CN113546660B - 一种合金催化剂及其在硼烷衍生物高效制氢中的用途 - Google Patents

一种合金催化剂及其在硼烷衍生物高效制氢中的用途 Download PDF

Info

Publication number
CN113546660B
CN113546660B CN202110754823.3A CN202110754823A CN113546660B CN 113546660 B CN113546660 B CN 113546660B CN 202110754823 A CN202110754823 A CN 202110754823A CN 113546660 B CN113546660 B CN 113546660B
Authority
CN
China
Prior art keywords
zif
borane
pdco
shell
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110754823.3A
Other languages
English (en)
Other versions
CN113546660A (zh
Inventor
王鹏程
邓杰
陆明
林秋汉
许元刚
陆国平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110754823.3A priority Critical patent/CN113546660B/zh
Publication of CN113546660A publication Critical patent/CN113546660A/zh
Application granted granted Critical
Publication of CN113546660B publication Critical patent/CN113546660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种合金催化剂及其在硼烷衍生物高效制氢中的用途,PdCo作为活性组分负载在中空氮掺杂碳材料外壳上,通过以核壳结构的ZIF‑8@ZIF‑67作为载体,Pd2+通过浸渍法嵌入载体外壳,通过热解反应,载体外壳中的Pd2+和Co2+被还原成PdCo合金,得到负载在中空氮掺杂碳材料外壳上的PdCo合金。该催化剂在氨硼烷、二甲胺硼烷、肼硼烷、偏二甲肼硼烷的水解产氢应用中,明显提升了产氢速率,体现在高转换频率值(TOF)分别达446.11,111.53,279.59,238.44 molH2·molPd ‑1·min‑1,低活化能分别为43.7,98.1,58.4,62.7 kJ/mol。

Description

一种合金催化剂及其在硼烷衍生物高效制氢中的用途
技术领域
本发明涉及一种合金催化剂在制氢中的用途,属于制氢技术领域。
背景技术
氢气具有较高的能量密度、质量比值和可再生性,被认为是一种极具潜力的能源载体。在20世纪70年代中期“氢经济”的概念首次提出,为了实现氢经济,世界各国对氢能研发和实现向氢经济的转型给予了很大重视。然而由于缺乏安全,高效的储氢方法,氢的广泛应用受到阻碍。在所有储氢方法中,以化学键形式储存氢的化学储氢方法具有安全、方便、高效等诸多优点,具有大规模实际应用的潜力。近些年来,以甲醇、甲酸和硼氢化钠为代表的化学储氢材料引起了学术界和产业界的广泛关注。另外硼烷衍生物,如氨硼烷(AB)和肼硼烷(HB),因具有分子量低、在水中溶解度高、稳定性好、分解温度适中、无毒等优点,被认为是极具应用前景的优良储氢介质,近年来被人们广泛研究,但在储氢领域中AB和HB的甲基衍生物很少被用于水解制氢研究。比如二甲胺硼烷(DMAB)是AB的一种衍生物,在商业上可以买到,价格比AB低得多,具有环保、在空气或水溶液中稳定性好等优点。另外偏二甲肼硼烷是最近合成的硼烷络合物,因降低了肼类燃料的危害性,作为新型的航天推进剂燃料。
硼烷类储氢材料制氢一般采用热分解和催化水解或醇解的方法,催化水解制氢具有反应可控性较好,反应条件温和等优点,被认为是最合适的制氢方法。Sun等人合成了PdCo纳米颗粒用于氨硼烷水解,其TOF值为22.7 molH2·(molcatalyst·min)−1,纳米颗粒团聚限制了其催化活性[ACS Nano,2011,5, 6458-6464]。Rakap等人制备了聚(N-乙烯-2-吡咯烷酮)稳定的CoRu纳米粒催化肼硼烷水解,得到的TOF值为90 min-1,活化能为56.2 kJ/mol[Int. J . Hydrogen Energy, 2020,45,15611-15617],可见其催化效果并不够理想。Wen等人制备了负载在软氮化多孔碳(NPC)上的钯(Pd)纳米颗粒(NPs),并将其用于二甲胺硼烷(DMAB)水解,DMAB水解的转换频率(TOF)为2758 h-1[Nanomaterials,2020, 10,1612],尽管优于大多数Pd基催化剂,但金属间协同作用能改善其催化性能。
发明内容
本发明的目的是提供一种合金催化剂及其用途,该合金催化剂可以催化水解氨硼烷、二甲胺硼烷、肼硼烷和偏二甲肼硼烷高效制氢,解决了硼烷衍生物作为储氢介质产氢速率慢,H2选择性低等问题。
为了达到上述目的,本发明所采用的技术方案是:一种合金催化剂,命名为PdCo@HCN-850,PdCo作为活性组分负载在中空氮掺杂碳材料外壳上,通过以核壳结构的ZIF-8@ZIF-67作为载体,Pd2+通过浸渍法嵌入载体外壳,通过热解反应,载体外壳中的Pd2+和Co2+被还原成PdCo合金,得到负载在中空氮掺杂碳材料外壳上的PdCo合金(PdCo@HCN-850),具体步骤如下:
步骤1):将ZIF-8@ZIF-67粉末分散于丙酮中形成悬浮液,向悬浮液中滴加醋酸钯的丙酮溶液,超声一段时间后室温搅拌,离心洗涤,真空干燥,得到ZIF-8@ZIF-67/Pd2+复合材料;
步骤2):将步骤1)所得ZIF-8@ZIF-67/Pd2+复合材料置于程序升温管式炉中,在850±10℃下热解3h,得到PdCo@HCN-850。
较佳的,步骤1)中,ZIF-8@ZIF-67和醋酸钯的质量比为60 : 1。
较佳的,步骤1)中,将ZIF-8@ZIF-67粉末超声30分钟分散于丙酮中形成悬浮液。
较佳的,步骤1)中,向悬浮液中滴加醋酸钯的丙酮溶液,超声15分钟后室温搅拌24小时。
较佳的,步骤2)中,升温速率为2℃/min。
本发明还提供了上述PdCo@HCN-850合金催化剂在氨硼烷、二甲胺硼烷、肼硼烷和偏二甲肼硼烷水解产中的用途。
本发明相对于现有技术,具有以下优点:
1、PdCo@HCN-850催化剂用于氨硼烷、二甲胺硼烷、肼硼烷和偏二甲肼硼烷水解产氢,都具有出色的催化活性,表现在高的TOF值。
2、中空氮掺杂碳材料载体修饰金属颗粒,其中空结构,有易于传质,暴露更多催化硼烷衍生物产氢的活性位点,提高催化活性。
3、采用丙酮做浸渍溶剂,Pd2+能够分布于载体中的ZIF-67壳层,贵金属Pd更好的与非贵金属Co形成合金,使得PdCo合金颗粒稳定负载于中空氮掺杂碳材料的外壳上,可以更好的暴露活性位点,且与反应底物更易接触,从而提高催化产氢速率;另外Co来源于载体,减小了金属成本,Zn的挥发和Co的还原还改善了碳材料,增强了金属与载体在催化硼烷衍生物产氢的协同作用。
4、相对于无负载,负载于ZIF-8衍生碳材料和负载于ZIF-67衍生碳材料来说,PdCo与ZIF-8@ZIF-67衍生的中空碳材料载体的协同作用更明显,来源于更大的比表面积和更高的含氮量(氮对H原子的吸附和稳定金属粒子起着重要作用)。
5、偏二甲肼硼烷首次作为储氢材料,用于水解制氢,且产氢效果显著。
6、本发明的材料制备条件不苛刻,成本较低,环境友好,适合大批量制备。
附图说明
图1为本发明实施例1所制备的催化剂PdCo@HCN-850的SEM照片。
图2为本发明实施例1所制备的催化剂PdCo@HCN-850的TEM照片。
图3为本发明实施例1所制备的催化剂PdCo@HCN-850的X射线衍射图。
图4为本发明实施例1所制备的催化剂PdCo@HCN-850颗粒的线扫图。
图5为本发明在不同浸渍溶剂中所制备的催化剂催化氨硼烷水解速率图。
图6为本发明对应实施例制备的催化剂PdCo@HCN-700、 PdCo@HCN-800、PdCo@HCN-850、PdCo@HCN-900、PdCo@HCN-1000催化氨硼烷水解释氢的速率图。
图7a为本发明实施例1所制备的催化剂PdCo@HCN-850在不同温度下催化氨硼烷水解的放氢速率图;图7b为对应的阿伦尼乌斯曲线。
图8a为本发明实施例1所制备的催化剂PdCo@HCN-850在不同温度下催化二甲胺硼烷水解的放氢速率图;图8b为对应的阿伦尼乌斯曲线。
图9a为本发明实施例1所制备的催化剂PdCo@HCN-850在不同温度下催化肼硼烷水解的放氢速率图;图9b为对应的阿伦尼乌斯曲线。
图10a为本发明实施例1所制备的催化剂PdCo@HCN-850在不同温度下催化偏二甲肼硼烷水解的放氢速率图;图10b为对应的阿伦尼乌斯曲线。
具体实施方式
本发明通过实施例,结合说明书附图对本发明内容作进一步详细说明,但不是对本发明的限制。
ZIF作为MOF的一个子类,其限制效应可以防止金属颗粒团聚。以MOFs为前驱体碳化后制得的碳材料,既保留了MOF的大比表面积和规则网状多孔结构,又实现了杂原子原位掺杂。热解ZIF-8可以得到富氮掺杂碳材料,而热解ZIF-67既可以得到氮掺杂碳纳米材料作为催化剂载体和又作为合金中Co的提供者。
在以往的工作中,浸渍法往往采用正己烷、石油醚等作为浸渍溶剂,但是采用此类溶剂作为浸渍溶剂,金属离子分布于整个载体,但这对于大尺寸的核壳结构载体是不利的,因为载体内部的金属与反应底物更难接触,降低催化活性;而且对于核壳结构ZIF-8@ZIF-67来说,Co来自于ZIF-67壳层,位于ZIF-8内部Pd在热解过程中只能还原为单金属Pd,无法形成PdCo合金。实验结果发现,采用丙酮做浸渍溶剂,可以使得Pd2+分布于壳层,热解后能得到负载于壳层的PdCo合金,催化效果显著。
下面给出了本发明所述的PdCo@HCN用于氨硼烷、二甲胺硼烷、肼硼烷和偏二甲肼硼烷水解产氢的化学式。
实施例1:ZIF-8@ZIF-67的制备和催化剂PdCo@HCN的制备
ZIF-8@ZIF-67的制备参考现有技术,对其稍作修改,首先Zn(NO3)2·6H2O与2-甲基咪唑按摩尔比1:4称取,分别溶解于甲醇溶液中,快速搅拌下将金属盐溶液倒入配体溶液,搅拌半分钟后,静置12h,离心洗涤干燥得到ZIF-8白色粉末;将ZIF-8晶种在甲醇超声分散30min,依次加入六水合硝酸钴甲醇溶液和2-甲基咪唑甲醇溶液,室温搅拌24h,离心干燥得到ZIF-8@ZIF-67紫色粉末。
将600mg ZIF-8@ZIF-67 超声30min分散于55ml丙酮中,称取10 mg醋酸钯溶于5ml丙酮溶液中,缓慢滴加至上述悬浮液,滴加完毕再超声15min后搅拌24h,离心洗涤干燥得到ZIF-8@ZIF-67/Pd2+淡紫色粉末。
将ZIF-8@ZIF-67/Pd2+置于管式炉中,用氩气吹扫10min后,启动升温程序,以2℃/min的升温速率,升至850℃,保持3h后,待体系降至室温,得到PdCo@HCN-850黑色粉末。
图1为PdCo@HCN-850的扫描电镜图,在图中可以看到中空结构,而且热解后保留ZIF的十二面体结构;图2为PdCo@HCN-850的透射电镜图,可以发现合金颗粒均匀分散在载体上;图3为PdCo@HCN-850的XRD谱图,可以发现PdCo合金的(111)衍射峰;图4为PdCo@HCN-850的线扫图,表明Pd分布在壳层。
实施例2:PdCo@HCN催化氨硼烷(NH3·BH3,AB)水解释氢试验
取50 mg实施例1所得的中空氮掺杂碳材料修饰的PdCo合金催化剂PdCo@HCN于25ml的三口烧瓶中,加入6 ml去离子水,超声使催化剂分散均匀,将三口烧瓶放置于水浴锅中,磁力搅拌;三口烧瓶的一颈连接一个倒置的150 ml量筒,中间含两个装有10 wt% CuSO4溶液的玻璃瓶(用来吸收和检测氨气),另外两个瓶口用橡皮密封塞密封;称取46 mg(1.5mmol) 氨硼烷溶于4ml去离子水中,利用注射器将氨硼烷水溶液注入三口烧瓶;注入氨硼烷水溶液的同时计时开始,每隔一定时间记录量筒示数,直至不再有气泡产生,停止计时。整个实验过程温度控制在30℃左右。
实施例3:PdCo@HCN催化二甲胺硼烷((CH3)2NH·BH3,DMAB)水解释氢试验
称取88 mg(1.5 mmol)二甲胺硼烷溶于4ml去离子水中代替称取46 mg(1.5 mmol)氨硼烷溶于4ml去离子水中,其他步骤同实施例2。
实施例4:PdCo@HCN催化肼硼烷(N2H4·BH3,HB)水解释氢试验
称取69 mg(1.5 mmol)肼硼烷溶于4ml去离子水中代替称取46 mg(1.5 mmol) 氨硼烷溶于4ml去离子水中,其他步骤同实施例2。
实施例5:PdCo@HCN催化偏二甲肼硼烷((CH3)2N-NH2·BH3,UDMHB)水解释氢试验
称取111 mg(1.5 mmol) 偏二甲肼硼烷溶于4ml去离子水中代替称取46 mg(1.5mmol) 氨硼烷溶于4ml去离子水中,其他步骤同实施例2。
对比例1
将实施例1得到的600mg ZIF-8@ZIF-67 超声30min分散于55ml二氯甲烷中,称取10 mg醋酸钯溶于5ml二氯甲烷溶液中,缓慢滴加至上述悬浮液,滴加完毕再超声15min后搅拌24h,离心洗涤干燥得到ZIF-8@ZIF-67/Pd2+淡紫色粉末。其他步骤同实施例1。
对比例2
将实施例1得到600mg ZIF-8@ZIF-67 超声30min分散于60ml正己烷中,称取10 mg氯化钯溶于1ml水溶液中,缓慢滴加至上述悬浮液,滴加完毕再超声15min后搅拌24h,离心洗涤干燥得到ZIF-8@ZIF-67/Pd2+淡紫色粉末,其他步骤同实施例1。
对比例3
将实施例1得到600mg ZIF-8@ZIF-67 超声30min分散于60ml石油醚中,称取10 mg氯化钯溶于1ml水溶液中,缓慢滴加至上述悬浮液,滴加完毕再超声15min后搅拌24h,离心洗涤干燥得到ZIF-8@ZIF-67/Pd2+淡紫色粉末,其他步骤同实施例1。
将对比例1-3和实施例1的不同浸渍溶剂的浸渍方法得到的催化剂进行氨硼烷水解释氢实验来测定催化剂的催化能力,实验结果如图5所示,采用丙酮做浸渍溶剂的催化能力最高,其次正己烷、石油醚,催化能力最差的是二氯甲烷。由于正己烷和石油醚浸渍技术采用的是双溶剂浸渍法,Pd分布整个载体,位于内核的Pd热解没有形成PdCo合金和传质困难等问题影响催化活性;而采用二氯甲烷作为浸渍溶剂,Pd主要分布于载体外表面,也很难形成PdCo合金,另外水解后颗粒容易脱落造成循环性差等问题。因此采用丙酮作为浸渍溶剂得到的催化剂进行硼烷衍生物水解释氢研究。
对比例4
将实施例1中得到的ZIF-8@ZIF-67/Pd2+置于管式炉中,用氩气吹扫10min后,启动升温程序,以2℃/min的升温速率,升至700℃,保持3h后,待体系降至室温,得到黑色粉末,记为PdCo@HCN-700。采用实施例2的方法测定催化氨硼烷释氢的释氢速率,如图6所示。
对比例5
将实施例1中得到的ZIF-8@ZIF-67/Pd2+置于管式炉中,用氩气吹扫10min后,启动升温程序,以2℃/min的升温速率,升至800℃,保持3h后,待体系降至室温,得到黑色粉末,记为PdCo@HCN-800。采用实施例2的方法测定催化氨硼烷释氢的释氢速率,研究结果如图6所示。
对比例6
将实施例1中得到的ZIF-8@ZIF-67/Pd2+置于管式炉中,用氩气吹扫10min后,启动升温程序,以2℃/min的升温速率,升至900℃,保持3h后,待体系降至室温,得到黑色粉末,记为PdCo@HCN-900。采用实施例2的方法测定催化氨硼烷释氢的释氢速率,如图6所示。
对比例7
将实施例1中得到的ZIF-8@ZIF-67/Pd2+置于管式炉中,用氩气吹扫10min后,启动升温程序,以2℃/min的升温速率,升至1000℃,保持3h后,待体系降至室温,得到黑色粉末,记为PdCo@HCN-1000。采用实施例2的方法测定催化氨硼烷释氢的催化活性,研究结果如图6所示。
对比试验采用氨硼烷的释氢速率来测定通过不同热解温度得到的催化剂的催化活性,测试结果如图6所示,当热解温度为850±10℃时,催化活性最好。当温度低于850℃时,因为热解不充分,影响催化活性;当温度高于850℃时,载体坍塌严重,合金颗粒团聚,降低催化效果。因此采用活性最高的PdCo@HCN-850催化硼烷衍生物水解释氢。
实施例6:不同温度下PdCo@HCN催化剂催化氨硼烷水解释氢试验
为了测得氨硼烷水解反应的活化能,催化水解实验分别在30,35,40和45℃进行,运用实施例2的方法催化氨硼烷水解释氢,测试结果如图7所示。
实施例7:不同温度下PdCo@HCN催化剂催化二甲胺硼烷水解释氢试验
为了测得二甲胺硼烷水解反应的活化能,催化水解实验分别在30,35,40和45℃进行,运用实施例3的方法催化二甲胺硼烷水解释氢,结果如图8所示。
实施例8:不同温度下PdCo@HCN催化剂催化肼硼烷水解释氢试验
为了测得肼硼烷水解反应的活化能,催化水解实验分别在30,35,40和45℃进行,运用实施例4的方法催化肼硼烷水解释氢,测试结果如9所示。
实施例9:不同温度下PdCo@HCN催化剂催化偏二甲肼硼烷水解释氢试验
为了测得偏二甲肼硼烷水解反应的活化能,催化水解实验分别在30,35,40和45℃进行,运用实施例5的方法催化偏二甲肼硼烷水解释氢,结果如10所示。

Claims (5)

1.一种合金催化剂在氨硼烷、二甲胺硼烷、肼硼烷或偏二甲肼硼烷水解产氢中的应用,其特征在于,所述合金催化剂中,PdCo作为活性组分负载在中空氮掺杂碳材料外壳上,通过以核壳结构的ZIF-8@ZIF-67作为载体,Pd2+通过浸渍法嵌入载体外壳,通过热解反应,载体外壳中的Pd2+和Co2+被还原成PdCo合金,得到负载在中空氮掺杂碳材料外壳上的PdCo合金;
所述合金催化剂由如下步骤制备:
步骤1):将ZIF-8@ZIF-67粉末分散于丙酮中形成悬浮液,向悬浮液中滴加醋酸钯的丙酮溶液,超声一段时间后室温搅拌,离心洗涤,真空干燥,得到ZIF-8@ZIF-67/Pd2+复合材料;
步骤2):将步骤1)所得ZIF-8@ZIF-67/Pd2+复合材料置于程序升温管式炉中,在850±10℃下热解3h,得到所述合金催化剂。
2. 如权利要求1所述的应用,其特征在于,步骤1)中,ZIF-8@ZIF-67和醋酸钯的质量比为60 : 1。
3.如权利要求1所述的应用,其特征在于,步骤1)中,将ZIF-8@ZIF-67粉末超声30分钟分散于丙酮中形成悬浮液。
4.如权利要求1所述的应用,其特征在于,步骤1)中,向悬浮液中滴加醋酸钯的丙酮溶液,超声15分钟后室温搅拌24小时。
5.如权利要求1所述的应用,其特征在于,步骤2)中,升温速率为2℃/min。
CN202110754823.3A 2021-07-05 2021-07-05 一种合金催化剂及其在硼烷衍生物高效制氢中的用途 Active CN113546660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110754823.3A CN113546660B (zh) 2021-07-05 2021-07-05 一种合金催化剂及其在硼烷衍生物高效制氢中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110754823.3A CN113546660B (zh) 2021-07-05 2021-07-05 一种合金催化剂及其在硼烷衍生物高效制氢中的用途

Publications (2)

Publication Number Publication Date
CN113546660A CN113546660A (zh) 2021-10-26
CN113546660B true CN113546660B (zh) 2023-10-13

Family

ID=78102658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110754823.3A Active CN113546660B (zh) 2021-07-05 2021-07-05 一种合金催化剂及其在硼烷衍生物高效制氢中的用途

Country Status (1)

Country Link
CN (1) CN113546660B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779949B (zh) * 2022-11-28 2024-06-21 东南大学 一种N掺杂Pd-Co双金属磁性催化剂及制备方法及其在糠醛加氢制备糠醇工艺中的应用
CN116281854A (zh) * 2023-03-21 2023-06-23 扬州工业职业技术学院 一种低共熔溶剂催化氨硼烷热解脱氢的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105498823A (zh) * 2016-02-26 2016-04-20 南开大学 一种氮掺杂多孔碳负载钴催化剂的制备方法和应用
CN105642311A (zh) * 2015-12-29 2016-06-08 华南理工大学 碳基非贵金属贵金属核壳纳米催化剂及其以MOFs为模板的制备方法
CN107376996A (zh) * 2017-06-26 2017-11-24 湖北大学 一种氨硼烷水解释氢用钌钴双金属纳米负载型催化剂及其制备方法
CN110233250A (zh) * 2019-06-06 2019-09-13 中国科学院化学研究所 一种单晶颗粒三元正极材料的制备方法
CN112295572A (zh) * 2020-12-07 2021-02-02 桂林电子科技大学 一种具有空心结构的碳包覆Co-Ru纳米材料的制备及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642311A (zh) * 2015-12-29 2016-06-08 华南理工大学 碳基非贵金属贵金属核壳纳米催化剂及其以MOFs为模板的制备方法
CN105498823A (zh) * 2016-02-26 2016-04-20 南开大学 一种氮掺杂多孔碳负载钴催化剂的制备方法和应用
CN107376996A (zh) * 2017-06-26 2017-11-24 湖北大学 一种氨硼烷水解释氢用钌钴双金属纳米负载型催化剂及其制备方法
CN110233250A (zh) * 2019-06-06 2019-09-13 中国科学院化学研究所 一种单晶颗粒三元正极材料的制备方法
CN112295572A (zh) * 2020-12-07 2021-02-02 桂林电子科技大学 一种具有空心结构的碳包覆Co-Ru纳米材料的制备及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Huirong Chen,et al..Multishell Hollow Metal/Nitrogen/Carbon Dodecahedrons with Precisely Controlled Architectures and Synergistically Enhanced Catalytic Properties.《ACS Nano》.2019,第13卷(第7期),第7800-7810页,论文补充材料第1-61页. *
姚淇露等.氨硼烷催化水解制氢.《化学进展》.2020,第1930-1951页. *

Also Published As

Publication number Publication date
CN113546660A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
CN113546660B (zh) 一种合金催化剂及其在硼烷衍生物高效制氢中的用途
CN112886030B (zh) 一种多孔凹形立方体CoNP@CoSA-N-C催化剂及其制备方法和应用
CN111883773B (zh) 一种Ni/Co-CNT/NHPC的锂硫电池正极材料的制备方法
CN107224981B (zh) 一种氨硼烷水解释氢的PdNi合金纳米催化剂及其制备方法
CN108808019B (zh) 一种杂原子掺杂碳微球负载磷化铁纳米粒子的氧还原催化剂及其制备方法
CN110523424B (zh) 一种基于Ru/NPC-CoxO制氢催化剂及制备方法
CN112295572B (zh) 一种具有空心结构的碳包覆Co-Ru纳米材料的制备及其应用
CN111939930B (zh) 一种碳量子点负载钴钌合金复合材料及其制备方法、应用
CN107670694B (zh) 一种金属负载型催化剂及其制备方法和应用
CN111330639A (zh) 一种多孔钴锌核壳金属有机框架化合物限域贵金属纳米粒子的杂化材料及其制备方法和应用
CN113522263B (zh) 一种磷掺杂石墨烯负载镍铂纳米催化剂的制备方法及应用
CN111346677B (zh) 一种用于催化甲酸自分解制取氢气的钯/富氨基多孔聚合物催化剂的制备方法
Cui et al. Ruthenium Supported on Cobalt‐Embedded Porous Carbon with Hollow Structure as Efficient Catalysts toward Ammonia‐Borane Hydrolysis for Hydrogen Production
CN114453000A (zh) 一种氮掺杂介孔空心碳球负载金属基纳米催化剂及其制备方法
CN111229276B (zh) 一种双层复合型电解水阳极催化剂及其制备方法
CN110534754B (zh) 一种包裹Fe3C纳米晶的碳纳米管及其制备方法和应用
CN113042086A (zh) 一种氨基功能化碳纳米管负载NiAuPd纳米催化剂的原位制备方法及应用
CN113000048B (zh) MoS2负载Co纳米颗粒的制备方法及其应用
CN109772455B (zh) 一种包裹细小高分散钯纳米粒子的多孔聚胺复合材料的制备和应用
CN111584884A (zh) 一种燃料电池双元合金催化剂的微波制备方法
CN103579639A (zh) 一种燃料电池用阴极催化剂及制备方法
CN114870874A (zh) 一种基于氧化石墨烯的掺氮多孔碳包覆嵌钌磷化钴复合材料
CN110518255B (zh) 一种碱式碳酸钴纳米棒/Pt纳米颗粒/中空XC-72碳复合材料及其制备方法
CN109746044B (zh) 一种CuFe2O4/CNC@Ag@ZIF-8催化剂及其制备方法和应用
CN115475641B (zh) 一种金属原子锚定的硼氮共掺杂碳材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant