CN113529168A - 一种Li+掺杂零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用 - Google Patents

一种Li+掺杂零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用 Download PDF

Info

Publication number
CN113529168A
CN113529168A CN202110741539.2A CN202110741539A CN113529168A CN 113529168 A CN113529168 A CN 113529168A CN 202110741539 A CN202110741539 A CN 202110741539A CN 113529168 A CN113529168 A CN 113529168A
Authority
CN
China
Prior art keywords
crystal
metal halide
perovskite structure
powder
dimensional perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110741539.2A
Other languages
English (en)
Inventor
魏钦华
向鹏
秦来顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202110741539.2A priority Critical patent/CN113529168A/zh
Publication of CN113529168A publication Critical patent/CN113529168A/zh
Priority to US17/732,021 priority patent/US20230002927A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/06Measuring neutron radiation with scintillation detectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明提供一种Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用,所述闪烁晶体的化学式为Cs3‑xCu2I5:xLi,其中x的取值范围为0.003≤x≤0.3。将CuI粉体、CsI粉体和LiI粉体在惰性气氛下以摩尔比为2:(3‑x):x进行配料,充分混合后作为原料粉体通过自发成核坩埚下降法生长所述Cs3‑xCu2I5:xLi零维钙钛矿结构金属卤化物闪烁晶体。晶体激发后可发射350‑550 nm的宽带蓝光,且强度远高于原纯组分晶体。由于Li+的存在,其应用范围由原有的X/伽马射线探测进一步拓展至中子探测领域。

Description

一种Li+掺杂零维钙钛矿结构金属卤化物闪烁晶体及其制备方 法与应用
技术领域
本发明涉及人工闪烁晶体技术领域,特别是涉及一种Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用。
背景技术
闪烁体是一类吸收高能射线或粒子后能够发光的材料,其中闪烁晶体的综合性能最优,作为辐射探测器的关键核心材料,已广泛应用于医学影像、国土安全、高能物理等领域。为满足高性能能谱及成像探测器对灵敏度和置信度的要求,开发新型高光输出、高能量分辨率的闪烁晶体材料一直是辐射探测领域的前沿研究方向。此前,铅卤钙钛矿因射线吸收系数高、缺陷态密度低、带隙连续可调、载流子迁移率/寿命乘积大等优点而备受关注。然而铅元素本身的毒性和生物富集性问题无法忽视,且铅卤钙钛矿往往存在不稳定性和自吸收现象。近年来,低维钙钛矿结构金属卤化物材料出现在人们的视线中,因具有限域激子发光、大斯托克斯位移和高荧光量子效率等特性,拥有无自吸收和高发光效率等优点,被认为是潜在的高性能闪烁材料。最近,基于Cu(I)体系的相关研究进展迅速。典型的,1D钙钛矿结构的 Rb2CuBr3在X射线辐射下拥有超过90000 ph/MeV的闪烁产量,堪比市面尖端的商用闪烁体,但Rb+的存在引入了闪烁体中避之不及的放射性背景。使用无自然放射性的Cs+替代Rb+,具有更低的零维结构、同样由自陷激子(STE)发光的Cs3Cu2I5相较而言,更具实际应用前景。
Cs3Cu2I5的单晶具有150 nm左右的斯托克斯位移,避免了自吸收损失;发射峰中心位于445 nm附近,与商用的光电倍增管适配,利于器件集成;有效原子序数高达52.2、密度在4.5 g/cm3上下,对应较大的射线吸收系数;余辉信号在X射线截止后10 ms内下降4个数量级,远优于商用CsI:Tl;X射线检测极限约100 nGyair/s,低于医学诊断要求数十倍;137Csγ射线辐射下的主衰减时间在1 μs左右,同比其它低维钙钛矿短得多,同时,得益于在辐射能量范围内的低非比例性,662 keV时的能量分辨率高达3.4%。并且,在掺入合适浓度的TI+后,原先纯组分接近70%的光致发光效率(PLQY)进一步提升近10个百分点;X射线激发下的稳态闪烁产率由32000 ph/MeV跃升至150000 ph/MeV,接近理论极限;662 keV时的绝对光产率为87000 ph/MeV,已与最尖端的γ射线探测器例如LaBr3:Ce,Sr和SrI2:Eu相媲美。然而,尽管Tl+的引入使得Cs3Cu2I5单晶的闪烁性能获得大幅提升,铊元素本身的剧毒性质却也带来了相当大的安全隐患。因此,亟待寻找一种在满足高光输出需求的同时不会造成环境和健康危害的金属掺杂离子。
发明内容
鉴于以上技术背景,本发明的目的在于提供一种Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体及其制备方法。通过Li+的掺入,不但提高了原纯组分晶体的光输出性能,并将其应用范围进一步拓展至中子探测领域。为实现上述目的及其他相关目的,本发明首先提供一种Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体,所述晶体的化学式为Cs3- xCu2I5:xLi,其中x的取值范围为0.003≤x≤0.3。
所述Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体在300 nm光源激发下,发射波长位于350-550 nm之间,与纯组分晶体相比未发生明显偏移,但荧光强度得到大幅度提升。
本发明还提供本发明所述的零维钙钛矿结构金属卤化物闪烁晶体的制备方法,包括:将CuI粉体、CsI粉体和LiI粉体在惰性气氛下以摩尔比为2:(3-x):x进行配料,其中0.003≤x≤0.3,充分混合后作为原料粉体,填入自发成核石英坩埚中,真空密封;以及利用所述原料粉体通过坩埚下降法生长所述Cs3-xCu2I5:xLi零维钙钛矿结构金属卤化物闪烁晶体。
本发明另一方面提供本发明所述的零维钙钛矿结构金属卤化物闪烁晶体在射线及中子探测领域的用途。
附图说明
图1为实施例1-5 Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体实物照片。
图2为实施例1 Cs2.85Cu2I5:5%Li闪烁晶体X射线衍射谱图。
图3为实施例1 Cs2.85Cu2I5:5%Li闪烁晶体、实施例2 Cs2.997Cu2I5:0.1%Li闪烁晶体、实施例4 Cs2.91Cu2I5:3%Li闪烁晶体、实施例5 Cs2.7Cu2I5:10%Li闪烁晶体荧光光谱图。
图4为实施例1 Cs2.85Cu2I5:5%Li闪烁晶体、实施例2 Cs2.997Cu2I5:0.1%Li闪烁晶体、实施例3 Cs2.97Cu2I5:1%Li闪烁晶体、实施例5 Cs2.7Cu2I5:10%Li闪烁晶体X射线激发发射光谱图。
图5为实施例1 Cs2.85Cu2I5:5%Li闪烁晶体衰减时间图。
图6为实施例1 Cs2.85Cu2I5:5%Li闪烁晶体、实施例2 Cs2.997Cu2I5:0.1%Li闪烁晶体透过率图。
具体实施方式
以下结合附图和下述实施方式进一步说明本发明。应明确,附图以及实施方式仅用于说明本发明而非限制本发明。
本发明通过研究Cs3-xCu2I5:xLi零维钙钛矿结构金属卤化物闪烁晶体,开发一种满足高性能能谱及成像探测器应用要求的新型闪烁晶体材料。本发明利用Li+在实践过程中发现的,在不改变原纯组分晶体激发和发射光范围前提下提升发光强度的特性,以CsI粉体、CuI粉体和LiI粉体为原料,制备出Cs3-xCu2I5:xLi零维钙钛矿结构金属卤化物闪烁晶体,其中x取值范围为0.003<x≤0.3。
制备方法:
坩埚清洗:先后在石英坩埚中装入液面高度略微没过坩埚主径部分的低浓度硝酸、去离子水和酒精,每次超声波清洗20-30 min。清洗完毕,擦去坩埚表面水分,放入干燥箱过夜,并提前2-3天放入手套箱中以确保装料时坩埚内壁无水氧。
原料粉体配料:在惰性气氛手套箱中,将CuI粉体、CsI粉体和LiI粉体以摩尔比为2:(3-x):x进行配料,其中0.003≤x≤0.3,充分混合后作为原料粉体,填入自发成核石英坩埚中,真空密封。原料粉体优选采用高纯粉体,例如纯度为99.99%以上,优选99.999%以上。
晶体生长:晶体生长采用垂直布里奇曼(即坩埚下降法),生长气氛为真空环境,晶体生长速度控制在0.2-1 mm/h,生长炉高温区温度设定为470-550 ℃,梯度为15-35 ℃/mm。
本发明进一步示出以下实施例以更好地说明本发明。应理解以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些同质的调整和优化均属于本发明的保护范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件。
实施例1:Cs2.85Cu2I5:5%Li闪烁晶体的自发成核坩埚下降法生长:
(1)在惰性气氛的手套箱中,将纯度为99.99%的CuI、CsI和LiI粉体,按CuI:CsI:LiI = 2:2.85:0.15的化学计量比进行配比,称取CuI 6.4753 g,CsI 12.5878 g,LiI0.3413 g,混合均匀;
(2)将原料粉体填入石英坩埚内,将坩埚抽真空后,利用氢氧焰枪火焰,使位于坩埚管口窄壁凸起处的石英柱与内壁互熔,达到密封效果,放进陶瓷引下管中,然后将该引下管置于引下机构上,并使坩埚底部上升至下降炉内温度梯度区上沿位置,随后开始升温;
(3)下降炉高温区温度设定为470℃,加热原料至熔融状态,保温30小时;
(4)通过引下机构以0.4毫米/小时的速度下降石英坩埚;
(5)待坩埚下降到预设距离后,缓慢降低温度至室温,随后取出转移至手套箱中。敲碎坩埚取出晶体,经切割、研磨、抛光,加工成晶片样品,并取剩余透明边角料,经研磨,加工成粉末样品。
生长得到的晶体质量较好(参见图1)。粉末样品的X射线衍射图谱与Cs3Cu2I5的标准PDF#44-0077卡片非常匹配,结晶度良好(参见图2)。在300 nm的光源激发下,显示出发射中心处于446 nm,范围在350-550 nm的自陷激子发光,其发射强度对照纯组分晶体得到大幅提升(参见图3)。X射线激发下的发射光谱显示出与荧光光谱类似的结果,表明晶体中不存在明显的结构缺陷(参见图4)。在450 nm监测波长下的常温衰减时间为1003 ns(参见图5),满足实际辐射探测应用的需要。晶片样品在发射波段内保持了较好的透过率,便于光子探测器对光信号的接受(参见图6)。
实施例2:Cs2.997Cu2I5:0.1%Li闪烁晶体的自发成核坩埚下降法生长:
(1)在惰性气氛的手套箱中,将纯度为99.99%的CuI、CsI和LiI粉体,按CuI:CsI:LiI = 2:2.85:0.15的化学计量比进行配比,称取CuI 6.4753 g,CsI 13.2371 g,LiI0.0068 g,混合均匀;
(2)将原料粉体填入自发成核石英坩埚内,将坩埚抽真空后,利用氢氧焰枪火焰,使位于坩埚管口窄壁凸起处的石英柱与内壁互熔,达到密封效果,放进陶瓷引下管中,然后将该引下管置于引下机构上,并使坩埚底部上升至下降炉内温度梯度区上沿位置,随后开始升温;
(3)下降炉高温区温度设定为490℃,加热原料至熔融状态,保温30小时;
(4)通过引下机构以1毫米/小时的速度下降石英坩埚;
(5)待坩埚下降到预设距离后,缓慢降低温度至室温,随后取出转移至手套箱中。敲碎坩埚取出晶体,经切割、研磨、抛光,加工成晶片样品,并取剩余透明边角料,经研磨,加工成粉末样品。
生长得到的晶体质量较好(参见图1)。样品在300 nm的光源激发下,显示出发射中心处于446 nm,范围在350-550 nm的自陷激子发光(参见图3)。X射线激发下的发射光谱显示出与荧光光谱类似的结果,表明晶体中不存在明显的结构缺陷(参见图4)。晶片样品在发射波段内保持了较好的透过率,便于光子探测器对光信号的接受(参见图6)。
实施例3:Cs2.97Cu2I5:1%Li闪烁晶体的自发成核坩埚下降法生长:
(1)在惰性气氛的手套箱中,将纯度为99.99%的CuI、CsI和LiI粉体,按CuI:CsI:LiI = 2:2.85:0.15的化学计量比进行配比,称取CuI 6.4753 g,CsI 13.1178 g,LiI0.0683 g,混合均匀;
(2)将原料粉体填入自发成核石英坩埚内,将坩埚抽真空后,利用氢氧焰枪火焰,使位于坩埚管口窄壁凸起处的石英柱与内壁互熔,达到密封效果,放进陶瓷引下管中,然后将该引下管置于引下机构上,并使坩埚底部上升至下降炉内温度梯度区上沿位置,随后开始升温;
(3)下降炉高温区温度设定为510℃,加热原料至熔融状态,保温30小时;
(4)通过引下机构以0.8毫米/小时的速度下降石英坩埚;
(5)待坩埚下降到预设距离后,缓慢降低温度至室温,随后取出转移至手套箱中。敲碎坩埚取出晶体,经切割、研磨、抛光,加工成晶片样品,并取剩余透明边角料,经研磨,加工成粉末样品。
生长得到的晶体质量较好(参见图1)。样品在300 nm的光源激发下,显示出发射中心处于446 nm,范围在350-550 nm的自陷激子发光,其发射强度对照纯组分晶体得到明显提升(参见图3)。X射线激发下的发射光谱显示出与荧光光谱类似的结果,表明晶体中不存在明显的结构缺陷(参见图4)。
实施例4:Cs2.91Cu2I5:3%Li闪烁晶体的自发成核坩埚下降法生长:
(1)在惰性气氛的手套箱中,将纯度为99.99%的CuI、CsI和LiI粉体,按CuI:CsI:LiI = 2:2.85:0.15的化学计量比进行配比,称取CuI 6.4753 g,CsI 12.8528 g,LiI0.2048 g,混合均匀;
(2)将原料粉体填入自发成核石英坩埚内,将坩埚抽真空后,利用氢氧焰枪火焰,使位于坩埚管口窄壁凸起处的石英柱与内壁互熔,达到密封效果,放进陶瓷引下管中,然后将该引下管置于引下机构上,并使坩埚底部上升至下降炉内温度梯度区上沿位置,随后开始升温;
(3)下降炉高温区温度设定为530℃,加热原料至熔融状态,保温30小时;
(4)通过引下机构以0.6毫米/小时的速度下降石英坩埚;
(5)待坩埚下降到预设距离后,缓慢降低温度至室温,随后取出转移至手套箱中。敲碎坩埚取出晶体,经切割、研磨、抛光,加工成晶片样品,并取剩余透明边角料,经研磨,加工成粉末样品。
生长得到的晶体质量较好(参见图1)。样品在300 nm的光源激发下,显示出发射中心处于446 nm,范围在350-550 nm的自陷激子发光,其发射强度对照纯组分晶体得到显著提升(参见图3)。X射线激发下的发射光谱显示出与荧光光谱类似的结果,表明晶体中不存在明显的结构缺陷(参见图4)。
实施例5:Cs2.7Cu2I5:10%Li闪烁晶体的自发成核坩埚下降法生长:
(1)在惰性气氛的手套箱中,将纯度为99.99%的CuI、CsI和LiI粉体,按CuI:CsI:LiI = 2:2.85:0.15的化学计量比进行配比,称取CuI 6.4753 g,CsI 11.9253 g,LiI0.6826 g,混合均匀;
(2)将原料粉体填入自发成核石英坩埚内,将坩埚抽真空后,利用氢氧焰枪火焰,使位于坩埚管口窄壁凸起处的石英柱与内壁互熔,达到密封效果,放进陶瓷引下管中,然后将该引下管置于引下机构上,并使坩埚底部上升至下降炉内温度梯度区上沿位置,随后开始升温;
(3)下降炉高温区温度设定为550℃,加热原料至熔融状态,保温30小时;
(4)通过引下机构以0.2毫米/小时的速度下降石英坩埚;
(5)待坩埚下降到预设距离后,缓慢降低温度至室温,随后取出转移至手套箱中。敲碎坩埚取出晶体,经切割、研磨、抛光,加工成晶片样品,并取剩余透明边角料,经研磨,加工成粉末样品。
生长得到的晶体质量较好(参见图1)。样品在300 nm的光源激发下,显示出发射中心处于446 nm,范围在350-550 nm的自陷激子发光。X射线激发下的发射光谱显示出与荧光光谱类似的结果,表明晶体中不存在明显的结构缺陷(参见图4)。

Claims (7)

1.一种Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体,所述闪烁晶体的化学式为Cs3- xCu2I5:xLi。
2.如权利要求1所述的Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体,其特征在于,所述的x的取值范围为0.003≤x≤0.3。
3. 如权利要求1~2任一项权利要求所述的Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体Cs3-xCu2I5:xLi,其特征在于,所述晶体在高能射线或高能粒子激发下,能发射出350-550 nm之间的宽带蓝光。
4.如权利要求1~3任一项权利要求所述的Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体Cs3-xCu2I5:xLi,其特征在于,所述晶体在中子和伽马射线两种射线共同照射下,能够同时甑别中子和伽马射线。
5.如权利要求1~4任一项权利要求所述的Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体的制备方法,包括:将CuI、CsI和LiI粉体在惰性气氛下按照一定比例混合,填入自发成核石英坩埚后真空密封,加热熔融粉体,进行晶体生长,从而获得晶体。
6.如权利要求5所述的Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体的制备方法,其特征在于,所述将CuI粉体、CsI粉体和LiI粉体以摩尔比为2:(3-x):x进行配料,充分混合后作为原料粉体,其中0.003≤x≤0.3;以及利用所述原料粉体通过坩埚下降法生长所述Cs3- xCu2I5:xLi零维钙钛矿结构金属卤化物闪烁晶体。
7.如权利要求1~2任一项权利要求所述的Li+掺杂的零维钙钛矿结构金属卤化物闪烁晶体的应用,其特征在于所述的闪烁晶体在X射线、伽马射线或中子探测领域的应用。
CN202110741539.2A 2021-07-01 2021-07-01 一种Li+掺杂零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用 Pending CN113529168A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110741539.2A CN113529168A (zh) 2021-07-01 2021-07-01 一种Li+掺杂零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用
US17/732,021 US20230002927A1 (en) 2021-07-01 2022-04-28 Li+ doped metal halide scintillation crystal with zero-dimensional perovskite structure, preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110741539.2A CN113529168A (zh) 2021-07-01 2021-07-01 一种Li+掺杂零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN113529168A true CN113529168A (zh) 2021-10-22

Family

ID=78097462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110741539.2A Pending CN113529168A (zh) 2021-07-01 2021-07-01 一种Li+掺杂零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用

Country Status (2)

Country Link
US (1) US20230002927A1 (zh)
CN (1) CN113529168A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411252A (zh) * 2022-01-24 2022-04-29 中国科学院上海硅酸盐研究所 一种新型中子探测用类钙钛矿结构闪烁体及其制备方法和应用
GB2618386A (en) * 2022-05-06 2023-11-08 Quantum Advanced Solutions Ltd X-ray scintillator
CN117431067A (zh) * 2023-12-21 2024-01-23 中国科学院上海硅酸盐研究所 一种锰掺杂增强电离辐射发光卤化物闪烁体及其制备方法和应用
CN117552106A (zh) * 2024-01-10 2024-02-13 江苏先进无机材料研究院 稀土基零维钙钛矿卤化物闪烁单晶及其制备方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411252A (zh) * 2022-01-24 2022-04-29 中国科学院上海硅酸盐研究所 一种新型中子探测用类钙钛矿结构闪烁体及其制备方法和应用
CN114411252B (zh) * 2022-01-24 2023-10-10 中国科学院上海硅酸盐研究所 一种新型中子探测用类钙钛矿结构闪烁体及其制备方法和应用
GB2618386A (en) * 2022-05-06 2023-11-08 Quantum Advanced Solutions Ltd X-ray scintillator
CN117431067A (zh) * 2023-12-21 2024-01-23 中国科学院上海硅酸盐研究所 一种锰掺杂增强电离辐射发光卤化物闪烁体及其制备方法和应用
CN117552106A (zh) * 2024-01-10 2024-02-13 江苏先进无机材料研究院 稀土基零维钙钛矿卤化物闪烁单晶及其制备方法和应用
CN117552106B (zh) * 2024-01-10 2024-04-05 江苏先进无机材料研究院 稀土基零维钙钛矿卤化物闪烁单晶及其制备方法和应用

Also Published As

Publication number Publication date
US20230002927A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US11584885B2 (en) Codoping method for modifying the scintillation and optical properties of garnet-type scintillators
USRE45930E1 (en) Lanthanide doped strontium barium mixed halide scintillators
US20210003720A1 (en) Novel Lanthanide Doped Cesium Barium Halide Scintillators
US20230002927A1 (en) Li+ doped metal halide scintillation crystal with zero-dimensional perovskite structure, preparation method and use thereof
US11230667B2 (en) Garnet scintillator co-doped with monovalent ion
EP2386618B1 (en) Halide scintillator for radiation detection
EP2386620B1 (en) Chloride scintillator for radiation detection
EP2387040B1 (en) Iodide scintillator for radiation detection
WO2010129926A1 (en) Novel lanthanide doped barium mixed halide scintillators
CN113957525A (zh) 一种用于中子/伽马甑别的Li+掺杂卤化物闪烁晶体及其制备方法
JP2011026547A (ja) シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
CN108441960A (zh) 二价金属阳离子与铈共掺镥铝石榴石晶体制备方法
CN108441959A (zh) 掺铈铝酸钆镥石榴石晶体制备方法
JP2016056378A (ja) シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
Sarukura et al. Czochralski growth of oxides and fluorides
Khan et al. Optical properties of the Czochralski grown Cs2MoO4 crystal
CN117603690A (zh) 一种多组分近红外卤化物闪烁晶体
CN108193274B (zh) 一种复式钨酸盐闪烁晶体及其制备方法
JP2018070769A (ja) シンチレータ結晶、シンチレータ結晶を製造するための熱処理方法、及びシンチレータ結晶の製造方法
Lu et al. Crystal growth and characterization of mixed elpasolite scintillators Ce: Cs2Li (LaBr6) x (YCl6) 1-x (0< x≤ 0.4)
Yao et al. Temperature Gradient Designing and Optical Properties of SrI 2 and SrI 2: Eu Crystals Grown by Edge-Defined Film-Fed Growth (EFG) Method
Fujimoto Inorganic Halide Scintillators
Nakauchi et al. Scintillation light yield of Tb-doped Lu2O3 single crystals
CN113293436A (zh) 一种近红外闪烁晶体及其制备方法与应用
US10174244B2 (en) Doped halide scintillators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination