CN113603747A - 由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用 - Google Patents

由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用 Download PDF

Info

Publication number
CN113603747A
CN113603747A CN202110993058.0A CN202110993058A CN113603747A CN 113603747 A CN113603747 A CN 113603747A CN 202110993058 A CN202110993058 A CN 202110993058A CN 113603747 A CN113603747 A CN 113603747A
Authority
CN
China
Prior art keywords
vvi
pri
seq
grapes
mirna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110993058.0A
Other languages
English (en)
Other versions
CN113603747B (zh
Inventor
马超
陈秋菊
任毅
何娟
王磊
王世平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202110993058.0A priority Critical patent/CN113603747B/zh
Publication of CN113603747A publication Critical patent/CN113603747A/zh
Application granted granted Critical
Publication of CN113603747B publication Critical patent/CN113603747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了由Pri‑miRNA编码的多肽在提高葡萄抗寒性能中的应用,属于分子生物技术领域。由Pri‑miRNA编码的多肽包括多肽vvi‑miPEP172b、vvi‑miPEP3635和vvi‑miPEP3633a,氨基酸序列分别如SEQ ID No.1、SEQ ID No.2和SEQ ID No.3所示,可分别由pri‑miR172b、pri‑miR3635和pri‑miR3633a编码。本发明首次鉴定得到三个由pri‑miRNA编码的多肽vvi‑miPEP172b、vvi‑miPEP3633a和vvi‑miPEP3635,不但可以提高自身miRNA的表达水平,还可以提高葡萄的抗寒能力,在葡萄栽培实践中改善葡萄的抗寒能力具有广泛的应用前景。

Description

由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用
技术领域
本发明属于分子生物技术领域,具体涉及由microRNA的初级转录本Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用。
背景技术
葡萄是起源最古老的植物之一,我国葡萄栽培历史悠久,总产量位居世界第一位,面积居第二位,鲜食葡萄产量约占世界总产量一半,葡萄产业对我国农民增收、国民经济增长具有重要保障作用。在农业生产中,冷害和冻害是威胁粮食安全的自然灾害之一,在我国葡萄冷害和冻害主要受早春季节“倒春寒”的影响,“倒春寒”是指在早春季节气温回升,植物开始萌芽乃至新叶展开后,地表温度骤降甚至达到0℃以下的现象。当葡萄遭遇“倒春寒”后,容易出现冻芽、冻花、冻果等现象,树势受损,造成果园严重减产。因此,如何减缓这一现象成为葡萄生产中的急迫问题。
通常将氨基酸残疾数目小于100的一类蛋白质称为小肽。目前,在生物体内已经发现了多种与植物激素或者信号分子有相似功能的小肽,它们参与植物生长、发育和环境适应等多个生物学过程。在植物中,小肽通常由蛋白质前体加工而来,或者直接由基因组中的基因编码。近年来发现一类由MIR基因转录的microRNA初级转录本(pre-miRNA)可以编码多肽,叫做miPEP。MiPEP可以正向调控自身MIR的转录,一方面促使miPEP的积累,另一方面提高自身miRNA的表达。在此之前,发明人团队发现葡萄miR171d的初级转录本pri-miR171d产生一个多肽Vvi-miPEP171d1可以促进葡萄组培苗不定根的形成,但关于pri-miRNA编码的多肽在植物遭受冷害时的作用尚未见报道。
发明内容
鉴于葡萄生产上的需求,本发明的目的在于提供由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用,包括多肽vvi-miPEP172b、多肽vvi-miPEP3635和多肽vvi-miPEP3633a,氨基酸序列分别如SEQ ID No.1、SEQ ID No.2和SEQ ID No.3所示。
优选地,多肽vvi-miPEP172b、多肽vvi-miPEP3635和多肽vvi-miPEP3633a分别由pri-miR172b、pri-miR3635和pri-miR3633a编码;其中,pri-miR172b、pri-miR3635和 pri-miR3633a的核苷酸全序列分别如SEQ ID No.7、SEQ ID No.8和SEQ ID No.9所示。
优选地,编码多肽vvi-miPEP172b的核苷酸序列如SEQ ID No.4所示。
优选地,编码多肽vvi-miPEP3635的核苷酸序列如SEQ ID No.5所示。
优选地,编码多肽vvi-miPEP3633a的核苷酸序列如SEQ ID No.6所示。
优选地,分别将多肽vvi-miPEP172b、vvi-miPEP3633a和vvi-miPEP3635配制成水溶液并添加到葡萄的组培苗中。
本发明还提供了一种植物表达载体,包含编码多肽vvi-miPEP172b、vvi-miPEP3633a和 vvi-miPEP3635任一所述核苷酸序列。
本发明还提供了一种农杆菌工程菌,含有上述任一所述植物表达载体。
本发明还提供了所述农杆菌工程菌在提高葡萄抗寒性能中的应用。
优选地,所述农杆菌工程菌侵染葡萄。
本发明首次鉴定得到3个分别由pri-miRNA编码的多肽(分别命名为vvi-miPEP172b、 vvi-miPEP3633a和vvi-miPEP3635),不但可以提高自身miRNA的表达水平,还可以提高葡萄的抗寒能力,在葡萄栽培实践中改善葡萄的抗寒能力具有广泛的应用前景。
参考以下详细说明更易于理解本发明的上述以及其他特征、方面和优点。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更显著:
图1:A为葡萄组培苗,B为葡萄组培苗在4℃条件下处理不同时间Fv/Fm的变化值,C为葡萄组培苗在4℃条件下处理不同时间的叶绿素荧成像。
图2为冷胁迫相关的vvi-MIRNA基因的表达量分析。
图3为vvi-MIR172b基因中有活性的开放阅读框分析。
图4为vvi-MIR3635基因中有活性的开放阅读框分析。
图5为vvi-MIR3633a基因中有活性的开放阅读框分析。
图6为冷胁迫下部分基因在葡萄中的表达变化。
图7为冷胁迫下vvi-miR172、vvi-miR3633和vvi-miR3635的靶基因的表达量变化。
图8为vvi-miPEP处理后4℃条件下葡萄组培苗叶片的光能转换效率分析。
图9为miPEP处理下组培苗中SOD酶活性变化及各基因表达量的变化。
具体实施方式
为了便于对本发明的理解,为了对本发明的由来、作用机理以及用途更加深入全面的理解。下面将参照相关附图对本发明进行更全面的描述。但是,本发明可以有多种不同的方法来实现,并不仅仅限于文中所描述的实施例。相反地,提供本实施例的目的是使对本发明内容的理解更加透彻和全面。
除非文中另有定义,本文所使用的所有专业术语与本发明相关技术领域技术人员通常理解的含义是相同的。在进一步描述本发明具体实施方式之前,应理解本发明的保护范围不局限于文中描述的特定实施例。还应当理解,在本发明的说明书中所使用的术语只是为了描述具体的实施例,不是旨在于限制本发明,除非文中特别明确指出,单数形式“一个”、“一”和“这个”包括复数形式。
以下实施例中分别编码多肽vvi-miPEP172b、vvi-miPEP3633a和vvi-miPEP3635的核苷酸序列SEQ ID No.4(atgacaagctcctccctatcaagacaaacaaagccctacacttctcactaa)、SEQ ID No.5 (atgtttctatattttatttttagacaattggtatga)和SEQ ID No.6 (atgactcgtggaaactggaaagctggcatggtgggcccaatgttgtga)可以通过人工合成得到。
氨基酸序列分别如SEQ ID No.1(MTSSSLSRQTKPYTSH*)、SEQ ID No.2(MFLYFIFRQLV*)和SEQ ID No.3(MTRGNWKAGMVGPML*)所示的多肽vvi-miPEP172b、 vvi-miPEP3633a和vvi-miPEP3635可以通过人工合成得到,且与葡萄自身体内合成的多肽具有一致的生物学活性。
pri-miR172b、pri-miR3635和pri-miR3633a的核苷酸序列分别如SEQ ID No.7、SEQ ID No.8和SEQ ID No.9所示,具体如下:
pri-miR172b(SEQ ID No.7):
gtatgattctcattcaagttcctagagaagctccaagtttcaaaaatccagacaaaacacttggaataattcccaaaattataaactattccat caatgacaagctcctccctatcaagacaaacaaagccctacacttctcactaaccccatgagcttaaatttagaaaccctagccagctaccagac acagctacaataaaaatatgctcatctatcacatgctcacaacatagcataaaacataaaagctagctcagatcctctcacctttcttctcaattcatt gatcttggggcctcggcatctttctcctcataccataacctgttcaatttcctgcaaatgaagaataaaaacaacaaccaatcgaagatttaaagtga agcataagaaaaagaaaaagaaaaaggttgaagattgaaaggagttcacctcatcaattcaaatgctcataagcttcaaaaactagtgagtttctg ggtttcagtatagtcatctattgccgatgcagcatcatcaagattctcaaccccaaaacttgaggcagcgaagatggcatcgctgccgcgccggg ctttcgcatgtgaatcttgatgatgctacacctgcaaacaacaactcttaattcatccatgcatgataccaaggtctacacttgttgcagaacaaattt aaaggaaaaatgtaatttaaagaactcaagatttaattccccaaaaaaagaacggtgaagggttaaaacgaaaaaggtgagaagagggccaac actgagatttatgtacgtcttcaacccatggccacgacggcaaccagcatgggatgacgtggcatcatacgaatggttaaaatagccacaggta gaaaccctaatcagggaatatacagtactgcagaacataaattcgtgacccaaaaa;
pri-miR3635(SEQ ID No.8):
atcgatatttctctgaaatagccaaaatttttcaacatttcaatccttgggtgtcatataaatctagctttcaagaggactgacttcgtatattttgc ttcttttcagtccgtggggtgctttgtctggtcaagggcacctagagttgttctcttacattaaaggcctaccctgcttcaaatccaatcagtagatgttt tcttcatccttgatgaactcgggttaatacaatgccctattccattcatatttcttggagcaaatacttcacttttatgtaggtttttcagacttcattagcaa atgtgagtcacctaggtactaggtagtaaaaatgagagtcgggagttatagtggagggataaaagcgttgcctttgtattgccacaacatttattgg taatcaaagatgatattttagatgaattagtatgtagactaaaactttttcttggtgcatgtttctatattttatttttagacaattggtatgaaccaataaca agaaggcatgtgtggggcataatagagaatgcaaagaaagggttgctattgagtgtgatattgggacaatgacataccatttttttgcattgtctatt atgtcccacacatgcctccttgttattggatccatactaattgtctagaaataaaaagaaactccatatgaatcataaaacaaataaattaaagaaac atgaaccaagaaaagtctctagtctacataccaattaatctaaaatgacaaactttggatcaccaataagtgttgtagcaacattaagataacatttca ttcctccactataactcccaactctcatttttgctacttgggtgagtctcacttgtgctaataaattctgagaaatctgcaaagaagtaaagcatttgac ccaatagatatggatagaatagagtcattgt;
pri-miR3633a(SEQ ID No.9):
atacggaactgcggaaaccatgggcgaaggtggtttctggtttggagaaagggaaaaacccaagagtgaagtggtgaatataaaaagg ggaacgggggcaccaccgccgcctcgtgctttgagccagacgcttagggttcatgagaaatgggagtggtcctcccggaggcccatgggaat gggtggctgggatctaatgtttcttcacatcatgtagatgtgtcaaaaagctgagttggttcccatgccatccattcctatcgttcccgggattttctcc cttttctccttttcccatttcaaaaaaattatttatttggttaaattcttgattttgaatgactcgtggaaactggaaagctggcatggtgggcccaatgtt gtgagtggttttgaaaaaccatgggcgaaacaaaggtggttttagaaaaccacctcgtctgctcccatataacgagtgagagagaatgggtggta ctttaggttttggctgcaggtttgaaatgggagatgaatatttcgaaagcaatagaatggatggtaggagagaactcctcttatatatttcttcatcttc tccgccggagatgtggaagtgcagttggttcctataccacccattccctacggttttcgaaattttctcccttttctcttggtgctcgctgttcacagctt ccaatttctcttttcctttttttttttttttaatctaattttttcatttgattttgttaggtgttgaagttatggagattttttttaaatttatttttttgttgtttctgaaaa gaattttgacatctctgatctaatacgaatgacgcaagtgattttttatttttattttcatgtcaaagatataaactcctattaaaaaaaggaaaaaaaaaa accaattttagattggtttcatccgtcgaacgcacaccccttcaggctttgacacaaaata。
下文提供进一步的描述以便于理解本发明。
实施例1葡萄遭受冷胁迫后的生理变化
(1)“无核白”葡萄组培苗的扩繁
将”无核白”无菌苗在超净工作台中切成单芽茎段,然后将单芽茎段插到生根培养基中 (MS基础培养基+30g/L蔗糖+250mg/L的IAA+7g/L,pH5.8),置于25℃,光照强度为1500–2000Lx,光周期为16h,光照/8h黑暗的条件下培养约30天。用于实验的组培苗状态如图1A所示。
(2)低温胁迫下叶绿素荧光参数测定
叶绿素荧光参数是一组用于描述植物光合作用机理和光合生理状况的变量或者常数值。 Fv/Fm是PSⅡ最大光化学量子产量,反映PSⅡ反应中心内的光能转换效率。非胁迫条件下 Fv/Fm值变化极小,而胁迫条件下该参数值明显降低,值越低,表明植物受到的胁迫越严重。先将培养一个月的”无核白”葡萄组培苗放置于4℃条件下,定时取样,测定不同时间段内叶片的Fv/Fm值并进行拍照,结果如图1所示。可以看出,在0h时,组培苗叶片的Fv/Fm值约为0.73,说明葡萄组培苗生长状态良好。随着在4℃环境下放置时间的延长,Fv/Fm的值逐渐减小,冷处理12h后,Fv/Fm明显降低,说明冷处理12h后,葡萄组培苗的叶片明显受到损伤。在冷处理72h后,葡萄叶片的荧光很弱,Fv/Fm值约为0.4,表明葡萄叶片受到严重损伤。
实施例2MiRNA在葡萄冷胁迫下表达分析
采用CTAB法提取4℃处理不同时间的”无核白”组培苗叶片总RNA,利用逆转录试剂盒将RNA反转成的cDNA为模板,vvi-U6作为内参,qRT-PCR分析不同miRNA的表达趋势。不同的vvi-MIRNA基因,冷胁迫下表达量的变化不同,vvi-MIR408与vvi-miR393家族的两个成员vvi-MIR393a和vvi-MIR393b在冷胁迫下变化不明显,vvi-MIR162和vvi-MIR3636的表达量降低,而vvi-MIR3635的表达量升高;同一家族的不同成员在冷处理条件下表达量的变化也不同,如同为vvi-miR164家族,vvi-MIR164d的表达量随着冷处理时间的延长而增加,而vvi-MIR164a和vvi-MIR162c的表达量是先降低后恢复;vvi-miR172家族成vvi-MIR172b 的表达量在冷处理后期升高,而vvi-MIR172a、vvi-MIR172c和vvi-MIR172d的表达量是先降低而后升高,结果如图2所示。
实施例3Pri-miRNA编码的小肽分析
MiPEP通常由miRNA前提上游区域编码,并且可以特异性地提高自身miRNA的表达水平,根据这一特性分析vvi-MIR172b、vvi-MIR3633a和vvi-MIR3635前提序列上游500bp内的ORF,并且将这些ORF采用永远重组的方法构建到表达载体后转化农杆菌,在葡萄叶片中瞬时表达,通过检测响应miRNA的表达水平确定潜在的miPEP。
(1)vvi-miPEP172b的鉴定
选取vvi-miR172b前体上游500bp的序列,对其进行3种读码框分析,具体的序列如下 (序列可以参考葡萄基因组
https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Vvinifera,Chr13: 6180870...6181488):
5'-gtatgattctcattcaagttcctagagaagctccaagtttcaaaaatccagacaaaacacttggaataattcccaaaattataaactattcc atca
Figure BDA0003233047920000051
ccccatgagcttaaatttagaaaccctagccagctac cagacacagctacaataaaaatatgctcatctatcacatgctcacaacatagcataaaacataaaagctagctcagatcctctcacctttcttctcaa ttcattgatcttggggcctcggcatctttctcctcataccataacctgttcaatttcctgcaaatgaagaataaaaacaacaaccaatcgaagatttaa agtgaagcataagaaaaagaaaaagaaaaaggttgaagattgaaaggagttcacctcatcaattcaaatgctcataagcttcaaaaactagtgag tttctgggtttcagtatagtcatctattgccgatgcagcatcatcaagattctcaaccccaaaacttgaggcagcgaagatggcatcgctgccgcgc cgggctttcgcatgtgaatcttgatgatgctacacctgcaaacaa-3'。
上述序列中加下划线为本实施例选用的核苷酸序列SEQ ID No.4,可以编码多肽vvi-miPEP172b如SEQ ID No.1所示的氨基酸序列。
本实施例在vvi-pre-miR172b上游500bp范围内存在6个完整的开放阅读框,这些开放阅读框可能编码的氨基酸数量从7-50个不等,并且小肽序列各异。分别构建这6个短的开放阅读框的过表达载体,利用农杆菌介导法使它们在葡萄组培苗中瞬时过表达,然后检测 vvi-MIR172b基因的表达量。通过qRT-PCR分析可以看出,只有第二个开放阅读框处理组中 vvi-MIR172b的表达量明显比对照组中的表达量高,而其他5个处理组中的表达量与对照组相比变化不明显,结果表明第二个短的开放阅读框编码的多肽具有生物活性,将其命名为 vvi-miPEP172b,结果如图3所示。
(2)vvi-miPEP3635的鉴定
对于vvi-miR3635,对其前体上游500bp的序列进行3种读码框分析。具体的序列如下(序列可以参考葡萄基因组https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Vvinifera, Chr18:27416805...27417475):
5'-atcgatatttctctgaaatagccaaaatttttcaacatttcaatccttgggtgtcatataaatctagctttcaagaggactgacttcgtatattt tgcttcttttcagtccgtggggtgctttgtctggtcaagggcacctagagttgttctcttacattaaaggcctaccctgcttcaaatccaatcagtagat gttttcttcatccttgatgaactcgggttaatacaatgccctattccattcatatttcttggagcaaatacttcacttttatgtaggtttttcagacttcattag caaatgtgagtcacctaggtactaggtagtaaaaatgagagtcgggagttatagtggagggataaaagcgttgcctttgtattgccacaacatttat tggtaatocaaagatgatattttagatgaattagtatgtagactaaaactttttcttggtgc
Figure BDA0003233047920000061
ac caataacaagaaggcatgtgtggggcataatagagaatgcaaagaaagggttgctattgagtgtgatattgggacaatgacataccatttttttgc attgtctattatgtcccacacatgcctccttgttatt-3'。
上述序列中加下划线为本实施例选用的核苷酸序列SEQ ID No.5,可以编码多肽vvi-miPEP3633a如SEQ ID No.2所示的氨基酸序列。
本实施例在vvi-pre-miR3635上游500bp范围内有4个完整的开放阅读框,这些阅读框可能编码的氨基酸个数分别是10、16、22和11,并且氨基酸序列各不相同。分别构建这4个短的阅读框的过表达载体,利用农杆菌介导法使它们在葡萄组培苗中瞬时过表达,然后检测 vvi-MIR3635基因的表达量。通过qRT-PCR分析可以看出,第四个开放阅读框处理组中vvi-MIR3635的表达量明显比对照组中的表达量高,而其他3个处理组中的表达量与对照组相比没有明显变化。结果表明第四个短的开放阅读框编码的小肽具有生物活性,将其命名为 vvi-miPEP3635,结果如图4所示。
(3)vvi-miPEP3633a的鉴定
对vvi-miR3633a其前体上游500bp的序列进行3种读码框分析。具体的序列如下(序列可以参考葡萄基因组https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Vvinifera, Chr17:5521407...5522062):
5'-atacggaactgcggaaaccatgggcgaaggtggtttctggtttggagaaagggaaaaacccaagagtgaagtggtgaatataaaaa ggggaacgggggcaccaccgccgcctcgtgctttgagccagacgcttagggttcatgagaaatgggagtggtcctcccggaggcccatggg aatgggtggctgggatctaatgtttcttcacatcatgtagatgtgtcaaaaagctgagttggttcccatgccatccattcctatcgttcccgggattttc tcccttttctccttttcccatttcaaaaaaattatttatttggttaaattcttgattttga
Figure BDA0003233047920000071
Figure BDA0003233047920000072
gtggttttgaaaaaccatgggcgaaacaaaggtggttttagaaaaccacctcgtctgctcccatataacgagtgagagagaatgg gtggtactttaggttttggctgcaggtttgaaatgggagatgaatatttcgaaagcaatagaatggatggtaggagagaactcctcttatatatttcttcatcttctccgccggagatgtggaagtgcagttggttcctataccacccattccctacggttttcgaaattttctcccttttc-3'。
上述序列中加下划线为本实施例选用的核苷酸序列SEQ ID No.6,可以编码多肽vvi-miPEP3635如SEQ ID No.3所示的氨基酸序列。
本实施例在vvi-pre-miR3633a上游500bp范围内有6个完整的开放阅读框,它们可能编码的氨基酸个数不等,氨基酸序列各异。分别构建这6个短的阅读框的过表达载体,利用农杆菌介导法使它们在葡萄组培苗中瞬时过表达,然后检测vvi-MIR3633a基因的表达量。通过 qRT-PCR分析可以看出,对照组相比,第五个开放阅读框处理组中vvi-MIR3633a的表达量明显升高,而其他5个处理组中的表达量变化不明显,结果表明第五个短的开放阅读框编码的小肽具有生物活性,将其命名为vvi-miPEP3633a,结果如图5所示。
实施例4葡萄抗寒标记基因筛选
在葡萄基因组中选取一些与冷胁迫相关的功能基因,通过qRT-PCR分析它们在冷胁迫条件下表达量的变化。从分析结果可以看出,在葡萄中,VvPIP2基因和VvMAPK5基因的表达量没有变化,表明VvPIP2和VvMAPK5对冷胁迫没有响应;VvMAPK3、VvNAC2、VvWRKY40 和VvWRKY70的表达量在冷胁迫条件下表达量升高,其中VvNAC2和VvWRKY40的表达变化最明显,随着冷处理时间的延长表达量升高,用VvNAC2和VvWRKY40的表达量的变化来检测葡萄组培苗的耐冷能力,结果如图6所示。
实施例5miRNA靶基因筛选
miRNA通过互补配对原则与靶mRNA的靶位点结合,切割靶mRNA或抑制靶mRNA翻译以实现对靶基因表达的调控来发挥调控作用。为进一步分析vvi-MIR172b、vvi-MIR3633a和vvi-MIR3635在葡萄低温应答中的调控作用,利用psRNAtarget (http://plantgrn.noble.org/psRNATarget/)预测这三个基因对应的靶基因。从分析结果可知vvi-miR172家族的靶基因为AP2类转录因子家族,研究发现AP2转录因子是非生物胁迫与激素互作的桥梁;vvi-miR3633的靶基因为网格蛋白重链的相关基因、抗病基因、赤霉素氧化酶基因(GA2OX)、含有指环结构和PHD结构的基因等;vvi-miR3635的靶基因为VvABC-C3、 VvABC-A2、胼胝质合成酶基因、核苷运载体基因、磷酸酯酶D基因等。利用qRT-PCR分析这些预测靶基因在冷胁迫下的表达模式,结果可以看出部分预测靶基因的表达量与对应的 vvi-MIRNA的表达量呈负相关关系,如GSVIVT01020854001(callose synthase 7)、GSVIVT01008042001(VvABC-A2)、GSVIVT01003665001(equilibrative nucleotidetransporters) 与vvi-MIR3635的表达量呈负相关关系,GSVIVT01022081001(VvAP2)与vvi-MIR172b的表达量呈负相关关系;而有些靶基因的表达量变化不大或者与对应vvi-MIRNA基因的表达量呈正相关关系,如vvi-MIR3633a的靶基因GSVIVT01024708001和vvi-MIR172b的靶基因 GSVIVT01025548001(VvRAP2-7-1)在冷胁迫下的表达量基本没有变化,而vvi-MIR172b的另一个预测靶基因GSVIVT01025100001(VvRAP2-7-2)的表达量升高,推测它们可能还受其他vvi-miRNA的调控(图7)。
实施例6miPEP提高葡萄的抗寒能力
通过农杆菌介导的瞬时表达初步分析出Vvi-pri-miR172b、Vvi-pri-miR3633a和Vvi-pri-miR3635可能编码具有生物活性的小肽。为验证这些小肽是否在冷胁迫中发挥作用,体外合成有生物活性的vvi-miPEP172b、vvi-miPEP3633a和vvi-miPEP3635,配制成1mg/ml 的溶液后,添加到MS培养基中,使终浓度为0.4μM,用它们分别培养葡萄组培苗。接种两周后,再将组培苗转入新的含有小肽的培养基中继续培养,目的是在组培苗培养期间添加一次小肽。组培苗在含有小肽的培养基中共培养25d后,转入4℃培养箱中进行冷胁迫处理,定时取样,并测定叶片的Fv/Fm值和拍照。从结果可以看出,在冷胁迫8h以后,三种vvi-miPEP 处理组中的葡萄组培苗叶片的Fv/Fm的值高于对照组,说明三种处理组中的葡萄叶片的损伤程度小于对照组,结果表明vvi-miPEP172b,vvi-miPEP3633a和vvi-miPEP3635都能够提高葡萄组培苗的耐冷能力。为进一步验证这三种小肽在提高葡萄耐冷性中的作用,将对与冷胁迫相关的一些生理指标和响应冷胁迫的基因的表达量进行测定和分析,结果如图8所示。
实施例7miPEP处理下组培苗的SOD酶活性及个基因的变化
通过检测添加的小肽的对应基因及其靶基因的表达量,可以看出vvi-miPEP的添加增加了对应基因的表达量,vvi-miR172的靶基因VvRAP2-7-2(GSVIVT01025100001)的表达量随冷胁迫时间的增加表达量增加,且vvi-miPEP172b处理组的表达量高于对照组;vvi-miR3633a的靶基因VvGA2OX(GSVIVT01000689001)表达量的变化趋势与VvRAP2-7-2 的相似,随着冷胁迫时间的增加表达量升高,且处理组高于对照组;vvi-miPEP3635的靶基因VvABC-C3(GSVIVT01014629001)的表达量在冷胁迫条件下降低,并且vvi-miPEP3635处理组中的表达量低于对照组,说明体外添加vvi-miPEP能够像激素一样发挥作用,结果如图 9A所示。
超氧化物歧化酶(Superoxide Dismutase,SOD)是生物体内存在的一种抗氧化金属酶,它能催化超氧阴离子自由基歧化生成氧和过氧化氢,在机体氧化与抗氧化平衡中起到至关重要的作用。对植物进行低温处理后,SOD的活性也随之发生变化,研究认为SOD的活性与植物抗寒能力的强弱有很大关系。有报道发现用不同的材料在不同时期进行冷处理,植物体内的SOD活性普遍升高,而抗性越强升高越多;也有研究发现低温增加植物体内活性氧含量,降低SOD活性,低温下植物SOD活性下降率与植物品种本身抗旱性强弱呈负相关关系。用磷酸盐缓冲液提取4℃冷胁迫处理的各组组培苗叶片中的总酶,测定SOD活性,从分析结果可以看出,随着冷处理时间的延长,对照组(CK)中的SOD活性是先降低后稍有升高,vvi-miPEP172b处理组中的SOD活性稍有降低,降低幅度小于对照组,并且整个冷胁迫处理过程高于对照组;vvi-miPEP3633a和vvi-miPEP3635处理组中的SOD活性随着冷胁迫时间的延长是先升高后恢复,总体SOD活性高于对照组,可以看出用vvi-miPEP172b、vvi-miPEP3633a 和vvi-miPEP3635培养葡萄组培苗,提高了组培苗的耐冷能力,结果如图9B所示。
提取各处理组组培苗叶片的RNA,用qRT-PCR分析不同基因表达量的变化,从结果可以看出,冷胁迫下VvNAC2和VvWRKY40的表达量升高;vvi-miPEP172b处理组中VvNAC2 的表达量是先升高,稍有降低后又升高,在冷处理8h时与对照组相比没有明显差异,其他四个时期的表达量明显高于对照组,VvWRKY40的表达量在冷处理下表达量升高且明显高于对照组;vvi-miPEP3633a和vvi-miPEP3635处理组中,VvNAC2和VvWRKY40的表达量都是先降低后升高,并且在vvi-miPEP3633a处理组中,VvNAC2的表达量在冷胁迫0h、12h和 24h时明显高于对照组,VvWRKY40的表达量在冷胁迫0h、4h和24h时明显高于对照组; vvi-miPEP3635处理组中,VvNAC2和VvWRKY40的表达量在冷胁迫24h时稍低于对照组,其他时期都高于对照组。因为NAC转录因子和WRKY40转录因子高表达能够增加植物的耐低温能力,推测vvi-miPEP172b、vvi-miPEP3633a和vvi-miPEP3635能够提高葡萄组培苗的耐冷能力,结果如图9C所示。
序列表
<110> 上海交通大学
<120> 由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用
<141> 2021-08-27
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 16
<212> PRT
<213> 未知()
<400> 1
Met Thr Ser Ser Ser Leu Ser Arg Gln Thr Lys Pro Tyr Thr Ser His
1 5 10 15
<210> 2
<211> 11
<212> PRT
<213> 未知()
<400> 2
Met Phe Leu Tyr Phe Ile Phe Arg Gln Leu Val
1 5 10
<210> 3
<211> 15
<212> PRT
<213> 未知()
<400> 3
Met Thr Arg Gly Asn Trp Lys Ala Gly Met Val Gly Pro Met Leu
1 5 10 15
<210> 4
<211> 51
<212> DNA/RNA
<213> 未知()
<400> 4
atgacaagct cctccctatc aagacaaaca aagccctaca cttctcacta a 51
<210> 5
<211> 36
<212> DNA/RNA
<213> 未知()
<400> 5
atgtttctat attttatttt tagacaattg gtatga 36
<210> 6
<211> 48
<212> DNA/RNA
<213> 未知()
<400> 6
atgactcgtg gaaactggaa agctggcatg gtgggcccaa tgttgtga 48
<210> 7
<211> 919
<212> DNA
<213> 葡萄()
<400> 7
gtatgattct cattcaagtt cctagagaag ctccaagttt caaaaatcca gacaaaacac 60
ttggaataat tcccaaaatt ataaactatt ccatcaatga caagctcctc cctatcaaga 120
caaacaaagc cctacacttc tcactaaccc catgagctta aatttagaaa ccctagccag 180
ctaccagaca cagctacaat aaaaatatgc tcatctatca catgctcaca acatagcata 240
aaacataaaa gctagctcag atcctctcac ctttcttctc aattcattga tcttggggcc 300
tcggcatctt tctcctcata ccataacctg ttcaatttcc tgcaaatgaa gaataaaaac 360
aacaaccaat cgaagattta aagtgaagca taagaaaaag aaaaagaaaa aggttgaaga 420
ttgaaaggag ttcacctcat caattcaaat gctcataagc ttcaaaaact agtgagtttc 480
tgggtttcag tatagtcatc tattgccgat gcagcatcat caagattctc aaccccaaaa 540
cttgaggcag cgaagatggc atcgctgccg cgccgggctt tcgcatgtga atcttgatga 600
tgctacacct gcaaacaaca actcttaatt catccatgca tgataccaag gtctacactt 660
gttgcagaac aaatttaaag gaaaaatgta atttaaagaa ctcaagattt aattccccaa 720
aaaaagaacg gtgaagggtt aaaacgaaaa aggtgagaag agggccaaca ctgagattta 780
tgtacgtctt caacccatgg ccacgacggc aaccagcatg ggatgacgtg gcatcatacg 840
aatggttaaa atagccacag gtagaaaccc taatcaggga atatacagta ctgcagaaca 900
taaattcgtg acccaaaaa 919
<210> 8
<211> 930
<212> DNA
<213> 葡萄()
<400> 8
atcgatattt ctctgaaata gccaaaattt ttcaacattt caatccttgg gtgtcatata 60
aatctagctt tcaagaggac tgacttcgta tattttgctt cttttcagtc cgtggggtgc 120
tttgtctggt caagggcacc tagagttgtt ctcttacatt aaaggcctac cctgcttcaa 180
atccaatcag tagatgtttt cttcatcctt gatgaactcg ggttaataca atgccctatt 240
ccattcatat ttcttggagc aaatacttca cttttatgta ggtttttcag acttcattag 300
caaatgtgag tcacctaggt actaggtagt aaaaatgaga gtcgggagtt atagtggagg 360
gataaaagcg ttgcctttgt attgccacaa catttattgg taatcaaaga tgatatttta 420
gatgaattag tatgtagact aaaacttttt cttggtgcat gtttctatat tttattttta 480
gacaattggt atgaaccaat aacaagaagg catgtgtggg gcataataga gaatgcaaag 540
aaagggttgc tattgagtgt gatattggga caatgacata ccattttttt gcattgtcta 600
ttatgtccca cacatgcctc cttgttattg gatccatact aattgtctag aaataaaaag 660
aaactccata tgaatcataa aacaaataaa ttaaagaaac atgaaccaag aaaagtctct 720
agtctacata ccaattaatc taaaatgaca aactttggat caccaataag tgttgtagca 780
acattaagat aacatttcat tcctccacta taactcccaa ctctcatttt tgctacttgg 840
gtgagtctca cttgtgctaa taaattctga gaaatctgca aagaagtaaa gcatttgacc 900
caatagatat ggatagaata gagtcattgt 930
<210> 9
<211> 955
<212> DNA
<213> 葡萄()
<400> 9
atacggaact gcggaaacca tgggcgaagg tggtttctgg tttggagaaa gggaaaaacc 60
caagagtgaa gtggtgaata taaaaagggg aacgggggca ccaccgccgc ctcgtgcttt 120
gagccagacg cttagggttc atgagaaatg ggagtggtcc tcccggaggc ccatgggaat 180
gggtggctgg gatctaatgt ttcttcacat catgtagatg tgtcaaaaag ctgagttggt 240
tcccatgcca tccattccta tcgttcccgg gattttctcc cttttctcct tttcccattt 300
caaaaaaatt atttatttgg ttaaattctt gattttgaat gactcgtgga aactggaaag 360
ctggcatggt gggcccaatg ttgtgagtgg ttttgaaaaa ccatgggcga aacaaaggtg 420
gttttagaaa accacctcgt ctgctcccat ataacgagtg agagagaatg ggtggtactt 480
taggttttgg ctgcaggttt gaaatgggag atgaatattt cgaaagcaat agaatggatg 540
gtaggagaga actcctctta tatatttctt catcttctcc gccggagatg tggaagtgca 600
gttggttcct ataccaccca ttccctacgg ttttcgaaat tttctccctt ttctcttggt 660
gctcgctgtt cacagcttcc aatttctctt ttcctttttt ttttttttta atctaatttt 720
ttcatttgat tttgttaggt gttgaagtta tggagatttt ttttaaattt atttttttgt 780
tgtttctgaa aagaattttg acatctctga tctaatacga atgacgcaag tgatttttta 840
tttttatttt catgtcaaag atataaactc ctattaaaaa aaggaaaaaa aaaaaccaat 900
tttagattgg tttcatccgt cgaacgcaca ccccttcagg ctttgacaca aaata 955

Claims (8)

1.由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用,包括多肽vvi-miPEP172b、vvi-miPEP3635和vvi-miPEP3633a,氨基酸序列分别如SEQ ID No.1、SEQ ID No.2和SEQ IDNo.3所示。
2.根据权利要求1所述的应用,其特征在于,多肽vvi-miPEP172b、vvi-miPEP3635和vvi-miPEP3633a分别由pri-miR172b、pri-miR3635和pri-miR3633a编码。
3.根据权利要求1所述的应用,其特征在于,编码多肽vvi-miPEP172b的核苷酸序列如SEQ ID No.4所示,编码多肽vvi-miPEP3635的核苷酸序列如SEQ ID No.5所示,编码多肽vvi-miPEP3633a的核苷酸序列如SEQ ID No.6所示。
4.根据权利要求1至3任一项所述的应用,其特征在于,分别将多肽vvi-miPEP172b、vvi-miPEP3633a和vvi-miPEP3635配制成水溶液后添加到葡萄的组培苗中。
5.一种植物表达载体,其特征在于,包含编码多肽vvi-miPEP172b、vvi-miPEP3633a和vvi-miPEP3635任一如权利要求3所述的核苷酸序列。
6.一种农杆菌工程菌,其特征在于,含有权利要求5所述的植物表达载体。
7.权利要求6所述的农杆菌工程菌在提高葡萄抗寒性能中的应用。
8.根据权利要求7所述的应用,其特征在于,所述农杆菌工程菌侵染葡萄。
CN202110993058.0A 2021-08-27 2021-08-27 由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用 Active CN113603747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110993058.0A CN113603747B (zh) 2021-08-27 2021-08-27 由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110993058.0A CN113603747B (zh) 2021-08-27 2021-08-27 由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用

Publications (2)

Publication Number Publication Date
CN113603747A true CN113603747A (zh) 2021-11-05
CN113603747B CN113603747B (zh) 2023-11-07

Family

ID=78342133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110993058.0A Active CN113603747B (zh) 2021-08-27 2021-08-27 由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用

Country Status (1)

Country Link
CN (1) CN113603747B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203611A (zh) * 2005-04-19 2008-06-18 巴斯福植物科学有限公司 控制基因表达的改良方法
CN101952443A (zh) * 2007-12-21 2011-01-19 纳幕尔杜邦公司 涉及编码miR827的基因的耐旱植物、以及相关的构建体和方法
WO2014064705A2 (en) * 2012-10-28 2014-05-01 A.B. Seeds Ltd. Transgenic plants exhibiting improved resistance to abiotic stress
US20160108411A1 (en) * 2014-10-14 2016-04-21 Clemson University Methods and compositions for transgenic plants with enhanced cold tolerance, ability to flower without vernalization requirement and impacted fertility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203611A (zh) * 2005-04-19 2008-06-18 巴斯福植物科学有限公司 控制基因表达的改良方法
CN101952443A (zh) * 2007-12-21 2011-01-19 纳幕尔杜邦公司 涉及编码miR827的基因的耐旱植物、以及相关的构建体和方法
WO2014064705A2 (en) * 2012-10-28 2014-05-01 A.B. Seeds Ltd. Transgenic plants exhibiting improved resistance to abiotic stress
US20160108411A1 (en) * 2014-10-14 2016-04-21 Clemson University Methods and compositions for transgenic plants with enhanced cold tolerance, ability to flower without vernalization requirement and impacted fertility

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASHISH PRASAD: "Noncoding but Coding: Pri-miRNA into the Action", CELL PRESS, vol. 26, no. 3, pages 204 - 206 *
MOUSAM KUMAR RAM: "Identification of miRNA, their targets and miPEPs in peanut (Arachis hypogaea L.)", COMPUTATIONAL BIOLOGY AND CHEMISTRY, vol. 83, pages 1 - 7 *

Also Published As

Publication number Publication date
CN113603747B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN107164347A (zh) 控制水稻茎秆粗度、分蘖数、穗粒数、千粒重和产量的理想株型基因npt1及其应用
CN110872598B (zh) 一种棉花抗旱相关基因GhDT1及其应用
CN109161550A (zh) 一种调控番茄果实抗坏血酸含量的SlbHLH59基因及应用方法
CN105063085B (zh) 甘蓝型油菜基因BnMPK3及其抗油菜菌核病的应用
CN103695438A (zh) 拟南芥MYB家族转录因子AtMYB17基因、编码序列及其应用
CN111909941B (zh) 一种百合转录因子基因LrWRKY-L1及应用
CN109628466A (zh) 一种紫花苜蓿抗旱耐盐基因MsCKX及其应用
CN111499706A (zh) 棉花锌指蛋白GhZFPH4及其编码基因和应用
Sun et al. The allene oxide synthase gene family in sugarcane and its involvement in disease resistance
CN115612695A (zh) GhGPX5和GhGPX13基因在提高植物盐胁迫耐受性中的应用
CN107828805A (zh) 水稻环氧类胡萝卜素双加氧酶OsNCED3基因编码序列及其应用
CN106636134A (zh) 玉米锌铁调控转运体ZmZIP2基因及其应用
CN106749580B (zh) 植物耐盐相关蛋白TaPUB15-D及其编码基因与应用
CN111303257B (zh) 植物种子含油量的正调控基因AtMIF1及其应用
CN107266544A (zh) 蛋白质SiNADP‑ME3及其编码基因在调控植物抗逆性中的应用
CN102449154B (zh) 植物中用于胁迫耐性的方法和组合物
CN110438134A (zh) 植物叶片卷曲相关蛋白OsRoc8及其编码基因与应用
CN108251435B (zh) 野生毛葡萄商-24抗病基因VqJAZ4及其应用
Zou Mining gene families in the castor bean genome
CN113603747B (zh) 由Pri-miRNA编码的多肽在提高葡萄抗寒性能中的应用
CN114369616B (zh) 番茄sisps基因在提高植物耐高温性中的应用
CN112724213B (zh) 甘薯花青苷合成和抗逆相关蛋白IbMYB4及其编码基因与应用
CN111499708B (zh) 葡萄VabHLH036基因在提高植物抗寒能力中的应用
CN107058341A (zh) 一种与棉纤维发育相关的wrky转录因子基因及其应用
CN104805093B (zh) 水稻基因OsLOL3在延缓植物叶片衰老和提高植物耐旱性中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant