CN113528183B - 陷阱稳定金属的双功能分子筛催化制备α-蒎烯基混合喷气燃料 - Google Patents

陷阱稳定金属的双功能分子筛催化制备α-蒎烯基混合喷气燃料 Download PDF

Info

Publication number
CN113528183B
CN113528183B CN202110851408.XA CN202110851408A CN113528183B CN 113528183 B CN113528183 B CN 113528183B CN 202110851408 A CN202110851408 A CN 202110851408A CN 113528183 B CN113528183 B CN 113528183B
Authority
CN
China
Prior art keywords
pinene
alpha
molecular sieve
hbeta
tsot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110851408.XA
Other languages
English (en)
Other versions
CN113528183A (zh
Inventor
袁冰
朱本强
解从霞
于凤丽
于世涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110851408.XA priority Critical patent/CN113528183B/zh
Publication of CN113528183A publication Critical patent/CN113528183A/zh
Application granted granted Critical
Publication of CN113528183B publication Critical patent/CN113528183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

陷阱稳定金属的双功能分子筛催化制备α‑蒎烯基。本发明公开了一种以α‑蒎烯为原料,采用陷阱稳定金属的双功能分子筛Ru@TSOT‑HBeta在间歇式高压反应釜中催化三段式反应,制备α‑蒎烯基生物质混合喷气燃料的方法。其特征在于采用高温脱铝在SOT‑HBeta分子筛表面构建陷阱以稳定Ru金属纳米粒子,获得的双功能分子筛催化剂Ru@TSOT‑HBeta先催化α‑蒎烯加氢制备出蒎烷,再在蒎烷为溶剂的环境下催化α‑蒎烯二聚后再加氢,分离除去固体催化剂后得到的液体反应混合物即具有较高的密度和热值,极低的冰点和较好的低温粘度等优良的燃料性能,能够满足低温使用环境。同时催化剂具有良好的重复使用性能,为α‑蒎烯基生物质混合喷气燃料的制备提供了一条清洁高效的新方法。

Description

陷阱稳定金属的双功能分子筛催化制备α-蒎烯基混合喷气 燃料
技术领域
本发明涉及一种以α-蒎烯为原料制备生物质基混合喷气燃料的方法。具体地说是采用陷阱稳定金属的双功能分子筛Ru@TSOT-HBeta先催化α-蒎烯加氢获得蒎烷,再在蒎烷为溶剂的环境下催化α-蒎烯二聚后再加氢,原位制得α-蒎烯基混合喷气燃料的方法。
背景技术
随着人们对化石燃料面临的原料枯竭及排放污染等问题的日益重视,从生物质原料中获取清洁可再生的高品质液体燃料,用来替代或补充传统化石能源的需求越来越迫切。其中,对于航空航天领域而言,目前主要使用的以链烷烃及部分环烷烃为主要成分的石油基大比重煤油体积热值(NHOC)低,很大程度上限制了飞行器的航程、航速和载荷等关键性能(Chemical Engineering Science,2018,180:95-125;推进技术,2014,35:1419-1425)。以挂式四氢双环戊二烯(JP-10)为代表的高密度喷气燃料(HEDF)是为满足航空航天飞行器高航速以及高载荷的需求,人工合成的具备高密度和高热值的液体烃类燃料,是低成本快速提高现有飞行器推进性能的有效方式(US 8975463;Journal of hazardousmaterials,2004,112:1-15;Materials Research,2001,31:291-321)。这些石油基高能量密度燃料虽然具备良好的油品性能,但同样也会导致化石能源的消耗、碳排放的增大和大气污染的加剧。而与车用燃料不同的是,由于航空航天领域使用条件的限制,高密度喷气燃料难以采用电能等其它清洁能源、以及生物质提炼的低碳链式烃类燃料进行替代。因此,结构中不含氧、且同时提供多元环及桥环、环外或环内双键等结构的大宗生物质原料松节油的主要成分α-蒎烯成为批量制备生物质高密度喷气燃料的理想原料(CN103031164A)。
然而,α-蒎烯的直接加氢饱和产物蒎烷虽具有优异的低温性能,冰点低至-77℃,但密度和热值不足,且闪点过低,难以直接作为高密度燃料使用。而蒎烯二聚后再加氢得到的饱和二聚混合物,虽具有与JP-10相当的密度和热值,但粘度却是JP-10的几千倍,冰点也有较大程度升高,同样也无法直接适用于航空航天领域所处的低温环境。此外,鉴于α-蒎烯二聚反应的强放热特征,其酸催化二聚工艺多以甲苯作为溶剂,反应结束后,需将溶剂减压蒸馏除去,提纯后再催化加氢得到饱和二聚产物,操作繁琐能耗大,有悖于采用生物质原料替代石油基产品的绿色化学初衷。而在试图采用双功能催化剂以一锅反应的形式制备α-蒎烯基混合高密度喷气燃料时,双功能催化剂能否同时保持足够的酸催化能力和对金属纳米粒子的良好分散稳定能力,成为实现该过程工艺绿色化的关键。
发明内容
本发明的目的在于提供一种制备α-蒎烯基混合喷气燃料的环境友好新方法。该混合喷气燃料的催化制备反应过程不涉及蒸馏等繁琐操作过程和石油基有机溶剂,能耗低、排放少,且制备出的燃料具有较高的密度和热值,极低的冰点和较好的低温粘度,能够满足低温使用环境。
本发明的目的是通过以下技术方案实现的:
在带有聚四氟乙烯内衬的不锈钢反应釜中以0.1g(cat.)/mL(α-蒎烯)的比例加入Ru@TSOT-HBeta分子筛催化剂和原料α-蒎烯,封釜后用氮气置换3次后充入1MPa H2,70℃搅拌反应3h。反应结束后冷却排气,催化剂沉降至反应器底部,将一半体积的上层清液产物蒎烷移出,再在反应釜中补充加入与初始原料等体积的α-蒎烯,封釜后充入1MPa N2,170℃搅拌反应8h。降温排气后充入1MPa H2,70℃再反应3h。反应结束后排气开釜,催化剂沉降至反应器底部,也可离心分离除去,得到的上层清液即为α-蒎烯基混合喷气燃料产品。
上述技术方案中所述的陷阱稳定金属的双功能分子筛Ru@TSOT-HBeta,其制备方法为:
以SiO2︰Na2O︰Al2O3︰TEAOH︰H2O=1︰0.064︰0.04︰0.43︰10.5的物质的量配比首先将NaOH、25%的TEAOH(四乙基氢氧化铵)水溶液和NaAlO2混合并搅拌至澄清,再缓慢加入白炭黑,将得到的混合物搅拌1h得到透明的粘性凝胶。将凝胶在70℃真空干燥箱中完全干燥后研碎,转入20mL聚四氟乙烯内衬,再将该装有前驱物的内衬放入另一个底部装有1mL去离子水的100mL的聚四氟乙烯内衬,并一同转移至水热反应釜中150℃结晶24h。将得到的固体用水和乙醇洗涤后烘干,以1.67℃/min的速度程序升温至550℃煅烧4h脱除模板剂,再按1g/10mL的比例用1.0mol/L NH4Cl溶液80℃离子交换1h,过滤、洗涤和干燥后于550℃马弗炉焙烧2h,得到分子筛晶种。
以SiO2︰Na2O︰Al2O3︰TEAOH︰H2O=1︰0.25︰0.04︰0.06︰12.2的物质的量配比将NaOH、25%的TEAOH(四乙基氢氧化铵)水溶液和NaAlO2混合并搅拌至澄清,再缓慢加入白炭黑,将得到的混合物搅拌1h得到透明的粘性凝胶。再以SiO2的质量为计量基准,将10wt%的分子筛晶种加入凝胶搅拌均匀,于水热反应釜中130℃结晶40h。得到的固体用水和乙醇洗涤后烘干,以1.67℃/min的速度程序升温至550℃煅烧4h脱除模板剂,再按1g/10mL的比例用1.0mol/L NH4Cl溶液80℃离子交换1h,过滤、洗涤和干燥后于550℃马弗炉焙烧2h,再升温至700℃焙烧4h脱铝改性制得陷阱化TSOT-HBeta分子筛。
将TSOT-HBeta分子筛按照100mL/g(分子筛)的比例加入二氯甲烷中,再按照钌含量为0.85%分子筛质量的比例加入醋酸钌,超声分散30min后室温磁力搅拌自还原反应24h,负压过滤后分别用二氯甲烷、乙醇和水洗涤,100℃下干燥2h,置于管式炉中,以5℃/min的升温速率在5%的H2/Ar混合气氛中400℃下还原4h,得到陷阱稳定金属的双功能分子筛Ru@TSOT-HBeta。
本发明提供的陷阱稳定金属的双功能分子筛Ru@TSOT-HBeta催化α-蒎烯三段反应制备生物质基混合喷气燃料方法与现有技术相比具有以下特点:
(1)采用同一种双功能催化剂原位分段催化反应,分别先后催化α-蒎烯加氢制备出蒎烷作为溶剂,再催化α-蒎烯二聚,最后对混合产物进行加氢饱和。
(2)催化反应过程中仅采用α-蒎烯作为起始原料,且不涉及石油基有机溶剂,环境友好;
(3)采用在分子筛催化剂表面构建陷阱结构对金属纳米粒子进行分散和稳定,在保持良好酸催化能力的同时,增强了催化加氢能力和循环使用稳定能力。
(4)制得的混合物产品无需进行蒸馏提纯及组分切割,即可作为性能优良的生物质基高密度混合喷气燃料,制备工艺简便,易于规模生产。
具体实施方式
下面结合具体实施例对本发明进行进一步说明,但并不是对本发明的限定。
实施例1Ru@TSOT-HBeta催化剂的制备
称取0.132g NaOH、0.436g NaAlO2与16.8g 25wt%TEAOH水溶液混合至澄清,缓慢加入4.0g白炭黑搅拌1h得到透明粘性凝胶,70℃真空干燥箱中完全干燥后研碎,转入20mL聚四氟乙烯内衬,将该内衬放入另一个底部装有1mL去离子水的100mL聚四氟乙烯内衬,置于水热反应釜中150℃结晶24h。得到的固体用水和乙醇洗涤后烘干,以1.67℃/min的速度程序升温至550℃煅烧4h脱除模板剂,再按1g/10mL的比例用1.0mol/L NH4Cl溶液80℃离子交换1h,过滤、洗涤和干燥后于550℃马弗炉中焙烧2h,得到分子筛晶种。
称取1.12g NaOH、0.436g NaAlO2、2.353g 25wt%TEAOH水溶液和12.9mL水于100mL聚四氟乙烯内衬中混合至澄清,缓慢加入4.0g白炭黑搅拌1h得到透明粘性凝胶,再加入0.4g上述制得的分子筛晶种搅拌均匀,置于水热反应釜中130℃结晶40h。得到的固体用水和乙醇洗涤后烘干,以1.67℃/min的速度程序升温至550℃煅烧4h脱除模板剂,再按1g/10mL的比例用1.0mol/L的NH4Cl溶液80℃离子交换1h,过滤、洗涤和干燥后于550℃马弗炉中焙烧2h,再升温至700℃焙烧4h脱铝改性制得陷阱化TSOT-HBeta分子筛。
称取1g TSOT-HBeta分子筛和0.212g醋酸钌,于100mL二氯甲烷中超声分散30min,室温磁力搅拌下自还原反应24h,负压过滤后分别用二氯甲烷、乙醇和水洗涤,100℃下干燥2h,再置于管式炉中,以5℃/min的升温速率在氢气气氛(5%H2,95%Ar)下400℃下还原4h,得到陷阱稳定金属的双功能分子筛Ru@TSOT-HBeta催化剂。
实施例2Ru@TSOT-HBeta催化α-蒎烯三段式反应制备生物质基混合喷气燃料
一段反应:在带有聚四氟乙烯内衬的不锈钢反应釜中加入1g实施例1制备的Ru@TSOT-HBeta分子筛催化剂和10mLα-蒎烯,封釜后用氮气置换3次后充入1MPa H2,70℃搅拌反应3h。反应结束后冷却排气,催化剂沉降至反应器底部,上层清液经气相色谱分析,α-蒎烯转化率为99.7%,产物蒎烷顺反比为3.13,其燃料性能见表1一段产物。
二段反应:移出5mL上层清液,再在反应釜中加入10mLα-蒎烯,封釜后充入1MPaN2,170℃搅拌反应8h。
三段反应:降温排气后充入1MPa H2,70℃再反应3h。反应结束后排气开釜,催化剂沉降至反应器底部,也可离心分离除去,上层清液作为α-蒎烯基混合喷气燃料产品的燃料性能见表1三段产物。经气相色谱分析,其α-蒎烯转化率为98.5%,二聚产物选择性为64.0%。
表1实施例2中Ru@TSOT-HBeta催化α-蒎烯分段反应产品的燃料性能
Figure BDA0003182438740000041
实施例3-12Ru@TSOT-HBeta催化α-蒎烯加氢(一段反应)循环使用性能
表2Ru@TSOT-HBeta在α-蒎烯加氢反应中的循环使用稳定性
Figure BDA0003182438740000042
在带有聚四氟乙烯内衬的不锈钢反应釜中加入0.1g实施例1制备的Ru@TSOT-HBeta分子筛催化剂和1mLα-蒎烯,封釜后用氮气置换3次后充入1MPa H2,70℃搅拌反应3h。反应结束后冷却排气,离心分离催化剂,用无水乙醇洗涤5次后烘干,直接投入反应釜中重复上述操作,如此循环使用10次。得到的上清液经气相色谱分析得到的催化反应结果见表2。表2还给出了经溴值法测得的产品饱和度。
实施例13-15Ru@TSOT-HBeta催化α-蒎烯二聚(二段反应)循环使用性能
在带有聚四氟乙烯内衬的不锈钢反应釜中加入0.1g实施例1制备的Ru@TSOT-HBeta分子筛催化剂、0.5mL蒎烷和1mLα-蒎烯,封釜后充入1MPa N2,170℃搅拌反应8h。反应结束后冷却排气,离心分离催化剂,用无水乙醇洗涤5次后烘干,直接投入反应釜中重复上述操作,如此循环使用3次。得到的上清液经气相色谱分析得到的催化反应结果见表3。
表3Ru@TSOT-HBeta在α-蒎烯二聚反应中的循环使用稳定性
Figure BDA0003182438740000051
实施例16-18Ru@TSOT-HBeta催化α-蒎烯全段反应循环使用性能
在带有聚四氟乙烯内衬的不锈钢反应釜中加入0.1g实施例1制备的Ru@TSOT-HBeta分子筛催化剂和1mLα-蒎烯,封釜后用氮气置换3次后充入1MPa H2,70℃搅拌反应3h。反应结束后冷却排气,移出0.5mL上层清液,再在反应釜中加入1mLα-蒎烯,封釜后充入1MPaN2,170℃搅拌反应8h。降温排气后充入1MPa H2,70℃再反应3h。反应结束后排气开釜,离心分离催化剂,用无水乙醇洗涤5次后烘干,直接投入反应釜中重复上述操作,如此循环使用3次。离心得到的上清液经气相色谱分析得到的催化反应结果见表4。表4还给出了经溴值法测得的产品饱和度。
表4Ru@TSOT-HBeta在催化α-蒎烯制备混合喷气燃料工艺中的循环使用稳定性
Figure BDA0003182438740000052

Claims (1)

1.一种α-蒎烯基生物质混合喷气燃料的制备方法,其特征在于:以α-蒎烯为原料,以陷阱稳定金属的双功能分子筛Ru@TSOT-HBeta为催化剂进行三段催化反应,先以每毫升α-蒎烯0.1g催化剂的比例将α-蒎烯和Ru@TSOT-HBeta加入间歇式高压釜反应器,在1MPa H2下70℃反应3h,冷却排气后移出一半体积的液体产品,再在反应釜中加入与初始原料等体积的α-蒎烯,在1MPa N2下170℃反应8h,降温排气后再充入1MPa H2,70℃反应3h,排气开釜后离心分离固体催化剂得到α-蒎烯基生物质混合喷气燃料产品,回收的固体催化剂用无水乙醇洗涤5次,烘干后即可直接循环使用;
其中所述陷阱稳定金属的双功能分子筛Ru@TSOT-HBeta的制备方法为:
以SiO2︰Na2O︰Al2O3︰TEAOH︰H2O=1︰0.064︰0.04︰0.43︰10.5的物质的量配比将NaOH、25%TEAOH水溶液和NaAlO2混合搅拌至澄清,再加入白炭黑搅拌得到透明粘性凝胶,完全干燥后研碎转入聚四氟乙烯内衬,再将该内衬放入另一个底部装有1mL去离子水的大容量聚四氟乙烯内衬,于水热反应釜中150℃结晶24h,得到的固体用水和乙醇洗涤、烘干后550℃煅烧4h,再按1g/10mL的比例用1.0mol/L NH4Cl溶液80℃离子交换1h,过滤、洗涤和干燥后于550℃马弗炉焙烧2h,得到分子筛晶种;
以SiO2︰Na2O︰Al2O3︰TEAOH︰H2O=1︰0.25︰0.04︰0.06︰12.2的物质的量配比将NaOH、25%TEAOH水溶液和NaAlO2混合搅拌至澄清,加入白炭黑搅拌得到透明粘性凝胶,再按10%SiO2质量的比例加入分子筛晶种搅拌均匀,于水热反应釜中130℃结晶40h,得到的固体用水和乙醇洗涤、烘干后550℃煅烧4h,再按1g/10mL的比例用1.0mol/L NH4Cl溶液80℃离子交换1h,过滤、洗涤和干燥后于550℃马弗炉焙烧2h,再升温至700℃焙烧4h制得陷阱化TSOT-HBeta分子筛;
将TSOT-HBeta分子筛按照1g/100mL的比例加入二氯甲烷中,再按照钌含量为0.85%分子筛质量的比例加入醋酸钌,超声分散30min后室温磁力搅拌自还原反应24h,负压过滤后分别用二氯甲烷、乙醇和水洗涤,100℃下干燥2h,置于管式炉中,以5℃/min的升温速率在5%的H2/Ar混合气氛中400℃下还原4h,得到陷阱稳定金属的双功能分子筛Ru@TSOT-HBeta。
CN202110851408.XA 2021-07-27 2021-07-27 陷阱稳定金属的双功能分子筛催化制备α-蒎烯基混合喷气燃料 Active CN113528183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110851408.XA CN113528183B (zh) 2021-07-27 2021-07-27 陷阱稳定金属的双功能分子筛催化制备α-蒎烯基混合喷气燃料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110851408.XA CN113528183B (zh) 2021-07-27 2021-07-27 陷阱稳定金属的双功能分子筛催化制备α-蒎烯基混合喷气燃料

Publications (2)

Publication Number Publication Date
CN113528183A CN113528183A (zh) 2021-10-22
CN113528183B true CN113528183B (zh) 2022-07-15

Family

ID=78121006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110851408.XA Active CN113528183B (zh) 2021-07-27 2021-07-27 陷阱稳定金属的双功能分子筛催化制备α-蒎烯基混合喷气燃料

Country Status (1)

Country Link
CN (1) CN113528183B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188775A (zh) * 2017-07-07 2017-09-22 青岛科技大学 一种两亲性分子筛负载Ru纳米粒子催化α‑蒎烯加氢制备顺式蒎烷的方法
CN108311169A (zh) * 2018-01-25 2018-07-24 太原理工大学 分子筛及其制备方法与应用
CN112980501B (zh) * 2021-02-24 2022-03-18 青岛科技大学 一种松节油基生物质高能量密度燃料的一锅制备方法
CN112979406B (zh) * 2021-02-24 2022-05-31 青岛科技大学 一种双功能微孔分子筛催化α-蒎烯二聚-加氢反应的方法

Also Published As

Publication number Publication date
CN113528183A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN112934245B (zh) 一种油溶性钼基复合加氢催化剂及其制备方法和应用
CN112980501B (zh) 一种松节油基生物质高能量密度燃料的一锅制备方法
CN111087370B (zh) 一种非贵金属负载氮掺杂碳催化糠醛转移氢化制备糠醇的方法
CN113502174B (zh) 一种由聚烯烃废塑料直接制备航空汽油及航空煤油的方法
CN113528183B (zh) 陷阱稳定金属的双功能分子筛催化制备α-蒎烯基混合喷气燃料
CN110354874A (zh) 多孔结构的硅铝磷载体加氢催化剂的制备方法及在制备生物燃料中的应用
CN112125781B (zh) 一种糠醛加氢水解转化成1,2,5-戊三醇的方法
CN113061454A (zh) 一种利用微藻处理废弃口罩制备生物油的方法
CN112979406B (zh) 一种双功能微孔分子筛催化α-蒎烯二聚-加氢反应的方法
CN114522716B (zh) 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用
CN109337714B (zh) 用于橡胶树脂增塑剂的低萘高沸点芳烃溶剂的制备方法
CN111871441B (zh) 一种松香加氢制备氢化松香的方法及其催化剂
CN115584283B (zh) 一种由粗芴制备金刚烷类高密度燃料的方法
CN110846096A (zh) 一种催化生物质合成气转化制备液态石油气的方法
CN111647449B (zh) 一种高性能航空替代燃料及其制备方法
CN114797949B (zh) 基于mcm-41介孔分子筛的固体酸催化剂及其制备方法和应用
CN111909727B (zh) 一种异戊二烯制备饱和烃类燃料的绿色合成方法
CN115608409B (zh) 一种镁铝复合氧化物/ hzsm-5双功能催化剂及其制备方法与应用
CN113979825B (zh) 一种挂式四氢环戊二烯三聚体及其制备方法
CN115106123A (zh) 一种采用担载Pd的HGaZSM-12沸石基双功能催化剂制取多支链异十六烷的方法
CN116283464A (zh) 一种桥环烃高密度航空燃料的合成方法
CN117550945A (zh) 一种由糠醇和异戊二烯制备高密度航油组分的方法
CN115894177A (zh) 一种催化愈创木酚选择性制备苯酚类化合物的方法
CN116836740A (zh) 一种新型α-蒎烯基生物质高能量密度燃料
CN115261055A (zh) 一种催化裂解废油脂制备生物燃油的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant