CN113603384A - 一种超早强型无氟无碱液体速凝剂及其制备方法 - Google Patents

一种超早强型无氟无碱液体速凝剂及其制备方法 Download PDF

Info

Publication number
CN113603384A
CN113603384A CN202110916790.8A CN202110916790A CN113603384A CN 113603384 A CN113603384 A CN 113603384A CN 202110916790 A CN202110916790 A CN 202110916790A CN 113603384 A CN113603384 A CN 113603384A
Authority
CN
China
Prior art keywords
stirring
early
component
percent
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110916790.8A
Other languages
English (en)
Other versions
CN113603384B (zh
Inventor
赵明敏
田遥
滕文生
黄玉美
王玉乾
李茜茜
董树强
王龙飞
连彦丽
刘旭飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shijiazhuang Chang'an Yucai Building Materials Co ltd
Original Assignee
Shijiazhuang Chang'an Yucai Building Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shijiazhuang Chang'an Yucai Building Materials Co ltd filed Critical Shijiazhuang Chang'an Yucai Building Materials Co ltd
Priority to CN202110916790.8A priority Critical patent/CN113603384B/zh
Publication of CN113603384A publication Critical patent/CN113603384A/zh
Application granted granted Critical
Publication of CN113603384B publication Critical patent/CN113603384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/12Set accelerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种超早强型无氟无碱液体速凝剂及其制备方法,速凝剂是由下述原料制成的:硫酸铝、有机促溶剂、稳定剂、早强剂、pH调节剂、水。有机促溶剂是由A、B、C三种组分混合而成,A为一乙醇胺,二乙醇胺,三乙醇胺,B为N‑甲基二乙醇胺、N,N‑二甲基乙醇胺、N,N‑二甲基甲酰胺,C为二乙烯三胺、三乙烯四胺、四羟丙基乙二胺;稳定剂为超细海泡石、拟薄水铝石;pH调节剂为对甲苯磺酸、草酸、甲酸;早强剂为硫酸锂、硫酸镁、纳米硅溶胶、纳米铝溶胶。本发明的性能良好,制备工艺简单,无氟,无碱、无氯,同时满足各个速凝剂标准对无碱速凝剂的性能要求,6小时抗压强度远大于2.5MPa,1天抗压强度远大于15.0MPa,90天抗压强度保留率≥110%,稳定性超过9个月。

Description

一种超早强型无氟无碱液体速凝剂及其制备方法
技术领域
本发明涉及一种液体速凝剂,具体是一种超早强型无氟无碱液体速凝 剂,属于建筑材料技术领域。本发明还涉及所述液体速凝剂的制备方法, 具体是一种超早强型无氟无碱液体速凝剂的制备方法。
背景技术
喷射混凝土在我国基础设施建设和城市建设工程中起到越来越重要的 作用,用量呈不断增加趋势。特别是高速铁路、公路建设过程中隧道建设 工程越来越多,对喷射混凝土的性能提出了越来越高的要求。川藏铁路雅 安至林芝段约1011公里,先期段“两隧一桥”已于2020年底开工建设, 由于沿线地形地质和气候条件复杂,生态环境脆弱,建设里程长,桥隧比 例很高,工程难度极大,建设工期将超过10年。川藏铁路雅安至林芝段桥 隧总长965.74公里,桥隧比高达95.8%,特别是新建隧道72座,总长高 达851.48公里。隧道施工过程中混凝土喷射技术是开挖初期支护非常关键 的部分,其技术水平直接影响着隧道支护质量及施工安全。
速凝剂作为用于喷射混凝土的一种必不可少的外加剂,近年来得到了 快速发展,特别是无碱液体速凝剂,相比有碱液体速凝剂,具有对喷射混 凝土后期强度和耐久性影响较小等优势,为喷射混凝土材料的高性能化提 供了材料基准。针对川藏铁路等国家重大建设工程,为了保证隧道工程质 量,中国国家铁路集团有限公司,专门制定且发布了标准Q/CR 807-2020 《隧道喷射混凝土用液体无碱速凝剂》,且已于2021年3月31日开始实 施。相比GB/T 35159-2017《喷射混凝土用速凝剂》等其他速凝剂标准, 标准Q/CR 807-2020对无碱速凝剂提出了更高要求,首次对砂浆6小时抗 压强度,氟离子含量等指标提出了具体要求。
目前,无碱液体速凝剂产品大多采用工业级硫酸铝作为主要促凝组分, 普遍存在以下问题:(1)碱含量超标。由于硫酸铝溶解度较小,促凝组分 有限,为了提高速凝剂性能,或多或少会引入碱金属离子,容易造成碱含 量超标,甚至造成混凝土后期强度保证率不高;(2)稳定性较差。铝离子 在水中极易发生水解,特别是在低温下,硫酸铝容易析晶,造成速凝剂分 层或者沉淀,严重影响速凝剂的工程应用;(3)早期强度较低。市场上的 无碱液体速凝剂产品成分大多含有氟盐,或者含氟的酸,虽然氟离子促凝 效果好,但是含氟原材料对环境和人体健康不利,且极易造成砂浆早期 (6h~24h)抗压强度过低。这些速凝剂均难以满足Q/CR 807-2020《隧道 喷射混凝土用液体无碱速凝剂》的要求:碱含量≤1.0%,氟离子含量 ≤0.05%,砂浆6小时抗压强度≥1.0MPa,1天抗压强度≥10MPa。因此, 促凝效果好,早期强度(6h~24h)高,后期强度保证率也较高,稳定性好, 与水泥适应性好的无氟无氯无碱型液体速凝剂,成为未来无碱液体速凝剂 发展的必然趋势。
相关专利文献:CN110078403A公开了一种超早强无碱液体速凝剂及其 制备方法,该速凝剂的原料及各组分质量百分比为,硫酸铝32%~42%, 水化硅酸钙10%~20%,氟硅酸锂3%~5%,三异丙醇胺4%~8%,pH 调节剂1%~3%,悬浮剂1%~2%,余量为水,总量补足100%。
CN111333362A公开了一种低掺量高早强型无碱液体速凝剂及其制备方法, 无碱液体速凝剂是由下述原料制成的:改性硫酸铝50%~60%,氟铝络合 物溶液2%~4%,有机助溶剂3%~6%,pH调节剂1%~2%,无机稳定 剂0.5%~1.5%,粘度调节剂0.3%~0.5%,复合早强剂4%~6%,余 量为水。CN109437654A公开了一种增强型无碱液体速凝剂的制备方法,在 搅拌状态下,在底水中依次缓慢投入微米级氢氧化铝和无铁硫酸铝,持续搅拌;在保持搅拌状态下,缓慢加入无机酸,调节PH值为3.0~4.0;加 入后确保速凝剂体系稳定清澈,随后依次加入硅酸镁和丙烯酸钙,持续搅 拌;加入分散剂和早强剂,搅拌即得增强型无碱液体速凝剂。CN110451844A 公开了一种无碱液体速凝剂及其制备方法,涉及混凝土外加剂技术领域, 其技术方案要点是一种无碱液体速凝剂,以重量份数计,包括如下组分: 聚合硫酸铝45-55份、有机酸3-5份、无机酸0.5-1份、稳定剂2-4份、 早强剂1-2份、增稠剂1-2份以及水40-50份。
以上这些技术对于如何使超早强型无氟无碱液体速凝剂的性能良好, 同时满足Q/CR 807-2020和GB/T 35159-2017两个速凝剂标准对无碱速凝 剂的性能要求,6小时抗压强度、1天抗压强度高,并未给出具体的指导方 案。
发明内容
本发明所要解决的技术问题在于,提供一种超早强型无氟无碱液体速 凝剂,它的性能良好,制备工艺简单,无氟,无碱、无氯,同时满足Q/CR 807-2020和GB/T 35159-2017两个速凝剂标准对无碱速凝剂的性能要求, 稳定性好,6小时抗压强度、1天抗压强度高,6小时抗压强度可达2.5MPa 以上,1天抗压强度远大于15.0MPa,90天抗压强度保留率≥110%,。
为此,本发明所要解决的另一技术问题在于,提供一种上述超早强型 无氟无碱液体速凝剂的制备方法。
为解决上述技术问题,本发明采用的技术方案如下:
一种超早强型无氟无碱液体速凝剂,其技术方案在于它是由下述组分 及质量百分比的原料制成的:60%~65%硫酸铝,7%~10%有机促溶剂, 1%~2%稳定剂,1%~2%早强剂,0.5%~1%pH调节剂,余量为水,上述各 组分的质量百分比之和为100%。上述有机促溶剂是由A组分、B组分、C 组分这三种组分按质量比为(2~3):(2~3):1混合(搅拌均匀)而成,即A组 分:B组分:C组分=(2~3):(2~3):1,其中A组分为一乙醇胺,二乙醇胺,三 乙醇胺中的一种,B组分为N-甲基二乙醇胺、N,N-二甲基乙醇胺、N,N-二 甲基甲酰胺中的一种,C组分为二乙烯三胺、三乙烯四胺、四羟丙基乙二 胺中的一种;所述稳定剂为超细海泡石、拟薄水铝石中的至少一种;pH调 节剂为对甲苯磺酸、草酸、甲酸中的至少一种;所述早强剂为硫酸锂、硫 酸镁、纳米硅溶胶、纳米铝溶胶中的至少一种。
上述超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤:
(1)按重量百分比称量各组分,备用;(2)将水加入反应容器中,常 温搅拌状态下,加入稳定剂,搅拌30min~60min;(3)加入一半量的硫酸 铝,搅拌30min~35min,加入有机促溶剂,搅拌30min~60min,加入另一 半的硫酸铝,继续搅拌2h~4h;(4)接着在搅拌状态下,加入早强剂,常 温搅拌20min~30min;(5)最后加入pH调节剂,搅拌20min~30min,所得产物即为超早强型无氟无碱液体速凝剂。
上述技术方案中,优选的技术方案可以是:所述的硫酸铝最好为氧化 铝含量≥16.0%的工业级十八水硫酸铝。上述超早强型无氟无碱液体速凝剂 制备过程中,搅拌温度最好为常温(20-25℃),搅拌转速最好为500~800rpm。
上述技术方案中,优选的技术方案还可以是:所述的超早强型无氟无 碱液体速凝剂是由下述组分及质量百分比的原料制成的:60%硫酸铝,7.5% 有机促溶剂,1.0%稳定剂,2.0%早强剂,0.5%pH调节剂,余量为水,上 述各组分的质量百分比之和为100%;上述硫酸铝为氧化铝含量是16.2%的 工业级十八水硫酸铝,上述有机促溶剂是由A组分、B组分、C组分这三 种组分按质量比为2:2:1混合而成,其中A组分为二乙醇胺,B组分为N,N- 二甲基甲酰胺,C组分为三乙烯四胺;所述稳定剂为超细海泡石,pH调节 剂为对甲苯磺酸,所述早强剂为硫酸锂。上述的超早强型无氟无碱液体速 凝剂的制备方法包括以下工艺步骤:(1)按重量百分比称量各组分,备用; (2)将水加入反应容器中,常温搅拌状态下,加入稳定剂,搅拌30min; (3)加入一半量的硫酸铝,搅拌30min,加入有机促溶剂,搅拌30min, 加入另一半的硫酸铝,继续搅拌2h;(4)接着在搅拌状态下,加入早强 剂,常温搅拌30min;(5)最后加入pH调节剂,搅拌30min,所得产物 即为超早强型无氟无碱液体速凝剂。上述超早强型无氟无碱液体速凝剂制 备过程中,搅拌温度为常温,搅拌转速为500rpm。
上述技术方案中,优选的技术方案还可以是:所述的超早强型无氟无 碱液体速凝剂是由下述组分及质量百分比的原料制成的:64%硫酸铝,10% 有机促溶剂,1.5%稳定剂,1.0%早强剂,1.0%pH调节剂,余量为水,上 述各组分的质量百分比之和为100%;上述硫酸铝为氧化铝含量是16.8%的 工业级十八水硫酸铝,上述有机促溶剂是由A组分、B组分、C组分这三 种组分按质量比为3:3:1混合而成,其中A组分为二乙醇胺,B组分为N,N- 二甲基乙醇胺,C组分为四羟丙基乙二胺;所述稳定剂为超细海泡石、拟 薄水铝石两种原料的组合,超细海泡石与拟薄水铝石的质量之比为2:1,pH 调节剂为草酸;所述早强剂为硫酸锂、硫酸镁两种原料的组合,硫酸锂与 硫酸镁的质量之比为1:0.5。上述超早强型无氟无碱液体速凝剂的制备方法 包括以下工艺步骤:(1)按重量百分比称量各组分,备用;(2)将水加 入反应容器中,常温搅拌状态下,加入稳定剂,搅拌60min;(3)加入一 半量的硫酸铝,搅拌30min,加入有机促溶剂,搅拌60min,加入另一半的 硫酸铝,继续搅拌4h;(4)接着在搅拌状态下,加入早强剂,常温搅拌 30min;(5)最后加入pH调节剂,搅拌30min,所得产物即为超早强型无 氟无碱液体速凝剂。上述超早强型无氟无碱液体速凝剂制备过程中,搅拌 温度为常温,搅拌转速为800rpm。
上述技术方案中,优选的技术方案还可以是本说明书中的实施例2、 实施例3。
本发明的超早强型无氟无碱液体速凝剂,采用常温合成及机械搅拌工 艺,通过引入具有特定组成和比例的有机促溶剂,可与铝离子络合,大大 促进了硫酸铝的溶解,提高了速凝剂中的铝含量,加速了水泥的水化,缩 短了水泥的凝结时间,提高了砂浆的抗压强度。所述的稳定剂具有很高的 比表面积、高密度的活性吸附中心以及低的残留电荷,能在体系中良好分 散形成三维网状结构,并且不受pH值和体系中阳离子影响,特别是在低温下,可增大硫酸铝的结晶阻力;pH调节剂有效抑制了铝离子的水解和沉淀, 保证了溶液中的铝离子浓度与稳定性;所述的稳定剂与pH调节剂共同作用 下,避免了硫酸铝含量过高时稳定性差的问题,可大大提高速凝剂在各种 环境条件下的稳定性。所述的早强剂,通过优选部分纳米材料,可发挥其 晶核效果,促进水泥矿物的水化速率,缩短水泥水化诱导期,进而提高早 期强度,特别是超早强6h抗压强度,同时不降低后期强度保留率。
本发明的超早强型无氟无碱液体速凝剂,相比现有技术,具有以下优 点:1)无氟,无碱,无氯。本发明的液体速凝剂氟离子含量≤0.05%,氯 离子含量≤0.05%,碱含量≤1.0%,不锈蚀钢筋,不污染环境,不伤害作业 人员的身体,可同时满足Q/CR 807-2020《隧道喷射混凝土用液体无碱速 凝剂》和GB/T 35159-2017《喷射混凝土用速凝剂》的标准要求。2)早期 强度高,后期强度保证率高。本发明的无碱液体速凝剂,6小时抗压强度、 1天抗压强度高,砂浆6h抗压强度可达2.5MPa以上,1d抗压强度可达15MPa 以上,28天抗压强度比≥100%,90天抗压强度保留率≥110%。3)稳定性 好。本发明的无碱液体速凝剂,稳定期(储存期)大于9个月,有利于存 储及应用。4)制备工艺简单。本发明的无碱液体速凝剂,采用常温合成与 普通机械搅拌工艺,工业化生产简单,易于推广。
综上所述,本发明提供了一种超早强型无氟无碱液体速凝剂,它的性 能良好,制备工艺简单,无氟,无碱、无氯,同时满足Q/CR 807-2020和 GB/T 35159-2017两个速凝剂标准对无碱速凝剂的性能要求,6小时抗压强 度(远)大于2.5MPa,1天抗压强度(远)大于15.0MPa,90天抗压强度 保留率≥110%。
具体实施方式
为使本发明的发明目的、技术方案和优点更加清楚,下面将结合实施 例对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例是 本发明一部分实施例,而非全部实施例。基于发明中的实施例,本领域普 通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属 于本发明保护的范围。
实施例1:本发明所述的超早强型无氟无碱液体速凝剂是由下述组分 及质量百分比的原料制成的:60%硫酸铝,7.5%有机促溶剂,1.0%稳定剂, 2.0%早强剂,0.5%pH调节剂,余量为水,上述各组分的质量百分比之和为 100%。上述硫酸铝为氧化铝含量是16.2%的工业级十八水硫酸铝。上述有 机促溶剂是由A组分、B组分、C组分这三种组分按质量比为2:2:1混合(搅 拌均匀)而成,其中A组分为二乙醇胺,B组分为N,N-二甲基甲酰胺,C组分为三乙烯四胺。所述稳定剂为超细海泡石,pH调节剂为对甲苯磺酸, 所述早强剂为硫酸锂。
上述的超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤: (1)按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温 搅拌状态下,加入稳定剂,搅拌30min;(3)加入一半量的硫酸铝,搅拌 30min,加入有机促溶剂,搅拌30min,加入另一半的硫酸铝,继续搅拌2h; (4)接着在搅拌状态下,加入早强剂,常温搅拌30min;(5)最后加入pH调节剂,搅拌30min,所得产物即为超早强型无氟无碱液体速凝剂。上 述超早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速 为500rpm。
实施例2:本发明所述的超早强型无氟无碱液体速凝剂是由下述组分 及质量百分比的原料制成的:62%硫酸铝,8.5%有机促溶剂,1.5%稳定剂, 1.5%早强剂,0.5%pH调节剂,余量为水,上述各组分的质量百分比之和为 100%。上述硫酸铝为氧化铝含量是16.5%的工业级十八水硫酸铝。上述有 机促溶剂是由A组分、B组分、C组分这三种组分按质量比为2.5:2.5:1 混合(搅拌均匀)而成,其中A组分为三乙醇胺,B组分为N-甲基二乙醇胺,C组分为三乙烯四胺;所述稳定剂为拟薄水铝石,pH调节剂为草酸, 所述早强剂为纳米硅溶胶。
上述的超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤: (1)按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温 搅拌状态下,加入稳定剂,搅拌60min;(3)加入一半量的硫酸铝,搅拌 30min,加入有机促溶剂,搅拌45min,加入另一半的硫酸铝,继续搅拌3h; (4)接着在搅拌状态下,加入早强剂,常温搅拌20min;(5)最后加入pH调节剂,搅拌20min,所得产物即为超早强型无氟无碱液体速凝剂。上 述超早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速 为800rpm。
实施例3:本发明所述的超早强型无氟无碱液体速凝剂是由下述组分 及质量百分比的原料制成的:62%硫酸铝,10%有机促溶剂,1.0%稳定剂,1.5%早强剂,1.0%pH调节剂,余量为水,上述各组分的质量百分比之和为 100%。上述硫酸铝为氧化铝含量是16.5%的工业级十八水硫酸铝。上述有 机促溶剂是由A组分、B组分、C组分这三种组分按质量比为3:3:1混合(搅 拌均匀)而成,其中A组分为一乙醇胺,B组分为N,N-二甲基乙醇胺,C 组分为二乙烯三胺;所述稳定剂为超细海泡石,pH调节剂为甲酸,所述早 强剂为纳米铝溶胶。
上述超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤:(1) 按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温搅拌状 态下,加入稳定剂,搅拌45min;(3)加入一半量的硫酸铝,搅拌30min, 加入有机促溶剂,搅拌60min,加入另一半的硫酸铝,继续搅拌3.5h;(4) 接着在搅拌状态下,加入早强剂,常温搅拌20min;(5)最后加入pH调 节剂,搅拌30min,所得产物即为超早强型无氟无碱液体速凝剂。上述超 早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速为 700rpm。
实施例4:本发明所述的超早强型无氟无碱液体速凝剂是由下述组分 及质量百分比的原料制成的:64%硫酸铝,10%有机促溶剂,1.5%稳定剂, 1.0%早强剂,1.0%pH调节剂,余量为水,上述各组分的质量百分比之和为 100%。上述硫酸铝为氧化铝含量是16.8%的工业级十八水硫酸铝。上述有 机促溶剂是由A组分、B组分、C组分这三种组分按质量比为3:3:1混合(搅 拌均匀)而成,其中A组分为二乙醇胺,B组分为N,N-二甲基乙醇胺,C 组分为四羟丙基乙二胺。所述稳定剂为超细海泡石、拟薄水铝石两种原料 的组合,超细海泡石与拟薄水铝石的质量之比为2:1,pH调节剂为草酸。 所述早强剂为硫酸锂、硫酸镁两种原料的组合,硫酸锂与硫酸镁的质量之 比为1:0.5。
上述超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤:(1) 按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温搅拌状 态下,加入稳定剂,搅拌60min;(3)加入一半量的硫酸铝,搅拌30min, 加入有机促溶剂,搅拌60min,加入另一半的硫酸铝,继续搅拌4h;(4) 接着在搅拌状态下,加入早强剂,常温搅拌30min;(5)最后加入pH调 节剂,搅拌30min,所得产物即为超早强型无氟无碱液体速凝剂。上述超 早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速为 800rpm。
本发明中纳米硅溶胶为市售产品,如市售的CC型号的纳米硅溶胶(如 CC40),pH值为7-9,所述纳米硅溶胶的固含量可以为25%-35%。
以下为本发明的试验部分(应用实例):
本发明所述的超早强型无氟无碱液体速凝剂(在表中称本发明为无碱 速凝剂),在喷射混凝土中的掺量为胶凝材料总量的6%~8%。按照Q/CR 807-2020《隧道喷射混凝土用液体无碱速凝剂》和GB/T 35159-2017《喷射 混凝土用速凝剂》规定的检测方法,将实施例1~实施例4制备的各速凝剂 分别以水泥质量的6%~7%掺入水泥净浆中进行凝结时间测试,掺入水泥砂 浆中进行抗压强度检测,并以未加速凝剂的测试例作为空白组,以下面制 备的无碱速凝剂(超早强无碱液体速凝剂)作为对比例1。
对比例1:一种超早强无碱液体速凝剂,其原料及各组分质量百分比 为:硫酸铝32%,水化硅酸钙16%,氟硅酸锂3%,三异丙醇胺8%,pH 调节剂3%,悬浮剂2%,水36%。所述水化硅酸钙粒径在50~200nm之 间,所述氟硅酸锂中氟含量不小于55%,不溶物含量小于1%。所述的pH 调节剂为赖氨酸(α-赖氨酸)。所述悬浮剂为海泡石(即含水硅酸镁),其规格为:粒径200~500nm。超早强无碱液体速凝剂的制备方法包括以下步 骤:1)将水加入水浴容器中加热到65℃;2)加入氟硅酸锂和硫酸铝;3) 加入三异丙醇胺;4)加入pH调节剂和水化硅酸钙;5)在保温条件下加入悬 浮剂,持续搅拌1h,直至液体为呈现淡黄色的悬浮液;6)将淡黄色悬浮液 加入高速剪切乳化机,转速在5000r/min之间,得到超早强无碱液体速凝 剂。速凝剂的制备方法中步骤2)、3)、4)中的原料添加有先后顺序的要求; 且步骤5中“直至液体为呈现淡黄色的悬浮液”为技术特征点。制备方法 的步骤2中,在加入水浴容器中加入氟硅酸锂和硫酸铝时,应进行持续搅 拌;制备方法的步骤4中,在加入pH调节剂和水化硅酸钙时,应进行持续 搅拌;制备方法的步骤3中,加入三异丙醇胺时应采用滴加方式,即使用 恒流泵慢慢滴加三异丙醇胺,滴加时间为1.2h。本发明制备方法步骤2)、 3)、4)中的原料添加应遵循持续搅拌的滴加的技术要求,且滴加时间为 1.2h。
将对比例1的组分去掉氟硅酸锂后制备的无碱速凝剂作为对比例2, 进行凝结时间,砂浆强度和稳定性等性能测试。Q/CR 807-2020和GB/T 35159-2017两个标准对无碱速凝剂的性能指标要求如表1所示。上述各例 的测试结果如表2和表3所示。测试所用水泥为5种:基准水泥P.I42.5、 峨胜水泥P.O42.5、海螺水泥P.O42.5、华新水泥P.O42.5和国大水泥P.O42.5, 砂为标准砂。
表1无碱速凝剂的指标要求
Figure BDA0003205862970000101
表2无碱速凝剂性能检测结果(基准水泥)
Figure BDA0003205862970000111
从表2数据可以看出,本发明的超早强型无氟无碱液体速凝剂,掺量 6%~7%,采用基准水泥检测,各项性能指标均满足表1中Q/CR 807-2020 和GB/T 35159-2017两个速凝剂标准对无碱速凝剂的性能要求,6小时抗压 强度大于2.5MPa(最高可达3.5MPa),1天抗压强度超过20.0MPa,90 天抗压强度保留率大于110%。对比例1的无碱液体速凝剂,各项性能指标 虽然满足GB/T 35159-2017,但氟离子含量远大于0.05%(因为对比例的速 凝剂中含有氟硅酸锂),且6%掺量时,砂浆1d抗压强度小于10MPa,90 天抗压强度保留率小于105%,不满足Q/CR 807-2020的标准要求。对比例 2的无碱液体速凝剂,虽然氟离子含量合格,但凝结时间特别是终凝时间 大于12min,不满足标准Q/CR 807-2020和GB/T 35159-2017的性能要求。
表3无碱速凝剂性能检测结果(工程水泥)
Figure BDA0003205862970000121
从表3数据可以看出,本发明的超早强型无氟无碱液体速凝剂,采用 各种工程水泥,各项性能指标均满足表1中Q/CR807-2020和GB/T 35159-2017两个速凝剂标准对无碱速凝剂的性能要求,特别是6h抗压强度 均达到3.0MPa以上(最高达到4.5MPa,远超Q/CR807-2020标准要求的≥ 1.0MPa),1d抗压强度均超过20MPa,远超Q/CR807-2020标准要求的≥10.0MPa,说明本发明的无碱液体速凝剂与各种工程水泥具有良好的适应 性,可很大程度满足工程项目的使用需求。
根据Q/CR 807-2020和GB/T 35159-2017中速凝剂稳定性的测试方法, 在其基础上,通过将各实施例的无碱液体速凝剂置于不同温度(标准方法 为20℃条件,各实施例额外放置在低温5℃进行稳定性试验),储存一定 时间,若上清液(或底部沉淀物)体积≤5ml,则认为在该储存期稳定性良 好。测试结果如表4所示。
表4无碱速凝剂的稳定性(储存期)
Figure BDA0003205862970000131
√:稳定性良好
从表4可以看出,本发明的超早强型无氟无碱液体速凝剂稳定性良好, 常温20℃稳定期(储存期)可达9个月以上,低温5℃储存期可达6个月 以上,有利于储存与应用。
综上所述,本发明的超早强型无氟无碱液体速凝剂性能良好,无氟, 无碱,无氯,不锈蚀钢筋,不污染环境,不伤害作业人员的身体,掺量为 6%~7%同时满足Q/CR 807-2020和GB/T35159-2017两个标准对无碱液体 速凝剂的技术要求,砂浆6h抗压强度(远)大于2.5MPa,1d抗压强度大 于20MPa,90d抗压强度保留率大于110%,具有超早龄期6h~24h砂浆抗 压强度高(超早期强度高)、后期强度保留率高、稳定性好(稳定期大于 9个月)、与水泥适应性好的特点,属于超早强型无氟无碱液体速凝剂, 且制备工艺简单,不需加热,对设备要求低,非常适合推广应用。

Claims (10)

1.一种超早强型无氟无碱液体速凝剂,其特征在于它是由下述组分及质量百分比的原料制成的:60%~65%硫酸铝,7%~10%有机促溶剂,1%~2%稳定剂,1%~2%早强剂,0.5%~1%pH调节剂,余量为水,上述各组分的质量百分比之和为100%;
上述有机促溶剂是由A组分、B组分、C组分这三种组分按质量比为(2~3):(2~3):1混合而成,其中A组分为一乙醇胺,二乙醇胺,三乙醇胺中的一种,B组分为N-甲基二乙醇胺、N,N-二甲基乙醇胺、N,N-二甲基甲酰胺中的一种,C组分为二乙烯三胺、三乙烯四胺、四羟丙基乙二胺中的一种;所述稳定剂为超细海泡石、拟薄水铝石中的至少一种;pH调节剂为对甲苯磺酸、草酸、甲酸中的至少一种;所述早强剂为硫酸锂、硫酸镁、纳米硅溶胶、纳米铝溶胶中的至少一种;
上述超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤:
(1)按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温搅拌状态下,加入稳定剂,搅拌30min~60min;(3)加入一半量的硫酸铝,搅拌30min~35min,加入有机促溶剂,搅拌30min~60min,加入另一半的硫酸铝,继续搅拌2h~4h;(4)接着在搅拌状态下,加入早强剂,常温搅拌20min~30min;(5)最后加入pH调节剂,搅拌20min~30min,所得产物即为超早强型无氟无碱液体速凝剂。
2.根据权利要求1所述的超早强型无氟无碱液体速凝剂,其特征在于上述硫酸铝为氧化铝含量≥16.0%的工业级十八水硫酸铝。
3.根据权利要求1所述的超早强型无氟无碱液体速凝剂,其特征在于上述超早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速为500~800rpm。
4.根据权利要求1所述的超早强型无氟无碱液体速凝剂,其特征在于它是由下述组分及质量百分比的原料制成的:60%硫酸铝,7.5%有机促溶剂,1.0%稳定剂,2.0%早强剂,0.5%pH调节剂,余量为水,上述各组分的质量百分比之和为100%;上述硫酸铝为氧化铝含量是16.2%的工业级十八水硫酸铝,上述有机促溶剂是由A组分、B组分、C组分这三种组分按质量比为2:2:1混合而成,其中A组分为二乙醇胺,B组分为N,N-二甲基甲酰胺,C组分为三乙烯四胺;所述稳定剂为超细海泡石,pH调节剂为对甲苯磺酸,所述早强剂为硫酸锂;
上述的超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤:(1)按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温搅拌状态下,加入稳定剂,搅拌30min;(3)加入一半量的硫酸铝,搅拌30min,加入有机促溶剂,搅拌30min,加入另一半的硫酸铝,继续搅拌2h;(4)接着在搅拌状态下,加入早强剂,常温搅拌30min;(5)最后加入pH调节剂,搅拌30min,所得产物即为超早强型无氟无碱液体速凝剂;上述超早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速为500rpm。
5.根据权利要求1所述的超早强型无氟无碱液体速凝剂,其特征在于它是由下述组分及质量百分比的原料制成的:62%硫酸铝,8.5%有机促溶剂,1.5%稳定剂,1.5%早强剂,0.5%pH调节剂,余量为水,上述各组分的质量百分比之和为100%;上述硫酸铝为氧化铝含量是16.5%的工业级十八水硫酸铝,上述有机促溶剂是由A组分、B组分、C组分这三种组分按质量比为2.5:2.5:1混合而成,其中A组分为三乙醇胺,B组分为N-甲基二乙醇胺,C组分为三乙烯四胺;所述稳定剂为拟薄水铝石,pH调节剂为草酸,所述早强剂为纳米硅溶胶;
上述的超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤:(1)按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温搅拌状态下,加入稳定剂,搅拌60min;(3)加入一半量的硫酸铝,搅拌30min,加入有机促溶剂,搅拌45min,加入另一半的硫酸铝,继续搅拌3h;(4)接着在搅拌状态下,加入早强剂,常温搅拌20min;(5)最后加入pH调节剂,搅拌20min,所得产物即为超早强型无氟无碱液体速凝剂;上述超早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速为800rpm。
6.根据权利要求1所述的超早强型无氟无碱液体速凝剂,其特征在于它是由下述组分及质量百分比的原料制成的:62%硫酸铝,10%有机促溶剂,1.0%稳定剂,1.5%早强剂,1.0%pH调节剂,余量为水,上述各组分的质量百分比之和为100%;上述硫酸铝为氧化铝含量是16.5%的工业级十八水硫酸铝,上述有机促溶剂是由A组分、B组分、C组分这三种组分按质量比为3:3:1混合而成,其中A组分为一乙醇胺,B组分为N,N-二甲基乙醇胺,C组分为二乙烯三胺;所述稳定剂为超细海泡石,pH调节剂为甲酸,所述早强剂为纳米铝溶胶;
上述超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤:(1)按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温搅拌状态下,加入稳定剂,搅拌45min;(3)加入一半量的硫酸铝,搅拌30min,加入有机促溶剂,搅拌60min,加入另一半的硫酸铝,继续搅拌3.5h;(4)接着在搅拌状态下,加入早强剂,常温搅拌20min;(5)最后加入pH调节剂,搅拌30min,所得产物即为超早强型无氟无碱液体速凝剂;上述超早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速为700rpm。
7.根据权利要求1所述的超早强型无氟无碱液体速凝剂,其特征在于它是由下述组分及质量百分比的原料制成的:64%硫酸铝,10%有机促溶剂,1.5%稳定剂,1.0%早强剂,1.0%pH调节剂,余量为水,上述各组分的质量百分比之和为100%;上述硫酸铝为氧化铝含量是16.8%的工业级十八水硫酸铝,上述有机促溶剂是由A组分、B组分、C组分这三种组分按质量比为3:3:1混合而成,其中A组分为二乙醇胺,B组分为N,N-二甲基乙醇胺,C组分为四羟丙基乙二胺;所述稳定剂为超细海泡石、拟薄水铝石两种原料的组合,超细海泡石与拟薄水铝石的质量之比为2:1,pH调节剂为草酸;所述早强剂为硫酸锂、硫酸镁两种原料的组合,硫酸锂与硫酸镁的质量之比为1:0.5;
上述超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤:(1)按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温搅拌状态下,加入稳定剂,搅拌60min;(3)加入一半量的硫酸铝,搅拌30min,加入有机促溶剂,搅拌60min,加入另一半的硫酸铝,继续搅拌4h;(4)接着在搅拌状态下,加入早强剂,常温搅拌30min;(5)最后加入pH调节剂,搅拌30min,所得产物即为超早强型无氟无碱液体速凝剂;上述超早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速为800rpm。
8.一种权利要求1所述的超早强型无氟无碱液体速凝剂的制备方法,其特征在于所述的超早强型无氟无碱液体速凝剂是由下述组分及质量百分比的原料制成的:60%~65%硫酸铝,7%~10%有机促溶剂,1%~2%稳定剂,1%~2%早强剂,0.5%~1%pH调节剂,余量为水,上述各组分的质量百分比之和为100%;上述有机促溶剂是由A组分、B组分、C组分这三种组分按质量比为(2~3):(2~3):1混合而成,其中A组分为一乙醇胺,二乙醇胺,三乙醇胺中的一种,B组分为N-甲基二乙醇胺、N,N-二甲基乙醇胺、N,N-二甲基甲酰胺中的一种,C组分为二乙烯三胺、三乙烯四胺、四羟丙基乙二胺中的一种;所述稳定剂为超细海泡石、拟薄水铝石中的至少一种;pH调节剂为对甲苯磺酸、草酸、甲酸中的至少一种;所述早强剂为硫酸锂、硫酸镁、纳米硅溶胶、纳米铝溶胶中的至少一种;
上述超早强型无氟无碱液体速凝剂的制备方法包括以下工艺步骤:
(1)按重量百分比称量各组分,备用;(2)将水加入反应容器中,常温搅拌状态下,加入稳定剂,搅拌30min~60min;(3)加入一半量的硫酸铝,搅拌30min~35min,加入有机促溶剂,搅拌30min~60min,加入另一半的硫酸铝,继续搅拌2h~4h;(4)接着在搅拌状态下,加入早强剂,常温搅拌20min~30min;(5)最后加入pH调节剂,搅拌20min~30min,所得产物即为超早强型无氟无碱液体速凝剂。
9.根据权利要求8所述的超早强型无氟无碱液体速凝剂的制备方法,其特征在于上述硫酸铝为氧化铝含量≥16.0%的工业级十八水硫酸铝。
10.根据权利要求8所述的超早强型无氟无碱液体速凝剂的制备方法,其特征在于上述超早强型无氟无碱液体速凝剂制备过程中,搅拌温度为常温,搅拌转速为500~800rpm。
CN202110916790.8A 2021-08-11 2021-08-11 一种超早强型无氟无碱液体速凝剂及其制备方法 Active CN113603384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110916790.8A CN113603384B (zh) 2021-08-11 2021-08-11 一种超早强型无氟无碱液体速凝剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110916790.8A CN113603384B (zh) 2021-08-11 2021-08-11 一种超早强型无氟无碱液体速凝剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113603384A true CN113603384A (zh) 2021-11-05
CN113603384B CN113603384B (zh) 2022-08-30

Family

ID=78308121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110916790.8A Active CN113603384B (zh) 2021-08-11 2021-08-11 一种超早强型无氟无碱液体速凝剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113603384B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057422A (zh) * 2021-12-22 2022-02-18 云南云天化股份有限公司 一种无碱无氟无氯液态混凝土速凝剂及其制备方法
CN114276046A (zh) * 2022-02-18 2022-04-05 重庆天耀建材有限公司 无碱液体速凝剂
CN114956653A (zh) * 2022-03-15 2022-08-30 山西佳维新材料股份有限公司 配位激发剂、液体无碱速凝剂及其制备方法和应用
CN115215580A (zh) * 2022-08-08 2022-10-21 中国铁道科学研究院集团有限公司铁道建筑研究所 一种改性纳米纤维稳定高早强无碱速凝剂及其制备方法
CN115784664A (zh) * 2023-01-17 2023-03-14 石家庄市长安育才建材有限公司 抗渗型速凝剂及其制备方法
CN115849759A (zh) * 2022-11-15 2023-03-28 安徽中铁工程材料科技有限公司 一种耐低温早强型无碱液体速凝剂及其制备方法
CN115947564A (zh) * 2023-03-11 2023-04-11 石家庄市长安育才建材有限公司 高粘附性低回弹无碱速凝剂及其制备方法和使用方法
CN116477873A (zh) * 2023-03-10 2023-07-25 铁科腾跃科技有限公司 一种早强型无氟无氯无碱液体速凝剂及其制备方法
CN116693229A (zh) * 2023-05-30 2023-09-05 中铁四局集团有限公司 一种无碱无氟液体速凝剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109748533A (zh) * 2019-03-04 2019-05-14 中国铁道科学研究院集团有限公司铁道建筑研究所 一种用于液体无碱速凝剂的核心母料及其制备方法
CN110104987A (zh) * 2019-06-21 2019-08-09 广州市建筑科学研究院有限公司 一种高早强型无碱液体速凝剂及其制备方法和应用
CN111333362A (zh) * 2020-03-10 2020-06-26 刘翠芬 一种低掺量高早强型无碱液体速凝剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109748533A (zh) * 2019-03-04 2019-05-14 中国铁道科学研究院集团有限公司铁道建筑研究所 一种用于液体无碱速凝剂的核心母料及其制备方法
CN110104987A (zh) * 2019-06-21 2019-08-09 广州市建筑科学研究院有限公司 一种高早强型无碱液体速凝剂及其制备方法和应用
CN111333362A (zh) * 2020-03-10 2020-06-26 刘翠芬 一种低掺量高早强型无碱液体速凝剂及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057422A (zh) * 2021-12-22 2022-02-18 云南云天化股份有限公司 一种无碱无氟无氯液态混凝土速凝剂及其制备方法
CN114276046A (zh) * 2022-02-18 2022-04-05 重庆天耀建材有限公司 无碱液体速凝剂
CN114956653A (zh) * 2022-03-15 2022-08-30 山西佳维新材料股份有限公司 配位激发剂、液体无碱速凝剂及其制备方法和应用
CN115215580A (zh) * 2022-08-08 2022-10-21 中国铁道科学研究院集团有限公司铁道建筑研究所 一种改性纳米纤维稳定高早强无碱速凝剂及其制备方法
CN115215580B (zh) * 2022-08-08 2023-10-20 中国铁道科学研究院集团有限公司铁道建筑研究所 一种改性纳米纤维稳定高早强无碱速凝剂及其制备方法
CN115849759B (zh) * 2022-11-15 2023-08-18 安徽中铁工程材料科技有限公司 一种耐低温早强型无碱液体速凝剂及其制备方法
CN115849759A (zh) * 2022-11-15 2023-03-28 安徽中铁工程材料科技有限公司 一种耐低温早强型无碱液体速凝剂及其制备方法
CN115784664A (zh) * 2023-01-17 2023-03-14 石家庄市长安育才建材有限公司 抗渗型速凝剂及其制备方法
CN116477873A (zh) * 2023-03-10 2023-07-25 铁科腾跃科技有限公司 一种早强型无氟无氯无碱液体速凝剂及其制备方法
CN116477873B (zh) * 2023-03-10 2023-12-05 铁科腾跃科技有限公司 一种早强型无氟无氯无碱液体速凝剂及其制备方法
CN115947564A (zh) * 2023-03-11 2023-04-11 石家庄市长安育才建材有限公司 高粘附性低回弹无碱速凝剂及其制备方法和使用方法
CN115947564B (zh) * 2023-03-11 2023-08-04 石家庄市长安育才建材有限公司 高粘附性低回弹无碱速凝剂及其制备方法和使用方法
CN116693229A (zh) * 2023-05-30 2023-09-05 中铁四局集团有限公司 一种无碱无氟液体速凝剂的制备方法
CN116693229B (zh) * 2023-05-30 2024-05-14 中铁四局集团有限公司 一种无碱无氟液体速凝剂的制备方法

Also Published As

Publication number Publication date
CN113603384B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN113603384B (zh) 一种超早强型无氟无碱液体速凝剂及其制备方法
CN111333362A (zh) 一种低掺量高早强型无碱液体速凝剂及其制备方法
CN111646728B (zh) 快凝高强型无碱液体速凝剂
CN111892327B (zh) 一种液体无碱速凝剂及其制备方法
CN108996943B (zh) 一种抗渗高强型无碱液体速凝剂及其制备方法
CN104193211B (zh) 喷射混凝土用免加热无碱液体速凝剂及其制备方法
CN114276042B (zh) 一种无碱无氟液体速凝剂及制备方法
CN109399999B (zh) 一种绿色高早强型低碱液体速凝剂及制备方法
CN110078403B (zh) 一种超早强无碱液体速凝剂及其制备方法
CN107459278A (zh) 一种喷射混凝土用低碱液体速凝剂及其制备方法
CN113698124B (zh) 一种无碱液体速凝剂及其制备方法
CN111960713B (zh) 一种高性能无碱液体速凝剂及其制备方法
CN110423037B (zh) 一种混凝土减胶剂及其制备方法
CN113880485A (zh) 一种无碱无氟液体速凝剂及制备和应用
CN107954628A (zh) 一种无碱无氯无硫酸根液体速凝剂
CN106746829B (zh) 一种石墨烯基混凝土抗蚀剂及其应用
CN112645668A (zh) 一种免蒸养预制混凝土及其制备方法
CN111454013B (zh) 一种液体无碱速凝剂用稳定剂及其制备方法
CN115403294A (zh) 一种高稳定性无碱无氯无氟液体速凝剂及其制备方法
CN109761532B (zh) 一种低回弹、高早强型无碱液体速凝剂及其制备方法
CN108529918B (zh) 一种改性铝硅质颗粒及其改性剂
CN115353317B (zh) 高铝含量速凝剂及其制备方法
CN112159130A (zh) 用于临时性喷锚支护工程的地聚物胶凝材料及其制备方法
CN108046639A (zh) 一种高强型液体速凝剂及其制备方法
CN114057422A (zh) 一种无碱无氟无氯液态混凝土速凝剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant