚度为:
Figure BDA0003147749890000072
所述单格型后墙602的抗弯刚度为:
Figure BDA0003147749890000073
式中,W3为中隔墙单元的刚度分配系数,所述中隔墙单元为所述纵墙101中不与所述横隔墙204连接的单元,所述中隔墙单元的抗弯刚度平均分配到所述单格型前墙601和所述单格型后墙602上。
本发明实施例以双格型连续墙作为示例说明。
当所述格型连续墙为双格型连续墙时:
所述双格型连续墙包括双格型前墙201、双格型中墙202和双格型后墙203;
将各单元的抗弯刚度分别分配到双格型前墙201、双格型中墙202和双格型后墙203上,其中第一中隔墙单元和第二中隔墙单元(3、6号单元)各自按1/2刚度分配到两侧,则有:
双格型前墙201的抗弯刚度为:
Figure BDA0003147749890000081
双格型中墙202的抗弯刚度为:
Figure BDA0003147749890000082
双格型后墙203的抗弯刚度为:
Figure BDA0003147749890000083
式中,W3、W6分别为第一中隔墙单元和第二中隔墙单元的刚度分配系数,所述第一中隔墙单元和第二中隔墙单元为所述纵墙101中不与所述横隔墙204连接的单元,所述第一中隔墙单元的抗弯刚度平均分配到所述双格型前墙201和所述双格型中墙202上,所述第二中隔墙单元的抗弯刚度平均分配到所述双格型中墙202和所述双格型后墙203上。
S106、采用排桩平面刚架计算模型对格型连续墙进行分析,得到各幅所述墙的内力;
参照图5,根据三排平面刚架模型进行双格型连续墙支护结构的受力分析。
(1)所述格型连续墙的两侧分别为开挖侧104和挡土侧105;
(2)将所述格型连续墙分为多个排桩,对应所述墙,所述排桩之间采用链杆704连接,所述链杆704用于传递侧压力,所述排桩的顶部设置有刚接705,排桩的底部还设置有桩底弹簧708;
其中,前排桩701对应双格型前墙201,中排桩702对应双格型中墙202,后排桩703对应双格型后墙203,顶部刚接705对应双格型连续墙的顶板103。
链杆704用于模拟第一中隔墙单元和第二中隔墙单元(3、6号单元),承受拉、压应力,以链杆704的截面面积控制连接刚度,链杆704弹性模量与格型连续墙的弹性模量相等,链杆704的等效截面A计算公式为:
Figure BDA0003147749890000091
式中,a为链杆504的竖向间距,b为纵隔墙102的厚度,s为纵隔墙102之间的间距。
(3)采用主动土压力706来模拟所述挡土侧105的作用力,采用土弹簧707来模拟所述开挖侧104的土反力。
通过该模型计算可以得到各排墙的内力(M、M、M)和水平位移。
S107、根据各个所述单元的抗弯刚度占其所在的所述墙的抗弯刚度的比例分配内力,得到各个所述单元受到的内力。
(1)当所述格型连续墙为单格型连续墙时:
引入各单元的内力分配系数β;
所述单格型前墙601中的单元的内力分配系数:
Figure BDA0003147749890000092
所述单格型后墙602中的单元的内力分配系数:
Figure BDA0003147749890000093
所述中隔墙单元的内力分配系数:
Figure BDA0003147749890000094
Figure BDA0003147749890000095
根据各所述单元的内力分配系数计算各所述单元所受到的内力。
示例性地,1号单元所受到的内力为M1=β1M
(2)当所述格型连续墙为双格型连续墙时:
引入各单元的内力分配系数β;
所述双格型前墙201中的单元的内力分配系数:
Figure BDA0003147749890000096
所述第一中隔墙单元的的内力分配系数:
Figure BDA0003147749890000097
Figure BDA0003147749890000101
所述双格型中墙202中的单元的内力分配系数:
Figure BDA0003147749890000102
所述第二中隔墙单元的内力分配系数:
Figure BDA0003147749890000103
Figure BDA0003147749890000104
所述双格型后墙203中的单元的内力分配系数:
Figure BDA0003147749890000105
根据各所述单元的内力分配系数计算各所述单元所受到的内力。
示例性地,1号单元所受到的内力为M1=β1M,3号单元所受到的内力为M3=β3前M3中M
在得到各个单元的内力后,即可根据《混凝土结构设计规范》中承载力极限状态计算公式,完成各个槽段单元配筋量计算,构建能承受所述挡土侧105和所述开挖侧104作用力的格型连续墙支护结构。
参照图6,以单格型连续墙作为示例说明根据各单元接头形式进行刚度修正对格型连续墙支护结构计算结果的影响。如图6所示,单格型连续墙由两个T型组合而成,整体单元之间有一个接头,连续墙厚度为1.0m,T型单元宽度及腹板801高度均为3.0m,截面总宽度为8.0m。支护结构挡土高度为15.0m,嵌固深度为20.0m,土质为均值砂层,力学参数为天然重度20kN/m3,黏聚力为0,内摩擦角35°,混凝土弹性模量为30000MPa。图7说明了刚度修正系数与设计抗弯刚度的关系,根据步骤S104公式(3)计算,两者之间呈线性关系。采用不同的刚度修正系数计算,截面总刚度为17~92m4。图8和图9分别说明支护结构位移、弯矩与刚度修正系数的关系,通过本实施例说明,是否考虑接头刚度修正以及刚度修正参数的大小对格型连续墙支护结构计算结果的影响较大。因此,在工程运用中要重视接头形式的刚度弱化影响。
以上是对本发明的较佳实施进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种格型连续墙支护结构计算方法,其特征在于,包括以下步骤:
取所述格型连续墙的一榀为计算对象,所述计算对象中包含多幅墙,所述墙包括横隔墙和纵墙;
根据所述格型连续墙的槽段将所述计算对象划分为多个单元,并为各个所述单元编号;
计算各个所述单元的惯性矩以及抗弯刚度;
根据所述单元之间采用的接头形式对所述纵墙的整体抗弯刚度进行修正;
根据各所述单元的抗弯刚度计算各幅所述墙的抗弯刚度;
采用排桩平面刚架计算模型对格型连续墙进行分析,得到各幅所述墙的内力;
根据各个所述单元的抗弯刚度占其所在的所述墙的抗弯刚度的比例分配内力,得到各个所述单元受到的内力。
2.根据权利要求1所述的一种格型连续墙支护结构计算方法,其特征在于,所述计算各个所述单元的惯性矩以及抗弯刚度,包括以下步骤:
计算各个所述单元绕自身形心轴的抗弯刚度EcIi(i为各个所述单元的编号);
计算所述纵墙的整体抗弯刚度EcI
式中,Ec为弹性模量,Ii为各个所述单元的惯性矩,I为所述纵墙的整体惯性矩。
3.根据权利要求2所述的一种格型连续墙支护结构计算方法,其特征在于,Ii的计算公式为:
Figure FDA0003147749880000011
式中,Ai为各个所述单元的面积,yi为各个所述单元形心到形心轴的距离。
4.根据权利要求3所述的一种格型连续墙支护结构计算方法,其特征在于,所述根据所述单元之间采用的接头形式对所述纵墙的整体抗弯刚度进行修正,包括:
引入刚度修正系数α,当α=0时,EcI=EcI
当α=1时,EcI=EcI
当0<α<1时,EcI=αEcI+(1-α)EcI (2)
式中,EcI为所述纵墙修正后的抗弯刚度,EcI为所述纵墙中各个所述单元的抗弯刚度之和。
5.根据权利要求4所述的一种格型连续墙支护结构计算方法,其特征在于,还包括以下步骤:
引入刚度分配系数Wi,Wi的值为EcIi与EcI的比值。
6.根据权利要求5所述的一种格型连续墙支护结构计算方法,其特征在于,当所述格型连续墙为单格型连续墙时,所述根据各所述单元的抗弯刚度计算各幅所述墙的抗弯刚度,包括:
所述单格型连续墙包括单格型前墙和单格型后墙;
所述单格型前墙的抗弯刚度为:
Figure FDA0003147749880000021
所述单格型后墙的抗弯刚度为:
Figure FDA0003147749880000022
式中,W3为中隔墙单元的刚度分配系数,所述中隔墙单元为所述纵墙中不与所述横隔墙连接的单元,所述中隔墙单元的抗弯刚度平均分配到所述单格型前墙和所述单格型后墙上。
7.根据权利要求5所述的一种格型连续墙支护结构计算方法,其特征在于,当所述格型连续墙为双格型连续墙时,所述根据各所述单元的抗弯刚度计算各幅所述墙的抗弯刚度,包括:
所述双格型连续墙包括双格型前墙、双格型中墙和双格型后墙;
所述双格型前墙的抗弯刚度为:
Figure FDA0003147749880000023
所述双格型中墙的抗弯刚度为:
Figure FDA0003147749880000024
所述双格型后墙的抗弯刚度为:
Figure FDA0003147749880000025
式中,W3、W6分别为第一中隔墙单元和第二中隔墙单元的刚度分配系数,所述第一中隔墙单元和第二中隔墙单元为所述纵墙中不与所述横隔墙连接的单元,所述第一中隔墙单元的抗弯刚度平均分配到所述双格型前墙和所述双格型中墙上,所述第二中隔墙单元的抗弯刚度平均分配到所述双格型中墙和所述双格型后墙上。
8.根据权利要求1所述的一种格型连续墙支护结构计算方法,其特征在于,所述采用排桩平面刚架计算模型对格型连续墙进行分析,得到各幅所述墙的内力,包括:
所述格型连续墙的两侧分别为开挖侧和挡土侧;
将所述格型连续墙分为多个排桩,对应所述墙,所述排桩之间采用链杆连接,所述链杆用于传递侧压力,所述排桩的顶部设置有刚接;
采用主动土压力来模拟所述挡土侧的作用力,采用土弹簧来模拟所述开挖侧的土反力。
9.根据权利要求6所述的一种格型连续墙支护结构计算方法,其特征在于,所述根据各个所述单元的抗弯刚度占其所在的所述墙的抗弯刚度的比例分配内力,得到各个所述单元受到的内力,包括:
引入各所述单元的内力分配系数β;
所述单格型前墙中的单元的内力分配系数:
Figure FDA0003147749880000031
所述单格型后墙中的单元的内力分配系数:
Figure FDA0003147749880000032
所述中隔墙单元的内力分配系数:
Figure FDA0003147749880000033
Figure FDA0003147749880000034
根据各所述单元的内力分配系数计算各所述单元所受到的内力。
10.根据权利要求7所述的一种格型连续墙支护结构计算方法,其特征在于,所述根据各个所述单元的抗弯刚度占其所在的所述墙的抗弯刚度的比例分配内力,得到各个所述单元受到的内力,包括:
引入各单元的内力分配系数β;
所述双格型前墙中的单元的内力分配系数:
Figure FDA0003147749880000035
所述第一中隔墙单元的的内力分配系数:
Figure FDA0003147749880000036
Figure FDA0003147749880000037
所述双格型中墙中的单元的内力分配系数:
Figure FDA0003147749880000038
所述第二中隔墙单元的内力分配系数:
Figure FDA0003147749880000041
Figure FDA0003147749880000042
所述双格型后墙中的单元的内力分配系数:
Figure FDA0003147749880000043
根据各所述单元的内力分配系数计算各所述单元所受到的内力。
CN202110757615.9A 2021-07-05 2021-07-05 一种格型连续墙支护结构计算方法 Active CN113609549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110757615.9A CN113609549B (zh) 2021-07-05 2021-07-05 一种格型连续墙支护结构计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110757615.9A CN113609549B (zh) 2021-07-05 2021-07-05 一种格型连续墙支护结构计算方法

Publications (2)

Publication Number Publication Date
CN113609549A true CN113609549A (zh) 2021-11-05
CN113609549B CN113609549B (zh) 2024-08-16

Family

ID=78337278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110757615.9A Active CN113609549B (zh) 2021-07-05 2021-07-05 一种格型连续墙支护结构计算方法

Country Status (1)

Country Link
CN (1) CN113609549B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021753A (zh) * 2016-05-27 2016-10-12 中南勘察设计院(湖北)有限责任公司 一种双排桩支护结构抗倾覆稳定性计算方法
CN108755745A (zh) * 2018-04-26 2018-11-06 易朋莹 一种新型型钢悬臂支护结构及其设计计算方法
CN108959752A (zh) * 2018-06-26 2018-12-07 湘潭大学 一种适用于计算钢管三排桩桩身位移与桩身内力的计算方法
CN109145412A (zh) * 2018-08-03 2019-01-04 中南大学 浅埋隧道施工双层超前支护结构一体化计算模型与计算方法
CN109657358A (zh) * 2018-12-21 2019-04-19 中国地质大学(北京) 考虑围岩与支护结构相互作用的圆形隧道力学计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021753A (zh) * 2016-05-27 2016-10-12 中南勘察设计院(湖北)有限责任公司 一种双排桩支护结构抗倾覆稳定性计算方法
CN108755745A (zh) * 2018-04-26 2018-11-06 易朋莹 一种新型型钢悬臂支护结构及其设计计算方法
CN108959752A (zh) * 2018-06-26 2018-12-07 湘潭大学 一种适用于计算钢管三排桩桩身位移与桩身内力的计算方法
CN109145412A (zh) * 2018-08-03 2019-01-04 中南大学 浅埋隧道施工双层超前支护结构一体化计算模型与计算方法
CN109657358A (zh) * 2018-12-21 2019-04-19 中国地质大学(北京) 考虑围岩与支护结构相互作用的圆形隧道力学计算方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
杨志勇;裴敬友;: "基坑支护结构强度和变形分析与计算的基本方法", 建筑安全, no. 03, 15 March 2007 (2007-03-15) *
耿建勋;张克绪;何林;耿永常;: "基坑支护结构的实用计算方法及其应用", 哈尔滨工程大学学报, no. 08, 15 August 2009 (2009-08-15) *
范秋雁;许胜才;崔峰;: "一类双排桩支护结构内力计算", 岩石力学与工程学报, no. 1, 15 May 2012 (2012-05-15) *

Also Published As

Publication number Publication date
CN113609549B (zh) 2024-08-16

Similar Documents

Publication Publication Date Title
CN108457311B (zh) 一种考虑墙土耦合的深基坑围护墙受力变形快速计算方法
CN101994325B (zh) 一种加固基础及提高既有建筑刚性基础抗弯剪能力的方法
CN102720185A (zh) h型抗滑桩桩身结构段分式计算方法
JP3150634B2 (ja) プレキャスト桟橋構造およびそれを用いた埠頭構築工法
CN116306061A (zh) 考虑非对称受荷基坑群围护结构受力变形确定和评估方法
CN114218658A (zh) 一种适用于锚索框架结构的内力变形解析计算方法
CN206829211U (zh) 用于建筑物被动纠偏的基础加固结构
CN113609549A (zh) 一种格型连续墙支护结构计算方法
CN108842805B (zh) 桩承式加筋路堤桩土应力确定方法
JP2011111872A (ja) 鋼管矢板の継手構造および鋼管矢板基礎
CN213508493U (zh) 一种软土区域钢沉井反压下沉支护系统
CN204097888U (zh) 一种带预应力张拉及检测装置的小箱梁加固构造
CN108301397A (zh) 一种适用于软土地基的多翼板桩结构及施工方法
CN107630564B (zh) 一种混凝土梁的加固结构施工方法
JP2019163687A (ja) 既設鋼矢板壁の補強構造
CN112575742B (zh) 一种生态砌块护岸砌块结构及其施工方法
CN113221214A (zh) 一种输电钢管塔用四环板节点环板作用力计算方法
JP6489055B2 (ja) 既設鋼矢板壁の補強構造および補強工法
KR100875250B1 (ko) 파형강판 지중구조물의 단부 보강재 및 그를 이용한단부보강방법
JP2023002940A (ja) 堤防の補強構造
CN207987910U (zh) 一种适用于软土地基的多翼板桩结构
CN110532627B (zh) 一种盾构掘进对邻近高铁桩基侧向变形的计算方法
CN203113312U (zh) 钢板桩
CN113591183A (zh) 一种黏性土地层多支点式围护结构非平衡计算方法
CN105569073A (zh) 悬挂式变壁厚椭圆形逆作竖井及其变壁厚整定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant