CN113593878A - 一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法 - Google Patents

一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法 Download PDF

Info

Publication number
CN113593878A
CN113593878A CN202110763009.8A CN202110763009A CN113593878A CN 113593878 A CN113593878 A CN 113593878A CN 202110763009 A CN202110763009 A CN 202110763009A CN 113593878 A CN113593878 A CN 113593878A
Authority
CN
China
Prior art keywords
performance
precursor
preparing
mnbi
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110763009.8A
Other languages
English (en)
Inventor
吴琼
杨杭福
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202110763009.8A priority Critical patent/CN113593878A/zh
Publication of CN113593878A publication Critical patent/CN113593878A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nanotechnology (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,包括以下步骤:按一定化学计量比称取原材料,研磨混合之后,将粉末压制成块;将压制成的块在一定温度条件下预烧,形成前驱体;清洗前驱体,干燥后,作为靶材,放入烧杯的靶材支架上,装入异丙酮溶液没过前驱体5~10mm,将烧杯置于旋转平台上,采用Nd:YAG激光器三次谐波作为烧蚀激光光源,将激光脉冲光束聚焦在前驱体表面烧蚀,生成含纳米级颗粒沉淀物的混合溶液;将混合溶液的沉淀物过滤,并反复清洗,烘干之后,获得纳米级高性能复合永磁体材料。本发明制备得到的复合纳米晶永磁体表面干净,化学活性好,同时有效抑制结构畸形,提高纳米晶磁体的磁性能。

Description

一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法
技术领域
本发明具体涉及一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法。
背景技术
复合纳米晶磁性材料是近年来开发的一种新型双相永磁材料。它是由高磁晶各向异性的硬磁相和高饱和磁化强度的软磁相在纳米尺度上产生强烈的磁交换耦合作用,使磁体呈现明显的剩磁增强效应(Mr/Ms>0.5)。目前对高性能的复合纳米晶磁性材料的研究较少,因此,需要提供一种高性能的复合纳米晶磁性材料的制备方法。
发明内容
针对上述情况,为克服现有技术的缺陷,本发明提供一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法。
为了实现上述目的,本发明提供以下技术方案:
一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,包括以下步骤:
(1)配料阶段:按一定化学计量比称取原材料,研磨混合之后,将粉末压制成块;
(2)预烧阶段:将压制成的块在一定温度条件下预烧,形成前驱体;
(3)烧蚀阶段:清洗前驱体,80-120oC干燥后,作为靶材,放入烧杯的靶材支架上,装入异丙酮溶液没过前驱体5~10mm,将烧杯置于旋转平台上,采用Nd:YAG激光器三次谐波作为烧蚀激光光源,将激光脉冲光束聚焦在前驱体表面烧蚀,生成含纳米级颗粒沉淀物的混合溶液;
(4)分离阶段:将混合溶液的沉淀物过滤,并反复清洗,烘干之后,获得纳米级高性能复合永磁体材料。进一步地,步骤(1)中,所述原材料包括金属Nd、Dy、Tb、In、Fe、Co粉末,NbFe粉末,FeB粉末和感应熔炼的MnBi粉末,其中FeB粉末中B质量分数为19.83%;NbFe粉末中Nb质量分数为66.3%;MnBi粉末中Mn与Bi的元素质量比例为54∶46。
进一步地,步骤(1)中,压制成的块的长度、宽度分别为12~25mm,厚度为3~6mm。
进一步地,步骤(2)中,预烧阶段的温度为900~1100℃,预烧时间为4~6h。预烧阶段的温度设置为900~1100℃,这样利于晶界相流动,提高磁性能。
进一步地,步骤(3)中,所述Nd:YAG激光器为纳秒固体激光器,激光频率为10 Hz,波长为1064nm,脉宽为7ns,激光脉冲强度为100~250mJ/pulse,光斑直径为1mm。激光参数设置成上述数值,有利于将材料融化,并形成纳米颗粒。
进一步地,步骤(3)中,将激光脉冲光束聚焦在前驱体表面烧蚀10~20min。
进一步地,步骤(3)中,利用超声清洗剂清洗前驱体,所述超声清洗剂为乙醇。
进一步地,步骤(3)中,将烧杯置于旋转转速为20 r/min的旋转平台上。
进一步地,步骤(4)中,采用为离心机过滤,离心速度为5000~15000rpm。
进一步地,步骤(4)中,烘干温度为150 oC。
本发明的有益效果是:
(1)本发明的复合永磁体材料的化学组成为Nd2Fe14B/MnBi,本发明制备方法,其可在室温下产生高温高压等的极端的环境,通过在高溫高压的极端环境中,来自于靶材和溶液介质的粒子会发生各种反应,而且液体的冷却效果好,能实现高温等离子体的快速冷却,制备得到的复合纳米晶永磁体表面干净,化学活性好,同时有效抑制结构畸形,提高纳米晶磁体的磁性能。大小为纳米级的纳米复合永磁体材料,其晶粒尺寸更均匀,综合磁性能更高。
(2)本发明的激光液相烧蚀纳米复合永磁体材料制备法更简洁,环境更易控制,液体的冷却效果好,能实现高温等离子体的快速冷却,保护了纳米复合永磁体材料,得到分布均匀的纳米微晶结构。
(3)本发明中,烧蚀后磁体晶界相中具有更干净的表面和更高的化学活性,复合相在纳米晶尺度上将产生强烈的交换耦合作用,将得到较高的理论最大磁能积。
附图说明
图1是本发明制备方法示意图。
图2是本发明制备得到的Nd2Fe14B/MnBi复合磁性材料的TEM图。
具体实施方式
以下结合附图对本发明的技术方案做进一步详细说明,应当指出的是,具体实施方式只是对本发明的详细说明,不应视为对本发明的限定。
实施例1
一种液相激光烧蚀法制备纳米级复合磁体材料的方法包括以下步骤:
(1)配料阶段:原子个数比为Nd:Dy:Fe:Nb:Co:B=9:0.4:80.24:0.36:3:6,将原子个数比,换算成质量比,然后称取金属粉末材料Nd、Dy、Tb、In、Fe、Co、FeB(FeB中B质量分数为19.83%)和NbFe(NbFe中Nb质量分数为66.3%),再加入成品的MnBi(Mn和Bi的原子个数比为54:46)粉末经过充分研磨混合之后,将原材料粉末在15Mpa压力下压成长度为15mm,宽度为15mm,厚度为4mm的块;
(2)预烧阶段:将压制成的块在1050 oC预烧4h,形成前驱体;
(3)烧蚀阶段:前驱体温度降到室温,利用超声清洗剂将前驱体清洗30min,80oC干燥5h后,放入烧杯的靶材支架上,装入异丙酮没过前驱体7mm,将烧杯置于旋转转速为20 r/min的磁力搅拌器上,采用Nd:YAG激光器三次谐波作为烧蚀激光光源,激光频率为10 Hz,波长为1064nm,脉宽为7ns,激光脉冲强度为100 mJ/pulse,光斑直径为1 mm,将激光脉冲光束聚焦在前驱体表面烧蚀20 min,生成含纳米级颗粒沉淀物的混合溶液;
(4)分离阶段:将混合溶液的沉淀物采用离心机过滤,并反复清洗5次,离心机速率为10000rpm,离心1h,之后在150 oC条件下烘干4h,获得纳米级高性能Nd2Fe14B/MnBi复合磁性材料,其结构形貌如图2所示。
与快淬法制备的材料相比,本发明所制得的纳米复合永磁体的矫顽力控制机理仍为成核机制,但其晶粒尺寸更小,平均颗粒大小为9nm~180nm, 磁能积为18.6MGOe,相比于高能球磨得到的材料磁能积(14.2MGOe),提高了30.1%,综合磁性能显著提高。
实施例2
一种液相激光烧蚀法制备纳米级复合磁体材料的方法包括以下步骤:
(1)配料阶段:原子比:Nd:Dy:Fe:Nb:Co:B=9:0.4:80.24:0.36:3:6,将原子个数比,换算成质量比,然后称取金属粉末材料Nd、Dy、Tb、In、Fe、Co、FeB(FeB中B质量分数为19.83%)和NbFe(NbFe中Nb质量分数为66.3%),再加入成品的MnBi(Mn和Bi的原子个数比为54:46)粉末经过充分研磨混合之后,将原材料粉末在15Mpa压力下压成长度为12mm,宽度为15mm,厚度为6mm的块;
(2)预烧阶段:将压制成的块在1050 oC预烧4h,形成前驱体;
(3)烧蚀阶段:前驱体温度降到室温,利用超声清洗剂将前驱体清洗30min, 110oC干燥3h后,放入烧杯的靶材支架上,装入异丙酮没过前驱体10mm,将烧杯置于旋转转速为20r/min的磁力搅拌器上,采用Nd:YAG激光器三次谐波作为烧蚀激光光源,激光频率为10 Hz,波长为1064nm,脉宽为7ns,激光脉冲强度为150 mJ/pulse,光斑直径为1 mm,将激光脉冲光束聚焦在前驱体表面烧蚀15 min,生成含纳米级颗粒沉淀物的混合溶液;
(4)分离阶段:将混合溶液的沉淀物采用离心机过滤,并反复清洗5次,离心机速率为12000rpm,离心1h,之后在150 oC条件下烘干3h,获得纳米级高性能Nd2Fe14B/MnBi复合磁性材料。
本实施例所制得的纳米复合永磁体的矫顽力控制机理仍为成核机制,其晶粒尺寸小,平均颗粒大小为50nm~150nm, 磁能积为20.4MGOe,综合磁性能显著提高。
显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (10)

1.一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,包括以下步骤:
(1)配料阶段:按一定化学计量比称取原材料,研磨混合之后,将粉末压制成块;
(2)预烧阶段:将压制成的块在一定温度条件下预烧,形成前驱体;
(3)烧蚀阶段:清洗前驱体,干燥后,作为靶材,放入烧杯的靶材支架上,装入异丙酮溶液没过前驱体5~10mm,将烧杯置于旋转平台上,采用Nd:YAG激光器三次谐波作为烧蚀激光光源,将激光脉冲光束聚焦在前驱体表面烧蚀,生成含纳米级颗粒沉淀物的混合溶液;
(4)分离阶段:将混合溶液的沉淀物过滤,并反复清洗,烘干之后,获得纳米级高性能复合永磁体材料。
2.根据权利要求1所述的一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,步骤(1)中,所述原材料包括金属Nd、Dy、Tb、In、Fe、Co粉末,NbFe粉末,FeB粉末和感应熔炼的MnBi粉末,其中FeB粉末中B质量分数为19.83%;NbFe粉末中Nb质量分数为66.3%;MnBi粉末中Mn与Bi的元素质量比例为54∶46。
3.根据权利要求1所述的一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,步骤(1)中,压制成的块的长度、宽度分别为12~25mm,厚度为3~6mm。
4.根据权利要求1所述的一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,步骤(2)中,预烧阶段的温度为900~1100℃,预烧时间为4~6h。
5.根据权利要求1所述的一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,步骤(3)中,所述Nd:YAG激光器为纳秒固体激光器,激光频率为10 Hz,波长为1064nm,脉宽为7ns,激光脉冲强度为100~250mJ/pulse,光斑直径为1mm。
6.根据权利要求1所述的一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,步骤(3)中,将激光脉冲光束聚焦在前驱体表面烧蚀10~20min。
7.根据权利要求1所述的一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,步骤(3)中,利用超声清洗剂清洗前驱体,所述超声清洗剂为乙醇。
8.根据权利要求1所述的一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,步骤(3)中,将烧杯置于旋转转速为20 r/min的旋转平台上。
9.根据权利要求1所述的一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,步骤(4)中,采用为离心机过滤,离心速度为5000~15000rpm。
10.根据权利要求1所述的一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法,其特征是,步骤(4)中,烘干温度为150 oC。
CN202110763009.8A 2021-07-06 2021-07-06 一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法 Pending CN113593878A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110763009.8A CN113593878A (zh) 2021-07-06 2021-07-06 一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110763009.8A CN113593878A (zh) 2021-07-06 2021-07-06 一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法

Publications (1)

Publication Number Publication Date
CN113593878A true CN113593878A (zh) 2021-11-02

Family

ID=78246530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110763009.8A Pending CN113593878A (zh) 2021-07-06 2021-07-06 一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法

Country Status (1)

Country Link
CN (1) CN113593878A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336488A (zh) * 2015-11-20 2016-02-17 中国计量学院 提高Fe3B/Nd2Fe14B系磁性合金内禀矫顽力的制备方法
CN105469917A (zh) * 2014-09-25 2016-04-06 福特全球技术公司 高温混合永磁体及其形成方法
CN106537525A (zh) * 2015-04-20 2017-03-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体和用于制备其的常压烧结工艺
CN112582167A (zh) * 2020-12-31 2021-03-30 杨方宗 一种激光烧蚀制备纳米级稀土磁制冷材料的方法
CN112570723A (zh) * 2020-12-31 2021-03-30 杨方宗 一种液相激光烧蚀法制备无稀土铝铁硼磁制冷材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105469917A (zh) * 2014-09-25 2016-04-06 福特全球技术公司 高温混合永磁体及其形成方法
CN106537525A (zh) * 2015-04-20 2017-03-22 Lg电子株式会社 包含MnBi的各向异性复合烧结磁体和用于制备其的常压烧结工艺
CN105336488A (zh) * 2015-11-20 2016-02-17 中国计量学院 提高Fe3B/Nd2Fe14B系磁性合金内禀矫顽力的制备方法
CN112582167A (zh) * 2020-12-31 2021-03-30 杨方宗 一种激光烧蚀制备纳米级稀土磁制冷材料的方法
CN112570723A (zh) * 2020-12-31 2021-03-30 杨方宗 一种液相激光烧蚀法制备无稀土铝铁硼磁制冷材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUANHAO TU: ""Structure, Magnetization Behaviors and Corrosion Resistance of MnBi/NdFeB Nanocomposite Magnet"", 《INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE》, pages 1 - 8 *

Similar Documents

Publication Publication Date Title
JP5874951B2 (ja) R−t−b系焼結磁石の製造方法
CN109369312B (zh) 核壳结构铝热剂及其制备方法
JP2007287874A (ja) 希土類永久磁石材料の製造方法
CN110408926A (zh) 一种强韧性高性能钐钴磁体的制备方法
CN112582167A (zh) 一种激光烧蚀制备纳米级稀土磁制冷材料的方法
CN114875398A (zh) 一种稀土元素改性的耐磨难熔高熵合金涂层及制备方法
JP2002020808A (ja) Nd−Fe−B系超微粒粉末の製造方法
CN103000324B (zh) 一种烧结稀土永磁材料及其制备方法
CN113593878A (zh) 一种制备纳米级高性能Nd2Fe14B/MnBi复合磁体材料的方法
CN113444962B (zh) 一种制备多纳米相强化铁基合金的方法
WO2010106964A1 (ja) 希土類永久磁石およびその製造方法
CN113593877A (zh) 一种制备纳米级高性能复合磁体材料的方法
CN113690042B (zh) 一种连续制备铝镍钴纳米颗粒的装置与方法
CN115026458B (zh) Ag基合金粉体浆料、Ag基合金活性焊料及其制备方法
CN109382515A (zh) 一种减小铁合金激光増材制造中变形的方法
JP2011091119A (ja) 永久磁石の製造方法
CN113593874A (zh) 一种高性能钐钴/钕铁硼双相复合磁体材料的制备方法
EP3686906B1 (en) Magnetic powder and method for producing magnetic powder
JP2018164004A (ja) R−t−b系焼結磁石の製造方法
JP2005226114A (ja) 水素吸蔵合金粉末の製造方法、及び当該製造方法により得られる水素吸蔵合金粉末
KR100707855B1 (ko) 분말사출성형용 금속 미세입자 피드스톡의 제조방법
US11090722B2 (en) Method for preparing nickel nanopowders and method for making nickel nanopowders into paste
JP7286402B2 (ja) 金属リチウムの製造方法
CN113593881A (zh) 一种液相激光烧蚀法制备钕铁硼复合永磁体的方法
JP2000100617A (ja) 磁心付きコイル及びpam制御エアコン

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination