CN113521296A - EGFR适配子修饰负载miR-375及PTX的RNA纳米药物及制备方法和应用 - Google Patents

EGFR适配子修饰负载miR-375及PTX的RNA纳米药物及制备方法和应用 Download PDF

Info

Publication number
CN113521296A
CN113521296A CN202110812208.3A CN202110812208A CN113521296A CN 113521296 A CN113521296 A CN 113521296A CN 202110812208 A CN202110812208 A CN 202110812208A CN 113521296 A CN113521296 A CN 113521296A
Authority
CN
China
Prior art keywords
ptx
nano
mir
drug
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110812208.3A
Other languages
English (en)
Inventor
王其龙
高勇
张莉
罗超
李想
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110812208.3A priority Critical patent/CN113521296A/zh
Publication of CN113521296A publication Critical patent/CN113521296A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种EGFR适配子修饰负载miR‑375及PTX的RNA纳米药物及制备方法和应用,该纳米药物以RNA纳米4WJ为核心,负载具有显著食管鳞癌细胞抑制作用的miR‑375及PTX,同时通过EGFR的修饰,进一步增强纳米载体的肿瘤靶向性,与4WJ‑miR‑375‑PTX相比,具有更好的食管鳞癌靶向及渗透作用,具有更好的抗食管鳞癌能力。

Description

EGFR适配子修饰负载miR-375及PTX的RNA纳米药物及制备方 法和应用
技术领域
本发明属肿瘤靶向治疗领域,涉及用于肿瘤靶向治疗的RNA纳米药物,具体涉及一种EGFR适配子修饰的、同时负载miR-375及PTX的RNA纳米药物 EGFR-4WJ-miR-375-PTX及其制备方法和应用。
背景技术
我国食管癌发病率、死亡率居全球首位,治疗仍以手术及传统的放化疗为主,其中化疗药物的应用在晚期食管癌治疗中仍是最为重要的治疗手段之一,但化疗药物治疗靶向性的缺乏及其严重毒副反应极大地限制了其治疗效果。寻求新的靶向治疗策略以提升疗效是当前食管癌研究的重点和难点。随着纳米科技的发展,纳米药物的开发成为肿瘤靶向治疗研究的热点。纳米药物须兼备实体瘤的高通透性和滞留效应(EPR效应)介导的被动靶向效应及各种修饰介导的主动靶向效应以发挥其高效的抗肿瘤作用。目前临床常用的白蛋白以及脂质体纳米药物仅能通过其介导的被动靶向效应发挥作用,虽有所提高常规化疗药物的抗肿瘤效果,但与大多纳米载体一样,存在显著的非靶器官分布效应,药物靶向递送效率仍偏低。
发明内容
本发明的第一个目的在于提供一种EGFR适配子修饰的、同时负载miR-375 及PTX的RNA纳米药物EGFR-4WJ-miR-375-PTX;本发明的第二个目的在于提供 EGFR-4WJ-miR-375-PTX的制备方法;本发明的第三个目的在于提供纳米药物 EGFR-4WJ-miR-375-PTX在食管鳞癌治疗方面的应用。
本发明的技术解决方案是:一种EGFR适配子修饰的、同时负载miR-375及 PTX的RNA纳米药物EGFR-4WJ-miR-375-PTX,该纳米药物以RNA纳米4WJ为核心,负载具有显著食管鳞癌细胞抑制作用的miR-375及PTX,并进行EGFR适配子修饰。
更进一步的是,以该RNA纳米药物为核心,制备靶向修饰的其它纳米药物体系。
更进一步的是,以该RNA纳米药物为核心,制备负载其它治疗性制剂的纳米药物体系。
其中,该RNA纳米药物的制备方法包括以下步骤:
(1)RNA寡核苷酸合成:合成寡核苷酸rG、rG、rC、rU、2’F rC2’F rU 磷酰胺单体、2’O-propargyl rC以及rU磷酰胺单体,将其通过脱盐柱进行脱盐处理后通过凝胶电泳进行分析纯化;
(2)PTX-叠氮化合物合成:PTX、6-叠氮己酸,N、N′-二环己基碳二亚胺和4-(二甲氨基)吡啶以1:2:2:1摩尔比浓度加入10mL二氯甲烷中;混合溶液室温搅拌过夜16h,通过过滤和旋转蒸发得到粗产品;粗产品通过硅胶柱层析,由己烷:乙酸乙酯(体积比5:5)洗脱液下来并随后旋转蒸发得最终PTX- 叠氮化合物产品;
(3)RNA寡核苷酸-PTX复合物合成:RNA寡核苷酸-6炔烃(2mM)与PTX-N3 (50mM)按体积比(5:2)充分混合在二甲亚砜/叔丁醇(体积比3:1)中,然后加入硫酸铜/三[(1-苄基-1H-1,2,3-三唑-4-基)甲基]胺(TBTA)和抗坏血酸钠(RNA:PTX:Cu+摩尔浓度比为1:15:20),混合溶液在4℃振荡16h;反应结束后,往混合溶液中加入1/10体积的0.3M的醋酸钠和2.5倍体积的无水乙醇沉淀RNA寡核苷酸;RNA寡核苷酸-紫杉醇复合物纯度通过16%(w/v)8M尿素聚丙烯酰胺凝胶(PAGE);凝胶电泳使用TBE缓冲液(89mM三碱基硼酸盐,2mM EDTA);
(4)RNA纳米药物的组装:
4WJA:5′^-uuA GG^u AAA G^cc Acc uGc AGG uGc uAc^cGA uG^u AAu u^cA A-3′;
4WJB:5'^-uuG AA^u uAc A^uc GGu AGc AcG GGc uGu G^cG AGG^cuG AA^c AG-3';
4WJB-miR375:5'^-uuG AA^u uAc A^uc GGu AGc AcG GGc uGu G^cG AGG^cuG AA^c AG GcG AcG AGc ccc UcG cAc AAA cc-3';
4WJC-EGFR:5′^-cuG uu^c AGc c^uc GcA cAG ccA GcA^cGc Ac^c uGA A^uA GGuGcc uuA GuA AcG uGc uuu GAu Guc GAu ucG AcA GGA GGc-3’,下划线部分为 EGFR适配子;
4WJD:5’^-ccu Au^u cAG G^uG cGu Gcu GGG cuG cAG G^uG Gcu u^uA cc^u AA-3′;
miR-375:5'-UUU GUU CGU UCG GCU CGC GUG A-3';
^代表连接紫杉醇得位置;小写字母代表2’F修饰得碱基单体;将上述寡核苷酸链以相同摩尔浓度在TES缓冲液中混合(50mM Tris pH=8.0,50mM NaCl,1mM EDTA),在90℃变性10min,并逐渐冷却至4℃;纳米颗粒组装效率和纯度通过12%(w/v)的非变性凝胶电泳验证;凝胶电泳环境使用1ⅹTBE缓冲液(89mM Tris碱、200mM硼酸和2mM EDTA)。
其中,该RNA纳米药物应用于食管鳞癌治疗中。
本发明的优点是:以较强酶热稳定性及低脱靶效应的四向接头RNA纳米载体 4WJ为核心,构建了EGFR适配子修饰的、同时负载显著抑制食管鳞癌的miR-375 及化疗药物PTX的纳米药物EGFR-4WJ-miR-375-PTX,以期通过EGFR适配子的主动靶向作用及4WJ载体被动靶向作用介导的分子药物(miR-375)和化疗药物(PTX) 的协同作用,实现更为有效的食管鳞癌治疗效果,前期数据证实 EGFR-4WJ-miR-375-PTX具有较4WJ-miR-375-PTX更好的食管鳞癌抑制效果。
附图说明
图1为纳米药物EGFR-4WJ-miR-375-PTX的原子力显微镜成像、粒径及表面 Zeta电位鉴定;其中:A,原子力显微镜成像显示纳米药物约10nm左右,B,粒度仪检测其粒径分布约13nm;C,表面电势约-9mV;
图2为纳米药物EGFR-4WJ-miR-375-PTX酶稳定性分析;EGFR-4WJ-miR-375-PTX具有较强的酶稳定性;
图3为纳米药物EGFR-4WJ-miR-375-PTX与4WJ-miR-375-PTX被食管鳞癌细胞KYSE-150摄取差异分析;其中:A,激光共聚焦分析食管鳞癌细胞KYSE-150 摄取EGFR-4WJ-miR-375-PTX及4WJ-miR-375-PTX的差异;B,对KYSE-150细胞内摄取的纳米药物进行定量;
图4为纳米药物EGFR-4WJ-miR-375-PTX三维肿瘤微球渗透能力及体外肿瘤细胞杀伤能力分析;其中:A,激光共聚焦比较分析EGFR-4WJ-miR-375-PTX及 4WJ-miR-375-PTX渗透KYSE-150微球能力;B,体外比较EGFR-4WJ-miR-375-PTX 与4WJ-miR-375-PTX抑制KYSE-150细胞增殖能力。
图5为纳米药物EGFR-4WJ-miR-375-PTX及4WJ-miR-375-PTX体内肿瘤靶向性分析;其中:A,活体成像比较两种纳米药物在食管鳞癌荷瘤小鼠组织中的分布;B,组织中纳米药物平均荧光强度。
图6为纳米药物EGFR-4WJ-miR-375-PTX体内抗食管鳞癌效果分析;其中:A,活体成像比较各组肿瘤大小;B,各组荷瘤小鼠肿瘤。
具体实施方式
下面结合实施例进一步说明本发明的技术解决方案,但不能理解为是对技术方案的限制,在此基础上的适应性改进皆属于本发明的保护范围。
1、EGFR-4WJ-miR-375-PTX的构建:
(1)RNA寡核苷酸合成:合成寡核苷酸rG、rG、rC、rU、2’F rC2’F rU 磷酰胺单体、2’O-propargyl rC以及rU磷酰胺单体,将其通过脱盐柱进行脱盐处理后通过凝胶电泳进行分析纯化;
(2)PTX-叠氮化合物合成:PTX、6-叠氮己酸,N、N′-二环己基碳二亚胺和4-(二甲氨基)吡啶以1:2:2:1摩尔比浓度加入10L二氯甲烷中;混合溶液在室温搅拌过夜16h,通过过滤和旋转蒸发得到粗产品;粗产品通过硅胶柱层析,由己烷:乙酸乙酯(体积比5:5)洗脱液下来并随后旋转蒸发得最终PTX- 叠氮化合物产品;
(3)RNA寡核苷酸-PTX复合物合成:RNA寡核苷酸-6炔烃(2mM)与PTX-N3 (50mM)按体积比(5:2)充分混合在二甲亚砜/叔丁醇(体积比3:1)中,然后加入硫酸铜/三[(1-苄基-1H-1,2,3-三唑-4-基)甲基]胺(TBTA)和抗坏血酸钠(RNA:PTX:Cu+摩尔浓度比为1:15:20),混合溶液在4℃振荡16h;反应结束后,往混合溶液中加入1/10体积的0.3M的醋酸钠和2.5倍体积的无水乙醇沉淀RNA寡核苷酸;RNA寡核苷酸-紫杉醇复合物纯度通过16%(w/v)8M尿素聚丙烯酰胺凝胶(PAGE);凝胶电泳使用TBE缓冲液(89mM三碱基硼酸盐,2mM EDTA);
(4)纳米药物组装:
4WJA:5′^-uuA GG^u AAA G^cc Acc uGc AGG uGc uAc^cGA uG^u AAu u^cA A-3′;
4WJB:5'^-uuG AA^u uAc A^uc GGu AGc AcG GGc uGu G^cG AGG^cuG AA^c AG-3';
4WJB-miR375:5'^-uuG AA^u uAc A^uc GGu AGc AcG GGc uGu G^cG AGG^cuG AA^c AG GcG AcG AGc ccc UcG cAc AAA cc-3';
4WJC-EGFR:5′^-cuG uu^c AGc c^uc GcA cAG ccA GcA^cGc Ac^c uGA A^uA GGuGcc uuA GuA AcG uGc uuu GAu Guc GAu ucG AcA GGA GGc-3’,下划线部分为 EGFR适配子;
4WJD:5’^-ccu Au^u cAG G^uG cGu Gcu GGG cuG cAG G^uG Gcu u^uA cc^u AA-3′;
mir375:5'-UUU GUU CGU UCG GCU CGC GUG A-3';
^代表连接紫杉醇得位置;小写字母代表2’F修饰得碱基单体;将上述寡核苷酸链以相同摩尔浓度在TES缓冲液中混合(50mM Tris pH=8.0,50mM NaCl,1mM EDTA),在90℃变性10min,并逐渐冷却至4℃;纳米颗粒组装效率和纯度通过12%(w/v)的非变性凝胶电泳验证;凝胶电泳环境使用1ⅹTBE缓冲液(89mM Tris碱、200mM硼酸和2mM EDTA)。
2、纳米药物EGFR-4WJ-miR-375-PTX的表征
(1)形态、粒径及表面Zeta电位测定:原子力显微镜检测,将10μL预组装的EGFR-4WJ-miR-375-PTX(10nM)滴于干净云母片上,室温过夜晾干后通过 DMFASTSCAN2-SYS原子力显微镜进行扫描,并通过Nanoscope Analysis软件进行分析。
粒径及表面Zeta电文测定,以DEPC预处理的ddH2O溶解后通过PS3000粒度分析仪在25℃测定其表观流体动力学直径和表面Zeta电位,激光波长为633 nm,并通过GraphpadPrism 8.0绘制结果。
如图1所示,纳米药物EGFR-4WJ-miR-375-PTX的形态、粒径及表面Zeta 电位鉴定;其中:A,原子力显微镜结果显示EGFR-4WJ-miR-375-PTX形态均一,大小约10nm;B,粒度仪检测其粒径分布约13nm;C,表面电势约-9mV。
(2)酶稳定性分析:将EGFR-4WJ-miR-375-PTX与不同浓度的RNase A(0, 10,100,1000mg/mL)于37℃条件下分别处理不同时间(0.5,1,2,4, 8,10,12,24,48h),然后通过质量浓度3%琼脂糖凝胶电泳观察纳米载体的完整性。
如图2所示,纳米药物EGFR-4WJ-miR-375-PTX酶稳定性分析;结果显示 EGFR-4WJ-miR-375-PTX几乎未发生降解,具有较强的酶稳定性。
3、纳米药物EGFR-4WJ-miR-375-PTX与4WJ-miR-375-PTX被食管鳞癌细胞 KYSE-150摄取差异分析
KYSE-150细胞(2×104/孔)培养于含小室的玻片上,24小时后,分别加入 AF647标记的EGFR-4WJ-miR-375-PTX及4WJ-miR-375-PTX,37℃孵育12或24 小时;PBS清洗3次后,4%多聚甲醛固定10分钟,DAPI染核后封片,激光共聚焦显微镜观察纳米药物在细胞内的蓄积并对荧光强度行定量分析;
如图3所示,纳米药物EGFR-4WJ-miR-375-PTX与4WJ-miR-375-PTX被食管鳞癌细胞KYSE-150摄取差异分析;其中:A,激光共聚焦分析食管鳞癌细胞 KYSE-150摄取EGFR-4WJ-miR-375-PTX及4WJ-miR-375-PTX的差异;B,对 KYSE-150细胞内摄取的纳米药物进行定量。
4、纳米药物EGFR-4WJ-miR-375-PTX三维肿瘤微球渗透能力及体外肿瘤细胞杀伤能力分析
(1)纳米药物肿瘤微球渗透能力分析:将KYSE-150细胞(1ⅹ103)通过DMEM/ 基质胶(1:1,体积比)重悬于35mm培养皿中,10-14天后,分别加入AF647 标记的EGFR-4WJ-miR-375-PTX及4WJ-miR-375-PTX,37℃孵育12、24小时后, PBS清洗三次,4%多聚甲醛固定,DAPI染核后,激光共聚焦显微镜对微球内纳米药物进行观察并定量。
(2)纳米药物体外抑制食管鳞癌能力分析:将KYSE-150细胞(5ⅹ103)培养于板孔中,37℃过夜,然后分别加入PBS、4WJ、4WJ-miR-375、4WJ-EGFR-PTX、 PTX、4WJ-PTX、4WJ-EGFR-PTX、4WJ-miR-375-PTX以及EGFR-4WJ-miR-375-PTX;通过实时无标记细胞分析仪(xCELLigence系统)记录各组细胞增殖情况。
如图4所示,纳米药物EGFR-4WJ-miR-375-PTX三维肿瘤微球渗透能力及体外肿瘤细胞杀伤能力分析;其中,A,激光共聚焦结果显示EGFR显著增强 4WJ-miR-375-PTX的肿瘤微球渗透能力;B,EGFR-4WJ-miR-375-PTX发挥了较 4WJ-miR-375-PTX等更好的KYSE-150细胞抑制效果。
5、纳米药物EGFR-4WJ-miR-375-PTX及4WJ-miR-375-PTX体内肿瘤靶向性分析
将AF647标记的EGFR-4WJ-miR-375-PTX(5nmol)及4WJ-miR-375-PTX(5nmol) 分别尾静脉注射KYSE-150荷瘤裸鼠,纳米药物在小鼠脏器(肝脏、肺脏、肾脏、脾脏、心脏)及肿瘤中的分布通过小动物活体成像进行检测并定量分析。
如图5所示,纳米药物EGFR-4WJ-miR-375-PTX及4WJ-miR-375-PTX体内肿瘤靶向性分析;其中,A,EGFR-4WJ-miR-375-PTX在肿瘤组织中的蓄积信号明显强于4WJ-miR-375-PTX;B,脏器及肿瘤组织中纳米药物信号定量分析。
6、纳米药物EGFR-4WJ-miR-375-PTX体内抗食管鳞癌效果分析
(1)食管鳞癌细胞皮下荷瘤模型的建立:将表达荧光素酶报告基因的 KYSE-150细胞(5ⅹ106/50μL)接种于Balb/c裸鼠皮下,肿瘤长至约100mm3时随机分组并给予后续药物处理;
(2)药物处理方案:将皮下荷瘤小鼠分别随机分组,然后分别静脉注射PBS、 4WJ,PTX,4WJ-EGFR、4WJ-miR-375,4WJ-EGFR-miR-375,4WJ-PTX,4WJ-EGFR-PTX, 4WJ-miR-375-PTX以及4WJ-EGFR-miR-375-PTX,每7天处理1次,共处理5次。
如图6所示,纳米药物EGFR-4WJ-miR-375-PTX体内抗食管鳞癌效果分析;其中:A,小动物活体成像显示EGFR-4WJ-miR-375-PTX具有更好的肿瘤抑制效果; B,处理5次后小鼠肿瘤大小。
结果显示:我们制备获得了粒径约13nm、表面Zeta电位约-9mV的RNA纳米药物EGFR-4WJ-miR-375-PTX;纳米药物EGFR-4WJ-miR-375-PTX具有较强的酶稳定性,具有较强的肿瘤渗透能力,体外细胞学及小鼠食管鳞癌异种移植模型证实EGFR-4WJ-miR-375-PTX具有较4WJ-miR-375-PTX等更好的抑瘤效果,具有较好临床转化应用前景。
序列表
<110> 王其龙
<120> EGFR适配子修饰负载miR-375及PTX的RNA纳米药物及制备方法和应用
<130> 无
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 40
<212> RNA
<213> 人工序列(4WJA)
<400> 1
uuagguaaag ccaccugcag gugcuaccga uguaauucaa 40
<210> 2
<211> 64
<212> RNA
<213> 人工序列(4WJB-miR-375)
<400> 2
uugaauuaca ucgguagcac gggcugugcg aggcugaaca ggcgacgagc cccucgcaca 60
aacc 64
<210> 3
<211> 78
<212> RNA
<213> 人工序列(4WJC-EGFRapt)
<400> 3
cuguucagcc ucgcacagcc agcacgcacc ugaauaggug ccuuaguaac gugcuuugau 60
gucgauucga caggaggc 78
<210> 4
<211> 41
<212> RNA
<213> 人工序列(4WJD)
<400> 4
ccuauucagg ugcgugcugg gcugcaggug gcuuuaccua a 41

Claims (5)

1.EGFR适配子修饰负载miR-375及PTX的RNA纳米药物,其特征是:该纳米药物以RNA纳米4WJ为核心,负载具有显著食管鳞癌细胞抑制作用的miR-375及PTX,同时对载体进行EGFR适配子修饰。
2.根据权利要求1所述的EGFR适配子修饰负载miR-375及PTX的RNA纳米药物,其特征是:以该RNA纳米药物为核心,制备靶向修饰的其它纳米药物体系。
3.根据权利要求1所述的EGFR适配子修饰负载miR-375及PTX的RNA纳米药物,其特征是:以该RNA纳米药物为核心,制备负载其它治疗性制剂的纳米药物体系。
4.根据权利要求1所述的EGFR适配子修饰负载miR-375及PTX的RNA纳米药物的制备方法,其特征是该制备方法包括以下步骤:
(1)RNA寡核苷酸合成:合成寡核苷酸rG、rG、rC、rU、2’F rC2’F rU磷酰胺单体、2’O-propargyl rC以及rU磷酰胺单体,将其通过脱盐柱进行脱盐处理后通过凝胶电泳进行分析纯化;
(2)PTX-叠氮化合物合成:PTX、6-叠氮己酸,N、N′-二环己基碳二亚胺和4-(二甲氨基)吡啶以1:2:2:1摩尔比浓度加入10mL二氯甲烷中;混合溶液室温搅拌过夜16h,通过过滤和旋转蒸发得到粗产品;粗产品通过硅胶柱层析,由体积比5:5的己烷:乙酸乙酯的洗脱液下来并随后旋转蒸发得最终PTX-叠氮化合物产品;
(3)RNA寡核苷酸-PTX复合物合成:2mM的RNA寡核苷酸-6炔烃与50mM的PTX-N3按体积比5:2充分混合在体积比3:1的二甲亚砜/叔丁醇中,然后加入硫酸铜/三[(1-苄基-1H-1,2,3-三唑-4-基)甲基]胺(TBTA)和抗坏血酸钠,混合溶液在4℃振荡16h;其中,RNA:PTX:Cu+摩尔浓度比为1:15:20;反应结束后,往混合溶液中加入1/10体积的0.3M的醋酸钠和2.5倍体积的无水乙醇沉淀RNA寡核苷酸;RNA寡核苷酸-紫杉醇复合物纯度通过16%(w/v)8M尿素聚丙烯酰胺凝胶(PAGE);其中,凝胶电泳使用的TBE缓冲液中:89mM三碱基硼酸盐,2mM EDTA;
(4)RNA纳米药物的组装:
4WJA:5′^-uuA GG^u AAA G^cc Acc uGc AGG uGc uAc^cGA uG^u AAu u^cA A-3′;
4WJB:5'^-uuG AA^u uAc A^uc GGu AGc AcG GGc uGu G^cG AGG^cuG AA^c AG-3';
4WJB-miR375:5'^-uuG AA^u uAc A^uc GGu AGc AcG GGc uGu G^cG AGG^cuG AA^cAG GcG AcG AGc ccc UcG cAc AAA cc-3';
4WJC-EGFR:5′^-cuG uu^c AGc c^uc GcA cAG ccA GcA^cGc Ac^c uGA A^uA GGu Gc cuuAGuAAcGuGcuuuGAuGucGAuucGAcAGGAGGc-3’,下划线部分为EGFR适配子;
4WJD:5’^-ccu Au^u cAG G^uG cGu Gcu GGG cuG cAG G^uG Gcu u^uA cc^u AA-3′;
miR-375:5'-UUU GUU CGU UCG GCU CGC GUG A-3';
^代表连接紫杉醇的位置;小写字母代表2’F修饰得碱基单体;将上述寡核苷酸链以相同摩尔浓度在TES缓冲液中混合,90℃变性10min,并逐渐冷却至4℃;其中,TES缓冲液中:50mM Tris pH=8.0,50mM NaCl,1mM EDTA;纳米颗粒组装效率和纯度通过12%(w/v)的非变性凝胶电泳验证;其中,凝胶电泳环境使用1ⅹTBE缓冲液中:89mM Tris碱、200mM硼酸和2mM EDTA。
5.EGFR适配子修饰负载miR-375及PTX的RNA纳米药物的应用,其特征是:该RNA纳米药物应用于食管鳞癌的治疗。
CN202110812208.3A 2021-07-19 2021-07-19 EGFR适配子修饰负载miR-375及PTX的RNA纳米药物及制备方法和应用 Withdrawn CN113521296A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110812208.3A CN113521296A (zh) 2021-07-19 2021-07-19 EGFR适配子修饰负载miR-375及PTX的RNA纳米药物及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110812208.3A CN113521296A (zh) 2021-07-19 2021-07-19 EGFR适配子修饰负载miR-375及PTX的RNA纳米药物及制备方法和应用

Publications (1)

Publication Number Publication Date
CN113521296A true CN113521296A (zh) 2021-10-22

Family

ID=78128659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110812208.3A Withdrawn CN113521296A (zh) 2021-07-19 2021-07-19 EGFR适配子修饰负载miR-375及PTX的RNA纳米药物及制备方法和应用

Country Status (1)

Country Link
CN (1) CN113521296A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573184A (zh) * 2018-02-09 2019-12-13 俄亥俄州立创新基金会 Rna纳米结构,其制备方法和用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573184A (zh) * 2018-02-09 2019-12-13 俄亥俄州立创新基金会 Rna纳米结构,其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SIJIN GUO等: "Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy", 《NATURE COMMUNICATIONS》, pages 1 - 11 *
金立等: "miR-375靶向SHOX2调控人食管鳞癌细胞侵袭迁移的初步研究", 《临床肿瘤学杂志》, vol. 21, no. 3, pages 193 - 198 *

Similar Documents

Publication Publication Date Title
Zhen et al. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome
Sato et al. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice
Luo et al. IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy
Xue et al. Delivery of microRNA-1 inhibitor by dendrimer-based nanovector: An early targeting therapy for myocardial infarction in mice
JP7512207B2 (ja) 核酸治療薬のための調節可能な共カップリングポリペプチドナノ粒子送達系の組成物および方法
CN107952080A (zh) 一种肿瘤靶向多肽-药物偶联衍生物、其制备方法及应用
CN109381705A (zh) 具有不对称膜结构的可逆交联生物可降解聚合物囊泡及其制备方法
Zhu et al. Virus‐inspired nanogenes free from man‐made materials for host‐specific transfection and bio‐aided MR imaging
CN105039412A (zh) 用于高效基因传递的葡聚糖肽混合物
CN107868786B (zh) 多药耐药结肠癌细胞的单链dna适配体
CN114392358A (zh) 一种肿瘤靶向的核酸适体药物偶连物
Yu et al. Establishment of facile nanomedicine construction methodology to comprehensively overcome hurdles across tumor‐specific nano‐delivery
Shao et al. Phenylboronic acid-functionalized polyaminoglycoside as an effective CRISPR/Cas9 delivery system
Zhang et al. Moderating hypoxia and promoting immunogenic photodynamic therapy by HER-2 nanobody conjugate nanoparticles for ovarian cancer treatment
CN110157682A (zh) 人工靶向修饰的car-t细胞及其制备方法与应用
Wang et al. CXCR4‐enriched nano‐trap targeting CXCL12 in lung for early prevention and enhanced photodynamic therapy of breast cancer metastasis
CN113521296A (zh) EGFR适配子修饰负载miR-375及PTX的RNA纳米药物及制备方法和应用
Lin et al. Exosome-based rare earth nanoparticles for targeted in situ and metastatic tumor imaging with chemo-assisted immunotherapy
Fei et al. Gint4. T-siHDGF chimera-capped mesoporous silica nanoparticles encapsulating temozolomide for synergistic glioblastoma therapy
CN115245572B (zh) 靶向抑制肝细胞pcsk9降低ldlc的仿生纳米颗粒材料及其应用
Yang et al. AS1411 and EpDT3-conjugated silver nanotriangle-mediated photothermal therapy for breast cancer and cancer stem cells
CN115737841A (zh) 一种用于增强t细胞抗肿瘤免疫效应的基因纳米药物及其制备方法与应用
CN113499443A (zh) 负载miR-375及PTX的四向接头RNA纳米药物及其制备方法和应用
WO2022178543A1 (en) Rna stabilizing nanoparticles
Wang et al. A glutathione-sensitive cationic polymer delivery of CRISPR-Cas9 RNA plasmid for targeting nasopharyngeal carcinoma gene therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20211022