CN113588744B - 一种快速定量检测水环境中大肠杆菌的方法 - Google Patents

一种快速定量检测水环境中大肠杆菌的方法 Download PDF

Info

Publication number
CN113588744B
CN113588744B CN202110830720.0A CN202110830720A CN113588744B CN 113588744 B CN113588744 B CN 113588744B CN 202110830720 A CN202110830720 A CN 202110830720A CN 113588744 B CN113588744 B CN 113588744B
Authority
CN
China
Prior art keywords
electrode
formula
escherichia coli
glassy carbon
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110830720.0A
Other languages
English (en)
Other versions
CN113588744A (zh
Inventor
邱志刚
王景峰
李辰宇
曹卓松
谌志强
杨晓波
王尚
薛斌
赵辰
张曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences
Original Assignee
Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences filed Critical Environmental Medicine and Operational Medicine Institute of Military Medicine Institute of Academy of Military Sciences
Priority to CN202110830720.0A priority Critical patent/CN113588744B/zh
Publication of CN113588744A publication Critical patent/CN113588744A/zh
Application granted granted Critical
Publication of CN113588744B publication Critical patent/CN113588744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/10Enterobacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种快速定量检测水环境中大肠杆菌的方法,属于微生物检测技术领域。通过本申请的检测技术和数据分析方法可以对水环境中的大肠杆菌进行快速定量,本方法操作简单,可在5分钟内实现水中大肠杆菌的快速定量,检测结果与平板计数法相比误差可低于20%,且电极体系经过简单处理可以实现重复使用,不需要降噪、电极预修饰和细菌预标记等复杂处理。

Description

一种快速定量检测水环境中大肠杆菌的方法
技术领域
本发明属于微生物检测技术领域,具体涉及一种快速定量检测水环境中大肠杆菌的技术方法。
背景技术
食源性病原体引起了全世界的关注,因为它们是食源性和水源性疾病的主要来源。致病菌株也是环境生物学、医院、供水系统和食品工业的主要关注点,因为微生物感染可以导致多种疾病,甚至其中一些可能导致死亡。更重要的是,越来越多的水源受到致病菌株的污染,如沙门氏菌、葡萄球菌和大肠杆菌,可导致伤寒、胃肠炎、霍乱和腹泻等反应。其中,大肠杆菌是在自然界广泛传播的最重要的病原菌之一。大肠杆菌是一种革兰氏阴性的非孢子形的杆菌,本质上是兼性厌氧的。据调查,一些家庭使用纯水机、桶装水、矿泉水,由于其暴露时间长,导致二次污染,仍有25%的水样细菌总数或大肠菌群超标。由于各种大肠杆菌的致病性及其在饮用水、食品、河流甚至工业水中的广泛分布,对这些大肠杆菌进行检测和定量已成为当务之急。
根据世界卫生组织的调查,造成人类常见疾病的根本原因是缺乏安全饮用水和食物。因此,开发准确、快速的检测技术对于监测这两种重要资源,进一步保障人类健康具有重要意义。目前,基于培养和分子的传统方法检测和计数大肠杆菌仍然是最常用的技术。传统的大肠杆菌检测方法存在操作复杂、检测时间长(一般需要1-2天才能得到结果)、难以满足污染源快速诊断的需要等缺点。近年来,许多基于不同检测原理的方法得到了很大的发展,如聚合酶链式反应(PCR),免疫检测,ATP生物发光,流式细胞术等。与传统的培养方法相比,这些方法具有一定的优势,但检测时间仍然很长。基于生物传感器的方法在过去15年中已经建立并得到快速发展,以加快检测速度和提高检测灵敏度。电化学生物传感器被认为是检测食源性致病菌最有前途的方向之一,且越来越多的研究聚焦于此。电化学生物传感器具有灵敏度高、响应速度快、可在混浊溶液中工作以及小型化等优点。另一方面,直接使用电化学生物传感器检测未经处理的样品中的病原菌很困难。此外,被测物体的复杂程度会因黏度和不溶物含量的不同而有所不同,这对生物传感器的性能有很大的影响。目前,电化学生物传感器集中于研究对传感器的功能化修饰,修饰制备过程繁琐复杂。
因此,如何利用简单易得的未修饰电极对细菌进行定量分析,以供快速检测用,是本领域人员待解决的技术问题。
发明内容
本发明公开了一种快速定量检测水环境中大肠杆菌的技术方法。
为了实现上述目的,本发明采用如下技术方案:
一种快速定量检测水环境中大肠杆菌的方法,包括以下步骤:
(1)电化学检测体系包括:电化学工作站、电解池、工作电极、辅助电极和参比电极;
所述工作电极为玻碳电极;
所述辅助电极为铂丝电极;
所述参比电极为银/氯化银电极;
(2)待测水样与浓度为20mM K4Fe(CN)6溶液按照体积比为1:5混合;
(3)将(2)中的混合液作为电解液置于电解池中,放入工作电极、辅助电极和参比电极,连接电化学工作站后,利用计时电流法进行检测;
(4)将(3)中得到数据进行处理,计算得到待测水样中大肠杆菌浓度。
作为优选的技术方案,步骤(1)中,所述玻碳电极的处理步骤:
(1)依次用粒径1.0μm、0.3μm、0.05μm的氧化铝粉末抛光玻碳电极,得抛光玻碳电极;
(2)抛光玻碳电极依次在HNO3、NaOH、丙酮、乙醇和超纯水中超声清洗5分钟,得清洗抛光玻碳电极;
(3)得清洗抛光玻碳电极在0.5M的硫酸溶液中,在如下参数:扫描电压范围-1~1V、扫描速度500mV/s,进行100个循环的循环伏安活化;
(4)将活化后的清洗抛光玻碳电极置于含有0.2M KNO3和1mM K3Fe(CN)6的溶液中测定氧化还原峰差值,使氧化还原峰差值ΔEp<80mV。
一种快速定量检测水环境中大肠杆菌的检测方法,计时电流法的参数设置:
(1)阶跃电压为0.6V(相对参比电极电位);
(2)检测时间设定为200s;
(3)电流数据采样间隔设定为0.1s。
一种快速定量检测水环境中大肠杆菌的方法,数据分析方法1步骤如下:
(1)将权利要求1步骤(3)中得到的电流-时间(i-t)曲线利用公式1进行拟合,解析出参数i0;
(2)将i0带入公式2,解析出参数C,即为所测样品中大肠杆菌的浓度。
所述公式1:
Figure BDA0003175440710000031
其中i为电流值,t为时间,i0、A和τ为需要解析的参数
所述公式2:|i0|=-5.907×10-7×lgC+2.908×10-5,其中i0为公式1中的i0,C为待测水溶液中大肠杆菌的浓度,单位为cfu/mL。
一种快速定量检测水环境中大肠杆菌技术方法,数据分析方法2步骤如下:
(1)将权利要求1步骤(3)中得到的电流-时间(i-t)曲线进行积分得到电量-时间(Q-t)曲线;
(2)利用公式3对Q-t曲线进行拟合,解析出参数A;
(3)将A带入公式4,解析出参数C,即为所测样品中大肠杆菌的浓度。
所述公式3:
Figure BDA0003175440710000041
其中Q为电量,t为时间,A和B为需要解析的参数;
所述公式4:|A|=-9.330×10-7×lgC+5.942×10-5,其中A为公式3中的A;C为所测样品中大肠杆菌的浓度,单位为cfu/mL。
综上所述,本发明公开了一种快速定量检测水环境中大肠杆菌技术方法。通过本申请的检测技术和数据分析方法可以对水环境中的大肠杆菌进行快速定量,本方法操作简单,可在1分钟内实现水中大肠杆菌的快速定量,检测结果与平板计数法相比误差可低于20%,且电极体系经过简单处理可以实现重复使用,不需要降噪、电极预修饰和细菌预标记等复杂处理。
附图说明
图1为电化学三电极体系组成示意图;
图2为处理后的玻碳电极表面照片;
图3为检测大肠杆菌菌液后玻碳电极表面照片,其中(A)为吸附的细菌,(B)为细菌成分能谱分析;
图4为检测大肠杆菌菌液后玻碳电极表面经PI染色的照片,其中(A)为检测前电极表面,(B)为检测低浓度菌液(105cfu/mL)后电极表面,(C)为检测高浓度菌液(108cfu/mL)后电极表面。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
数据分析方法1步骤如下:
(1)将权利要求1步骤(3)中得到的电流-时间(i-t)曲线利用公式1进行拟合,解析出参数i0;
(2)将i0带入公式2,解析出参数C,即为所测样品中大肠杆菌的浓度。
所述公式1:
Figure BDA0003175440710000051
其中i为电流值,t为时间,i0、A和τ为需要解析的参数
所述公式2:|i0|=-5.907×10-7×lgC+2.908×10-5,其中i0为公式1中的i0,C为待测水溶液中大肠杆菌的浓度,单位为cfu/mL。
数据分析方法2步骤如下:
(1)将权利要求1步骤(3)中得到的电流-时间(i-t)曲线进行积分得到电量-时间(Q-t)曲线;
(2)利用公式3对Q-t曲线进行拟合,解析出参数A;
(3)将A带入公式4,解析出参数C,即为所测样品中大肠杆菌的浓度。
所述公式3:
Figure BDA0003175440710000052
其中Q为电量,t为时间,A和B为需要解析的参数;
所述公式4:|A|=-9.330×10-7×lgC+5.942×10-5,其中A为公式3中的A;C为所测样品中大肠杆菌的浓度,单位为cfu/mL。
实施例1:实验室中不同浓度大肠杆菌PBS溶液的测定
实验材料:CHI660E电化学工作站、10ml电解池、玻碳电极、铂金丝辅助电极、Ag/AgCl参比电极、不同浓度大肠杆菌PBS溶液
实验试剂:0.5M H2SO4溶液、0.2M KNO3和1mM K3Fe(CN)6的混合溶液、20mM K4Fe(CN)6溶液、氧化铝粉末(粒径1.0μm、0.3μm、0.05μm)、1M的HNO3、1M的NaOH、丙酮、乙醇,LB固体培养基:蛋白胨10g,酵母提取物5g,氯化钠10g,15g琼脂,蒸馏水定容至1000ml,121℃灭菌20min。LB固体主要实施步骤如下:
(1)将依次用粒径1.0μm、0.3μm、0.05μm的氧化铝粉末抛光后的玻碳电极分别于1MHNO3,1M NaOH,无水丙酮,无水乙醇,超纯水中超声(100W)清洗5分钟。
(2)将超声清洗过的玻碳电极按图1组成三电极体系。
(3)将5mL 0.5M H2SO4加入电解池中,连接CHI660E电化学工作站,采用循环伏安法进行电化学活化,电化学参数设置为:扫描范围-1~1V,扫描速度500mV/s,扫描100个循环。
(4)用超纯水清洗电解池,将5mL含0.2M KNO3和1mM K3Fe(CN)6的混合溶液加入电解池中,连接CHI660E电化学工作站,采用循环伏安法进行电化学测试,电化学参数设置为:扫描范围-0.2~0.6V,扫描速度50mV/s,扫描20个循环。当测试结果显示氧化还原峰差值ΔEp<80mV时进行下一步实验。玻碳电极表面如图2所示。
(5)用超纯水清洗电解池,将4mL的20mM K4Fe(CN)6溶液加入电解池后加入1mL待测的第一个浓度的大肠杆菌溶液混匀。连接CHI660E电化学工作站,采用计时电流法进行电化学检测,检测参数设置为:跃迁电压0.6V,检测时间200s,采样间隔0.1s,检测大肠杆菌菌液后玻碳电极表面照片如图3所示。
(5)将采集到的电流-时间数据导出,并用Origin 2020软件对电流时间数据进行积分,并利用本发明中的数据分析方法1计算大肠杆菌浓度,同时利用平板计数的方法计数待测溶液中大肠杆菌的浓度。
(6)将玻碳电极用灭菌超纯水冲洗够,按照步骤(3)开始的操作进行下一个样品的检测。
利用本发明的方法完成一个样品检测的时间在5分钟以内,远远快于常用的平板计数方法的24-48小时。本实施案例中对几个不同浓度大肠杆菌的检测结果及与平板技术方法的结果比对结果见表1,检测大肠杆菌菌液后玻碳电极表面经PI染色的照片如图4所示。
表1.本实施案例的检测结果
Figure BDA0003175440710000071
由表1的结果可知本发明的技术方法的检测结果与标准方法(平板计数法)的结果的误差在20%以内,且本发明大大加快了检测速度。
实施例2:污染的自来水中大肠杆菌浓度的测定
实验材料:CHI660E电化学工作站、10ml电解池、玻碳电极、铂金丝辅助电极、Ag/AgCl参比电极、添加大肠杆菌的自来水。
实验试剂:0.5M H2SO4溶液、0.2M KNO3和1mM K3Fe(CN)6的混合溶液、20mM K4Fe(CN)6溶液、氧化铝粉末(粒径1.0μm、0.3μm、0.05μm)、1M的HNO3、1M的NaOH、丙酮、乙醇,LB固体培养基:蛋白胨10g,酵母提取物5g,氯化钠10g,15g琼脂,蒸馏水定容至1000ml,121℃灭菌20min。LB固体主要实施步骤如下:
(1)将依次用粒径1.0μm、0.3μm、0.05μm的氧化铝粉末抛光后的玻碳电极分别于1MHNO3,1M NaOH,无水丙酮,无水乙醇,超纯水中超声(100W)清洗5分钟。
(2)将超声清洗过的玻碳电极按图1组成三电极体系。
(3)将5mL 0.5M H2SO4加入电解池中,连接CHI660E电化学工作站,采用循环伏安法进行电化学活化,电化学参数设置为:扫描范围-1~1V,扫描速度500mV/s,扫描100个循环。
(4)用超纯水清洗电解池,将5mL含0.2M KNO3和1mM K3Fe(CN)6的混合溶液加入电解池中,连接CHI660E电化学工作站,采用循环伏安法进行电化学测试,电化学参数设置为:扫描范围-0.2~0.6V,扫描速度50mV/s,扫描20个循环。当测试结果显示氧化还原峰差值ΔEp<80mV时进行下一步实验。
(5)用超纯水清洗电解池,将4mL的20mM K4Fe(CN)6溶液加入电解池后加入1mL待测的自来水混匀。连接CHI660E电化学工作站,采用计时电流法进行电化学检测,检测参数设置为:跃迁电压0.6V,检测时间200s,采样间隔0.1s。
(6)将采集到的电流-时间数据导出,并用Origin 2020软件对电流时间数据进行积分,并利用本发明中的数据分析方法2计算大肠杆菌浓度。同时利用平板计数的方法计数待测自来水中大肠杆菌的浓度。
利用本发明的方法测得的自来水中大肠杆菌浓度为1.72×103cfu/mL,平板计数的结果为1.50×103cfu/mL,误差为14.7%。可见本发明的技术方法的检测结果与标准方法(平板计数法)的结果的误差在20%以内,且本发明大大加快了检测速度。

Claims (2)

1.一种快速定量检测水环境中大肠杆菌的方法,其特征在于,包括以下步骤:
步骤一、电化学检测体系包括:电化学工作站、电解池、工作电极、辅助电极和参比电极;
所述工作电极为玻碳电极;
所述辅助电极为铂丝电极;
所述参比电极为银/氯化银电极;
步骤二、待测水样与浓度为20mM K4Fe(CN)6溶液按照体积比为1:5混合;
步骤三、将步骤二中的混合液作为电解液置于电解池中,放入工作电极、辅助电极和参比电极,连接电化学工作站后,利用计时电流法进行检测;
步骤四、将步骤三中得到数据进行处理,计算得到待测水样中大肠杆菌浓度;
所述步骤三中计时电流法的参数设置如下:
(1)阶跃电压为0.6V(相对参比电极电位);
(2)检测时间设定为200s;
(3)电流数据采样间隔设定为0.1s;
所述步骤四中数据处理的方法1步骤如下:
(1)将步骤三中得到的电流-时间(i-t)曲线利用公式1进行拟合,解析出参数i0
(2)将i0带入公式2,解析出参数C,即为所测样品中大肠杆菌的浓度;
所述公式1:
Figure FDA0004276166400000011
其中i为电流值,t为时间,i0、A和τ为需要解析的参数;
所述公式2:|i0|=-5.907×10-7×lgC+2.908×10-5,其中i0为公式1中的i0,C为待测水溶液中大肠杆菌的浓度,单位为cfu/mL;
所述步骤四中数据处理的方法2步骤如下:
(1)将步骤三中得到的电流-时间(i-t)曲线进行积分得到电量-时间(Q-t)曲线;
(2)利用公式3对Q-t曲线进行拟合,解析出参数A;
(3)将A带入公式4,解析出参数C,即为所测样品中大肠杆菌的浓度;
所述公式3:
Figure FDA0004276166400000021
其中Q为电量,t为时间,A和B为需要解析的参数;
所述公式4:|A|=-9.330×10-7×lgC+5.942×10-5,其中A为公式3中的A;C为所测样品中大肠杆菌的浓度,单位为cfu/mL。
2.如权利要求1所述的一种快速定量检测水环境中大肠杆菌的方法,其特征在于,步骤(1)中,所述玻碳电极的处理步骤:
(1)依次用粒径1.0μm、0.3μm、0.05μm的氧化铝粉末抛光玻碳电极,得抛光玻碳电极;
(2)抛光玻碳电极依次在HNO3、NaOH、丙酮、乙醇和超纯水中超声清洗5分钟,得清洗抛光玻碳电极;
(3)将清洗抛光玻碳电极在0.5M的硫酸溶液中,在如下参数:扫描电压范围-1~1V、扫描速度500mV/s,进行100个循环的循环伏安活化;
(4)将活化后的清洗抛光玻碳电极置于含有0.2MKNO3和1mM K3Fe(CN)6的溶液中测定氧化还原峰差值,使氧化还原峰差值ΔEp<80mV。
CN202110830720.0A 2021-07-22 2021-07-22 一种快速定量检测水环境中大肠杆菌的方法 Active CN113588744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110830720.0A CN113588744B (zh) 2021-07-22 2021-07-22 一种快速定量检测水环境中大肠杆菌的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110830720.0A CN113588744B (zh) 2021-07-22 2021-07-22 一种快速定量检测水环境中大肠杆菌的方法

Publications (2)

Publication Number Publication Date
CN113588744A CN113588744A (zh) 2021-11-02
CN113588744B true CN113588744B (zh) 2023-07-07

Family

ID=78248945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110830720.0A Active CN113588744B (zh) 2021-07-22 2021-07-22 一种快速定量检测水环境中大肠杆菌的方法

Country Status (1)

Country Link
CN (1) CN113588744B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003830A (zh) * 2006-12-31 2007-07-25 华东师范大学 快速计数水体中的大肠杆菌的方法
CN101982764A (zh) * 2010-11-01 2011-03-02 湖南大学 复合膜修饰的生物传感器及其制备方法和应用
CN102392069A (zh) * 2011-10-25 2012-03-28 常熟理工学院 基于功能化纳米金电极的快速检测菌落总数的方法
CN102768904A (zh) * 2011-05-05 2012-11-07 中国科学院化学研究所 TiO2纳米管阵列工作电极的制备方法
CN102809592A (zh) * 2012-07-13 2012-12-05 江苏大学 一种快速检测egcg的电化学传感器的电聚合制备方法
CN103278543A (zh) * 2013-05-21 2013-09-04 桂林市产品质量监督检验所 一种快速检测水体中沙门氏菌浓度的方法
CN104198558A (zh) * 2014-09-05 2014-12-10 天津工业大学 一种新型大肠杆菌电化学传感器的制备方法
CN105445169A (zh) * 2015-12-21 2016-03-30 江苏大学 一种细菌计数方法
WO2019053467A1 (en) * 2017-09-15 2019-03-21 Oxford University Innovation Limited ELECTROCHEMICAL RECOGNITION AND QUANTIFICATION OF THE EXPRESSION OF CYTOCHROME C OXIDASE IN BACTERIA
CN113092766A (zh) * 2021-03-30 2021-07-09 军事科学院军事医学研究院环境医学与作业医学研究所 多种真菌毒素的检测试剂盒,其制备方法及检测方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202028B2 (en) * 2001-09-24 2007-04-10 The University Of North Carolina At Chapel Hill Methods for the electrochemical detection of multiple target compounds

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003830A (zh) * 2006-12-31 2007-07-25 华东师范大学 快速计数水体中的大肠杆菌的方法
CN101982764A (zh) * 2010-11-01 2011-03-02 湖南大学 复合膜修饰的生物传感器及其制备方法和应用
CN102768904A (zh) * 2011-05-05 2012-11-07 中国科学院化学研究所 TiO2纳米管阵列工作电极的制备方法
CN102392069A (zh) * 2011-10-25 2012-03-28 常熟理工学院 基于功能化纳米金电极的快速检测菌落总数的方法
CN102809592A (zh) * 2012-07-13 2012-12-05 江苏大学 一种快速检测egcg的电化学传感器的电聚合制备方法
CN103278543A (zh) * 2013-05-21 2013-09-04 桂林市产品质量监督检验所 一种快速检测水体中沙门氏菌浓度的方法
CN104198558A (zh) * 2014-09-05 2014-12-10 天津工业大学 一种新型大肠杆菌电化学传感器的制备方法
CN105445169A (zh) * 2015-12-21 2016-03-30 江苏大学 一种细菌计数方法
WO2019053467A1 (en) * 2017-09-15 2019-03-21 Oxford University Innovation Limited ELECTROCHEMICAL RECOGNITION AND QUANTIFICATION OF THE EXPRESSION OF CYTOCHROME C OXIDASE IN BACTERIA
CN113092766A (zh) * 2021-03-30 2021-07-09 军事科学院军事医学研究院环境医学与作业医学研究所 多种真菌毒素的检测试剂盒,其制备方法及检测方法和应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery;Rua, F;《BIOELECTROCHEMISTRY》;第105卷;110-116 *
Rapid Quantitative Detection of Live Escherichia coli Based on Chronoamperometry;Cao, ZS;《BIOSENSORS-BASEL》;第12卷(第10期);845 *
原位制备纳米功能化金电极快速检测牛奶中的微生物;汪学英;《分析化学》;第40卷(第5期);657-662 *
无标记计时电流法检测大肠杆菌电极响应特性研究;曹卓松;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》(第4期);11-20 *
氧化石墨烯修饰玻碳电极快速检测香菇中多菌灵;罗宿星;《食品工业科技》;第33卷(第18期);73-74+78 *
电化学生物传感器及其检测大肠杆菌的研究;曹卓松;《食品研究与开发》;第42卷(第10期);193-197 *
食源性大肠杆菌O157:H7检测方法的研究进展;石瑞智;《职业与健康》;第34卷(第3期);425-428+432 *

Also Published As

Publication number Publication date
CN113588744A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
Ramanujam et al. Rapid electrochemical detection of Escherichia coli using nickel oxidation reaction on a rotating disk electrode
CN110632160B (zh) 一种三维细胞纸芯片传感器及在细菌脂多糖检测中的应用
Ni et al. Electrochemical oxidation of epinephrine and uric acid at a layered double hydroxide film modified glassy carbon electrode and its application
Shi et al. Impedimetric DNA sensor for detection of Hg 2+ and Pb 2+
CN113588744B (zh) 一种快速定量检测水环境中大肠杆菌的方法
CN104407132A (zh) 一种检测大肠杆菌的电化学传感器及其制备方法
CN112067676B (zh) 一种用于检测淡水中无机磷酸盐的传感器制备及检测方法
Cao et al. Rapid quantitative detection of live Escherichia coli based on chronoamperometry
CN105241945A (zh) 一种用于铀酰离子检测的传感器、其制备方法及应用
CN110006970B (zh) 用于多巴胺检测的电化学传感器的制备方法及其产品和应用
CN111781258A (zh) 一种可快速检测水环境中抗生素的传感器及检测方法
CN111239215A (zh) 一种磷掺杂多孔碳微球作为氯硝柳胺类氧化酶传感器的制备方法
Dantas et al. Amperometric determination of hydrogen peroxide using a copper microelectrode
CN110702760A (zh) 一种检测铀酰离子的纳米金-dna网状结构电化学生物传感器及其制备方法和应用
CN112461903B (zh) 一种检测氮掺杂碳量子点的电化学发光方法
Liu et al. Speciation of aluminium (III) in natural waters using differential pulse voltammetry with a pyrocatechol violet-modified electrode
Gao et al. Determination of Hg2+ in Tap Water Based on the Electrochemiluminescence of Ru (phen) 32+ and Thymine at Bare and Graphene Oxide‐Modified Glassy Carbon Electrodes
CN110618186B (zh) 一种WO3-CNTs杂化材料的制备方法及其在四环素传感器中的应用
Jouda et al. Copper metal at new CuO nanoparticles modified carbonpaste electrode: selective voltammetric determination
CN114441614A (zh) 一种电化学微生物快速检测仪及生物探针的修饰方法
CN113125545A (zh) 一种水质检测仪器及检测方法
Zhang et al. Preparation of Novel Cystine-multiwalled Carbon Nanotubes-graphene Oxide-glassy Carbon Electrode and Electrochemical Detection of Riboflavin and Dopamine.
CN115236162B (zh) 一种用于Pb2+检测的双信号电化学生物传感方法
CN115201309B (zh) 一种羟基自由基电化学传感器的制备方法及应用
Kaushal et al. Yttrium (III) selective electrode based on zirconium (IV) phosphoborate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant