CN113504521A - 一种用于多目标环境下的基于混合模型的恒虚警检测方法 - Google Patents

一种用于多目标环境下的基于混合模型的恒虚警检测方法 Download PDF

Info

Publication number
CN113504521A
CN113504521A CN202110774195.5A CN202110774195A CN113504521A CN 113504521 A CN113504521 A CN 113504521A CN 202110774195 A CN202110774195 A CN 202110774195A CN 113504521 A CN113504521 A CN 113504521A
Authority
CN
China
Prior art keywords
target
distribution
detection
parameters
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110774195.5A
Other languages
English (en)
Other versions
CN113504521B (zh
Inventor
李杨
王新旸
张宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110774195.5A priority Critical patent/CN113504521B/zh
Publication of CN113504521A publication Critical patent/CN113504521A/zh
Application granted granted Critical
Publication of CN113504521B publication Critical patent/CN113504521B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Remote Sensing (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种用于多目标环境下的基于混合模型的恒虚警检测方法,涉及雷达目标检测领域。本发明是为了解决目前在多目标环境的恒虚警检测方法还存在干扰目标对参数估计的影响较大进而导致了检测性能下降的问题。本发明包括:获取雷达回波数据;建立非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型;将雷达回波数据输入到对数放大器进行对数处理,获得观测数据X=[x1,x2,x3,…,xN];引入隐变量Z=[z1,z2,…,zN]表示观测数据X=[x1,x2,x3,…,xN]的样本属性,构建关于F={X,Z}的对数似然函数;利用期望最大化算法对F={X,Z}的对数似然函数进行优化,获得Gumbel分布的尺度参数和位置参数;根据获得的Gumbel分布的尺度参数和位置参数获取检测阈值,并利用检测阈值判断待检测单元是否存在目标。本发明用于对恒虚警进行检测。

Description

一种用于多目标环境下的基于混合模型的恒虚警检测方法
技术领域
本发明属于雷达目标检测技术领域,特别涉及一种用于多目标环境下的基于混合模型的恒虚警检测方法。
背景技术
雷达是一种利用无线电进行目标探测的工具,被广泛应用于军事和民用中。恒虚警检测技术(CFAR)是一种自适应阈值技术,它可以根据检测背景的统计特性,自适应的计算出合理的阈值,具有恒虚警特性。通过将雷达接收到的数据进行处理并与恒虚警检测技术获得的阈值进行比较,可以将潜在的雷达目标检测出来,恒虚警检测技术对现代雷达具有重要意义。在均匀的高斯背景下,单元平均CA-CFAR检测方法通常具有最佳的检测性能。然而,实际的雷达探测环境往往具有典型的非均匀性,例如对于港口和海运航线来说,由于存在大量的舰船,多目标是造成探测背景非均匀的主要原因。由于目标的掩盖效应(capture effect),传统检测器在多目标环境下通常会获得较高的检测阈值,导致目标漏检,检测性能下降等问题出现。
目前,为了改善恒虚警检测技术在多目标环境下的检测性能,国内外学者相继做了很多的研究,提出了多种恒虚警检测技术,典型的有序统计类OS-CFAR检测技术通过对参考窗内的样本数据进行统计排序,从中选择出合适的样本作为检测背景的统计特性表示,剔除了异常值数据,改善了恒虚警检测技术在多目标环境下的检测能力,但是该检测器在均匀杂波环境下会出现检测性能下降的问题。2005年,阿尔及利亚的康斯坦丁大学的A.Farrouki和M.Barkat针对指数分布的杂波背景,提出了ADCCA CFAR检测技术,该检测技术利用模糊隶属函数(fuzzy membership function)对幅值较大的异常值进行剔除,从而利用均匀的参考单元计算检测阈值,改善了检测技术在多目标环境下的CFAR检测性能。但是这两种检测技术只适用于指数分布背景,当雷达杂波环境为韦布尔分布时,它们的性能都会出现不同程度的下降。针对韦布尔分布探测背景,加拿大的Weber和Haykin提出了一种双参数OS检测方法WH-CFAR,它利用两个有序统计估计值来计算检测阈值,将传统的有序统计类OS-CFAR进行改进并应用于韦布尔分布背景。2018年,澳大利亚的Graham V.Weinberg和Lachlan Bateman等人利用非相干特性提出了三种非相干检测技术,其中TM-OS(trimmedmean order statistic)检测技术在多目标环境下性能最好。虽然这种检测器相对于其他非相干检测器在多目标环境下性能较好,但是它的性能受限于干扰目标的数目和预设的参数。因此目前在多目标环境的恒虚警检测方法还存在干扰目标对参数估计的影响较大进而导致了检测性能下降的问题。
发明内容
本发明目的是为了解决目前在多目标环境的恒虚警检测方法还存在干扰目标对参数估计的影响较大进而导致了检测性能下降的问题,而提出了一种用于多目标环境下的基于混合模型的恒虚警检测方法。
一种用于多目标环境下的基于混合模型的恒虚警检测方法,具体过程包括以下步骤:
步骤一、获取雷达回波数据;
所述雷达回波数据包含杂波和雷达目标,其中杂波服从韦布尔分布;
步骤二、建立非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型;
步骤三:将雷达回波数据输入到对数放大器进行对数处理,获得观测数据的对数向量X=[x1,x2,x3,…,xN];
步骤四、引入隐变量Z=[z1,z2,…,zN]用来表示观测数据的对数向量X=[x1,x2,x3,…,xN]的样本属性,构建关于完备数据集F={X,Z}的对数似然函数;
步骤五、利用期望最大化算法对步骤后四获取的完备数据集F={X,Z}的对数似然函数进行优化,估计构建的非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型的参数,从而获得Gumbel分布的尺度参数和位置参数;
步骤六、根据步骤五获得的Gumbel分布的尺度参数和位置参数获取检测阈值,并利用检测阈值判断待检测单元是否存在目标。
本发明的有益效果为:
本发明在多目标和密集目标的非均匀探测环境下,将非均匀的检测背景建模为韦布尔和瑞利分布的混合模型,利用期望最大化算法准确并鲁棒的估计出杂波的统计分布参数,减轻了干扰目标对参数估计的影响,进而计算出合理的检测阈值,改善恒虚警检测技术在多目标环境下的检测性能。本发明利用杂波和目标统计分布特性,建立了相应的概率密度混合模型,减轻了干扰目标的影响,极大地提升了多目标环境下的检测性能。
附图说明
图1是本发明多目标环境下基于混合模型的恒虚警检测方法的流程图;
图2是本发明利用期望最大化算法进行混合模型参数估计的流程图;
图3是在杂波服从指数分布,干扰目标数目是样本总数的5%时,用本发明检测的检测概率图;
图4是在杂波服从指数分布,干扰目标数目是样本总数的15%时,用本发明检测的检测概率图;
图5是在杂波服从韦布尔分布,干扰目标数目是样本总数的5%时,用本发明检测的检测概率图;
图6是在杂波服从韦布尔分布,干扰目标数目是样本总数的15%时,用本发明检测的检测概率图;
图7是在杂波服从指数分布,干扰目标数目是样本总数的5%时,用本发明检测的虚警概率图。
具体实施方式
具体实施方式一:本实施方式一种用于多目标环境下的基于混合模型的恒虚警检测方法具体过程为(如图1):
步骤一、获取雷达回波数据;
所述雷达回波数据包含杂波和雷达目标,其中杂波服从韦布尔分布;
步骤二、根据目标的统计分布特性,建立非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型即:
Figure BDA0003153835060000031
其中,0≤w≤1是雷达回波数据中雷达目标单元的所占比例,
Figure BDA0003153835060000032
表示杂波服从韦布尔分布,其中B为韦布尔分布的尺度参数,表示分布的强度;C为韦布尔分布的形状参数,表示分布的偏斜度,
Figure BDA0003153835060000033
表示目标幅度波动服从瑞利分布,σ为瑞利分布的参数,Y=[y1,y2,y3,…,yN]是雷达回波数据幅值向量,yi表示位置i处雷达回波数据的幅值;Θ表示参数向量;N表示待检测雷达回波数据的总个数,i∈[1,N]。
步骤三:将雷达回波数据输入到对数放大器进行对数处理,获得观测数据的对数向量X=[x1,x2,x3,…,xN];
经过步骤三处理后,步骤二中的非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型更改为:
Figure BDA0003153835060000041
其中,xi表示观测数据的对数形式,即xi=ln(yi),待估计的参数向量θ=[a,b,c],
Figure BDA0003153835060000042
为Gumbel分布的尺度参数;b=lnB为Gumbel分布的位置参数,参数c=ln(2σ)。
步骤四:引入隐变量Z=[z1,z2,…,zN]用来表示观测数据的对数向量X=[x1,x2,x3,…,xN]的样本属性,构建关于完备数据集F={X,Z}的对数似然函数为:
Figure BDA0003153835060000043
其中,zi=0表示单元xi是杂波;zi=1表示单元xi是雷达目标;
步骤五、利用期望最大化算法对步骤后四获取的完备数据集F={X,Z}的对数似然函数进行优化,估计构建的非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型的参数,获得Gumbel分布的尺度参数和位置参数(如图2所示),包括以下步骤:
步骤五一、初始化参数
Figure BDA0003153835060000044
然后将观测数据的对数向量X中的数据进行从大到小排序,排序后的结果为Xnew,初始化
Figure BDA0003153835060000045
其中Xnew(1:10)为向量Xnew中的前十个数据;
Figure BDA0003153835060000046
为Gumbel分布的尺度参数a的估计值;
Figure BDA0003153835060000047
为Gumbel分布的位置参数b的估计值;
Figure BDA0003153835060000048
混合模型中参数c的估计值;
Figure BDA0003153835060000049
为回波数据中目标单元所占比例的估计值。
步骤五二、利用初始化的参数或上次迭代估计出的参数计算后验概率q1(i)和q0(i):
Figure BDA00031538350600000410
Figure BDA0003153835060000051
其中,其中q1(i)表示zi=1的后验概率;q0(i)表示zi=0的后验概率;
步骤五三、利用步骤五二获取的后验概率q1(i)和q0(i)获得回波数据中目标单元所占比例估计值的迭代式、杂波和雷达目标的统计分布参数的估值迭代式:
Figure BDA0003153835060000052
Figure BDA0003153835060000053
Figure BDA0003153835060000054
Figure BDA0003153835060000055
步骤五四、利用步骤五二中获得的后验概率q1(i)和q0(i)值和步骤五三中获得的参数估计值计算完备数据集F={X,Z}期望似然函数值为:
Figure BDA0003153835060000056
步骤五五、判断完备数据集F={X,Z}期望似然函数值是否收敛:若|Q(t+1)-Q(t)|≤10-6,则输出Gumbel分布参数a和b;若|Q(t+1)-Q(t)|>10-6,则返回步骤五二进行迭代求解直至满足|Q(t+1)-Q(t)|≤10-6输出Gumbel分布参数
Figure BDA0003153835060000061
Figure BDA0003153835060000062
其中,Q(t+1)表示第t+1次迭代得出的期望似然函数值;Q(t)表示第t次迭代得出的期望似然函数值。
步骤六、根据步骤五获得的Gumbel分布的尺度参数和位置参数获取检测阈值并利用检测阈值判断待检测单元是否存在目标,包括以下步骤:
步骤六一、利用估计出的Gumbel分布参数
Figure BDA0003153835060000063
Figure BDA0003153835060000064
计算检测阈值
Figure BDA0003153835060000065
Figure BDA0003153835060000066
其中,Pf是给定的虚警概率;
步骤六二、引入常数
Figure BDA0003153835060000067
调节实际的虚警概率,检测阈值变为:
Figure BDA0003153835060000068
其中,Pf是虚警概率;
Figure BDA0003153835060000069
为常数,
Figure BDA00031538350600000610
的值在1附近,实验中设定
Figure BDA00031538350600000611
步骤六三、利用获取的检测阈值判断待检测单元是否存在目标:
若待检测单元的幅值
Figure BDA00031538350600000612
则判定待检测单元存在目标,反之,若
Figure BDA00031538350600000613
则判定待检测单元不存在目标。
实施例:
采用具体实施方式中的方法进行仿真实验:
仿真条件:
本实验中雷达数据长度为200,数据包括韦布尔或指数分布杂波和瑞利分布的仿真目标,仿真目标的幅度服从Swerling-I型波动。恒虚警检测器设计虚警概率Pf=10-4,目标信噪比变换为0~37.5dB,采用105蒙特卡罗仿真获得检测概率曲线和虚警概率曲线。
仿真1:用本发明在指数分布杂波环境下,加入干扰目标数目为总样本数的5%的仿真条件下进行仿真,并将检测概率与TM-OS CFAR方法、WH-CFAR方法、OS-CFAR方法和ADCCA-CFAR方法检测时的检测概率进行比较,仿真结果如图3所示。其中横轴表示信噪比的变化,纵轴表示目标的检测概率。从图3中可以看出,在杂波服从指数分布的多目标环境下,对同一信噪比,本发明提出的恒虚警检测方法的检测概率均大于其它四种检测方法的检测概率。
仿真2:用本发明在指数分布杂波环境下,加入干扰目标数目为总样本数的15%的仿真条件下进行仿真,并将检测概率与TM-OS CFAR方法、WH-CFAR方法、OS-CFAR方法和ADCCA-CFAR方法检测时的检测概率进行比较,仿真结果如图4所示。其中横轴表示信噪比的变化,纵轴表示目标的检测概率。从图4中可以看出,在杂波服从指数分布的密集目标环境下,对同一信噪比,本发明提出的恒虚警检测方法的检测概率均大于其它四种检测方法的检测概率。
仿真3:用本发明在韦布尔分布杂波环境下,加入干扰目标数目为总样本数的5%的仿真条件下进行仿真,并将检测概率与TM-OS CFAR方法、WH-CFAR方法检测时的检测概率进行比较,仿真结果如图5所示。其中横轴表示信噪比的变化,纵轴表示目标的检测概率。从图5中可以看出,在杂波服从韦布尔分布的多目标环境下,对同一信噪比,本发明提出的恒虚警检测方法的检测概率均大于其它两种检测方法的检测概率。
仿真4:用本发明在韦布尔分布杂波环境下,加入干扰目标数目为总样本数的15%的仿真条件下进行仿真,并将检测概率与TM-OS CFAR方法、WH-CFAR方法检测时的检测概率进行比较,仿真结果如图6所示。其中横轴表示信噪比的变化,纵轴表示目标的检测概率。从图6中可以看出,在杂波服从韦布尔分布的密集目标环境下,对同一信噪比,本发明提出的恒虚警检测方法的检测概率均大于其它两种检测方法的检测概率。
仿真5:用本发明在指数分布杂波环境下,加入干扰目标数目为总样本数的5%的仿真条件下进行仿真,并将虚警概率与TM-OS CFAR方法、WH-CFAR方法、OS-CFAR方法和ADCCA-CFAR方法检测时的虚警概率进行比较,仿真结果如图7所示。其中横轴表示信噪比的变化,纵轴表示目标的虚警概率。从图7中可以看出,在杂波服从指数分布的多目标环境下,本发明提出的恒虚警检测方法的虚警概率与设定的虚警概率更接近,相比于其他四种方法具有更好的恒虚警特性。

Claims (10)

1.一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于所述方法具体过程为:
步骤一、获取雷达回波数据;
所述雷达回波数据包含杂波和雷达目标,其中杂波服从韦布尔分布;
步骤二、建立非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型;
步骤三:将雷达回波数据输入到对数放大器进行对数处理,获得观测数据的对数向量X=[x1,x2,x3,…,xN];
步骤四、引入隐变量Z=[z1,z2,…,zN]表示观测数据的对数向量X=[x1,x2,x3,…,xN]的样本属性,构建关于完备数据集F={X,Z}的对数似然函数;
步骤五、利用期望最大化算法对步骤后四获取的完备数据集F={X,Z}的对数似然函数进行优化,估计构建的非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型的参数,从而获得Gumbel分布的尺度参数和位置参数;
步骤六、根据步骤五获得的Gumbel分布的尺度参数和位置参数获取检测阈值,并利用检测阈值判断待检测单元是否存在目标。
2.根据权利要求1所述的一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于:所述步骤二中建立非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型,如下式:
Figure FDA0003153835050000011
其中,0≤w≤1是雷达回波数据中雷达目标单元的所占比例,
Figure FDA0003153835050000012
表示杂波服从韦布尔分布,B为韦布尔分布的尺度参数,C为韦布尔分布的形状参数,
Figure FDA0003153835050000013
表示目标幅度波动服从瑞利分布,σ为瑞利分布的参数,Y=[y1,y2,y3,…,yN]是雷达回波数据幅值向量,yi表示位置i处雷达回波数据的幅值,Θ表示参数向量,N表示待检测雷达回波数据的总个数,i∈[1,N]。
3.根据权利要求2所述的一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于:经过所述步骤三中将雷达回波数据输入到对数放大器进行对数处理,获得观测数据的对数向量X=[x1,x2,x3,…,xN]处理后,非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型变为:
Figure FDA0003153835050000021
其中,xi=ln(yi)表示观测数据的对数形式,待估计的参数向量θ=[a,b,c],
Figure FDA0003153835050000022
为Gumbel分布的尺度参数;b=lnB为Gumbel分布的位置参数,参数c=ln(2σ)。
4.根据权利要求3所述的一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于:所述步骤四中关于完备数据集F={X,Z}的对数似然函数如下式:
Figure FDA0003153835050000023
其中,zi=0表示单元xi是杂波;zi=1表示单元xi是雷达目标。
5.根据权利要求4所述的一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于:所述步骤五中利用期望最大化算法对步骤后四获取的完备数据集F={X,Z}的对数似然函数进行优化,估计构建的非均匀的检测背景的韦布尔分布和目标分布的概率密度混合模型的参数,从而获得Gumbel分布的尺度参数和位置参数,包括以下步骤:
步骤五一、初始化参数
Figure FDA0003153835050000024
然后将观测数据的对数向量X中的数据进行从大到小排序,排序后的结果为Xnew,初始化
Figure FDA0003153835050000025
其中Xnew(1:10)为向量Xnew中的前十个数据;
Figure FDA0003153835050000026
为Gumbel分布的尺度参数a的估计值;
Figure FDA0003153835050000027
为Gumbel分布的位置参数b的估计值;
Figure FDA0003153835050000028
混合模型中参数c的估计值;
Figure FDA0003153835050000029
为回波数据中目标单元所占比例的估计值;
步骤五二、利用初始化的参数或上次迭代估计出的参数计算zi=1的后验概率分布q1(i)和zi=0的后验概率分布q0(i);
步骤五三、利用步骤五二获取的后验概率q1(i)和q0(i),获得回波数据中目标单元所占比例的估计值迭代式、杂波和雷达目标的统计分布参数估计值的迭代式;
步骤五四、利用步骤五二中获得的后验概率q1(i)和q0(i)值和步骤五三中的参数估计值计算完备数据集F={X,Z}期望似然函数值;
步骤五五、判断步骤五四获得的完备数据集F={X,Z}期望似然函数值是否收敛,若|Q(t +1)-Q(t)|≤10-6,则输出Gumbel分布参数a和b;若|Q(t+1)-Q(t)|>10-6,则返回步骤五二进行迭代求解直至满足|Q(t+1)-Q(t)|≤10-6输出Gumbel分布参数
Figure FDA0003153835050000031
Figure FDA0003153835050000032
其中,Q(t+1)表示第t+1次迭代得出的期望似然函数值;Q(t)表示第t次迭代得出的期望似然函数值。
6.根据权利要求5所述的一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于:所述步骤五二中zi=1的后验概率分布q1(i)和zi=0的后验概率分布q0(i),分别为:
Figure FDA0003153835050000033
Figure FDA0003153835050000034
7.根据权利要求6所述的一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于:所述步骤五三中的回波数据中目标单元所占比例估计值的迭代式、杂波和雷达目标的统计分布参数估计值的迭代式,分别如下式:
Figure FDA0003153835050000035
Figure FDA0003153835050000036
Figure FDA0003153835050000041
Figure FDA0003153835050000042
8.根据权利要求7所述的一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于:所述步骤五四中利用步骤五二中获得的后验概率q1(i)和q0(i)值和步骤五三中的参数估计值计算完备数据集F={X,Z}期望似然函数值,完备数据集F={X,Z}期望似然函数值如下式:
Figure FDA0003153835050000043
9.根据权利要求8所述的一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于:所述步骤六中根据步骤五四获得的Gumbel分布的尺度参数和位置参数获取检测阈值并利用检测阈值判断待检测单元是否存在目标,包括以下步骤:
步骤六一、利用估计出的Gumbel分布参数
Figure FDA0003153835050000044
Figure FDA0003153835050000045
计算检测阈值
Figure FDA0003153835050000046
Figure FDA0003153835050000047
其中,Pf是给定的虚警概率;
步骤六二、引入常数
Figure FDA0003153835050000048
调节实际的虚警概率,检测阈值变为:
Figure FDA0003153835050000049
其中,
Figure FDA00031538350500000410
为常数;
步骤六三、利用获取的检测阈值判断待检测单元是否存在目标:
若待检测单元的幅值
Figure FDA00031538350500000411
则判定待检测单元存在目标,反之,若
Figure FDA00031538350500000412
则判定待检测单元不存在目标。
10.根据权利要求9所述的一种用于多目标环境下的基于混合模型的恒虚警检测方法,其特征在于:所述
Figure FDA00031538350500000413
CN202110774195.5A 2021-07-08 2021-07-08 一种用于多目标环境下的基于混合模型的恒虚警检测方法 Active CN113504521B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110774195.5A CN113504521B (zh) 2021-07-08 2021-07-08 一种用于多目标环境下的基于混合模型的恒虚警检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110774195.5A CN113504521B (zh) 2021-07-08 2021-07-08 一种用于多目标环境下的基于混合模型的恒虚警检测方法

Publications (2)

Publication Number Publication Date
CN113504521A true CN113504521A (zh) 2021-10-15
CN113504521B CN113504521B (zh) 2022-09-20

Family

ID=78012184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110774195.5A Active CN113504521B (zh) 2021-07-08 2021-07-08 一种用于多目标环境下的基于混合模型的恒虚警检测方法

Country Status (1)

Country Link
CN (1) CN113504521B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415135A (zh) * 2022-01-24 2022-04-29 哈尔滨工业大学 基于变化指数的多策略韦布尔cfar检测方法
CN114577240A (zh) * 2021-12-20 2022-06-03 深圳市志奋领科技有限公司 一种动态调节光电检测参数的方法、系统及传感器

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400306B1 (en) * 1999-12-17 2002-06-04 Sicom Systems, Ltd Multi-channel moving target radar detection and imaging apparatus and method
US20080162389A1 (en) * 2005-12-08 2008-07-03 Northrop Grumman Corporation Hybrid architecture for acquisition, recognition, and fusion
CN101329400A (zh) * 2008-07-30 2008-12-24 电子科技大学 一种基于拟合优度检验的雷达目标恒虚警检测方法
US20130201054A1 (en) * 2012-02-02 2013-08-08 Raytheon Canada Limited Knowledge Aided Detector
CN103353594A (zh) * 2013-06-17 2013-10-16 西安电子科技大学 二维自适应雷达恒虚警检测方法
CN104391290A (zh) * 2014-11-17 2015-03-04 电子科技大学 一种适用于复杂非均匀杂波下的cfar检测器
EP3039447A1 (en) * 2013-08-28 2016-07-06 Aveillant Limited Radar system and associated apparatus and methods
US20160228085A1 (en) * 2013-09-19 2016-08-11 Aarhus Universitet A method for estimating perfusion indices
CN105954739A (zh) * 2016-04-20 2016-09-21 电子科技大学 一种知识辅助的非参量恒虚警检测方法
CN107271973A (zh) * 2017-05-27 2017-10-20 南京理工大学 韦布尔杂波环境下基于偏斜度和均值比的恒虚警检测方法
CN108614244A (zh) * 2016-12-12 2018-10-02 南京理工大学 韦布尔杂波环境下基于偏斜度的恒虚警检测方法
CN108765491A (zh) * 2018-05-31 2018-11-06 成都信息工程大学 一种sar图像舰船目标检测方法
CN110568415A (zh) * 2019-07-22 2019-12-13 广东工业大学 混合高斯模型下基于Arctan函数的信号检测方法
CN110646774A (zh) * 2019-09-30 2020-01-03 中国人民解放军战略支援部队信息工程大学 基于乘积变尺度周期吕分布的机动目标相参检测方法及装置
CN111488552A (zh) * 2020-04-24 2020-08-04 商丘师范学院 基于高斯混合概率假设密度的紧邻多目标跟踪方法
CN111562569A (zh) * 2020-04-21 2020-08-21 哈尔滨工业大学 基于加权群稀疏约束的Weibull背景下多目标恒虚警检测方法
CN112684428A (zh) * 2021-01-15 2021-04-20 浙江大学 一种基于信号代理的多目标恒虚警率检测方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400306B1 (en) * 1999-12-17 2002-06-04 Sicom Systems, Ltd Multi-channel moving target radar detection and imaging apparatus and method
US20080162389A1 (en) * 2005-12-08 2008-07-03 Northrop Grumman Corporation Hybrid architecture for acquisition, recognition, and fusion
CN101329400A (zh) * 2008-07-30 2008-12-24 电子科技大学 一种基于拟合优度检验的雷达目标恒虚警检测方法
US20130201054A1 (en) * 2012-02-02 2013-08-08 Raytheon Canada Limited Knowledge Aided Detector
CN103353594A (zh) * 2013-06-17 2013-10-16 西安电子科技大学 二维自适应雷达恒虚警检测方法
EP3039447A1 (en) * 2013-08-28 2016-07-06 Aveillant Limited Radar system and associated apparatus and methods
US20160228085A1 (en) * 2013-09-19 2016-08-11 Aarhus Universitet A method for estimating perfusion indices
CN104391290A (zh) * 2014-11-17 2015-03-04 电子科技大学 一种适用于复杂非均匀杂波下的cfar检测器
CN105954739A (zh) * 2016-04-20 2016-09-21 电子科技大学 一种知识辅助的非参量恒虚警检测方法
CN108614244A (zh) * 2016-12-12 2018-10-02 南京理工大学 韦布尔杂波环境下基于偏斜度的恒虚警检测方法
CN107271973A (zh) * 2017-05-27 2017-10-20 南京理工大学 韦布尔杂波环境下基于偏斜度和均值比的恒虚警检测方法
CN108765491A (zh) * 2018-05-31 2018-11-06 成都信息工程大学 一种sar图像舰船目标检测方法
CN110568415A (zh) * 2019-07-22 2019-12-13 广东工业大学 混合高斯模型下基于Arctan函数的信号检测方法
CN110646774A (zh) * 2019-09-30 2020-01-03 中国人民解放军战略支援部队信息工程大学 基于乘积变尺度周期吕分布的机动目标相参检测方法及装置
CN111562569A (zh) * 2020-04-21 2020-08-21 哈尔滨工业大学 基于加权群稀疏约束的Weibull背景下多目标恒虚警检测方法
CN111488552A (zh) * 2020-04-24 2020-08-04 商丘师范学院 基于高斯混合概率假设密度的紧邻多目标跟踪方法
CN112684428A (zh) * 2021-01-15 2021-04-20 浙江大学 一种基于信号代理的多目标恒虚警率检测方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHUNMEI XU 等: ""An improved CFAR algorithm for target detection"", 《A HYBRID APPROACH FOR TARGET DETECTION USING CFAR ALGORITHM AND IMAGE PROCESSING》 *
S. LOPEZ-ESTRADA 等: ""A hybrid approach for target detection using CFAR algorithm and image processing"", 《PROCEEDINGS OF THE FIFTH MEXICAN INTERNATIONAL CONFERENCE IN COMPUTER SCIENCE》 *
YIN TIAN 等: ""A Fusion Feature for Enhancing the Performance of Classification in Working Memory Load With Single-Trial Detection"", 《IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING 》 *
张军 等: ""利用高斯混合模型的SAR图像目标CFAR检测新方法"", 《中国图象图形学报》 *
张国志 等: ""截尾数据下ZZ分布的参数估计"", 《哈尔滨理工大学学报》 *
郭辰锋: ""复杂背景目标检测技术研究"", 《中国优秀硕士论文全文数据库》 *
马天力 等: ""基于ML背景参数估计的CDKF-CPHD多目标跟踪算法"", 《北京航空航天大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114577240A (zh) * 2021-12-20 2022-06-03 深圳市志奋领科技有限公司 一种动态调节光电检测参数的方法、系统及传感器
CN114415135A (zh) * 2022-01-24 2022-04-29 哈尔滨工业大学 基于变化指数的多策略韦布尔cfar检测方法
CN114415135B (zh) * 2022-01-24 2024-08-06 哈尔滨工业大学 基于变化指数的多策略韦布尔cfar检测方法

Also Published As

Publication number Publication date
CN113504521B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN109901153B (zh) 基于信息熵权和最近邻域数据关联的目标航迹优化方法
CN113504521B (zh) 一种用于多目标环境下的基于混合模型的恒虚警检测方法
CN108256436B (zh) 一种基于联合分类的雷达hrrp目标识别方法
CN107153180B (zh) 一种目标信号检测方法及系统
CN110658508B (zh) 一种基于特征量的k分布海杂波参数估计方法
CN111929679B (zh) 一种自适应加权截断统计恒虚警检测方法
CN112835000B (zh) 一种非均匀杂波及干扰条件下的自适应检测方法
CN112965040B (zh) 一种基于背景预筛选的自适应cfar目标检测方法
CN112213697B (zh) 一种基于贝叶斯决策理论用于雷达欺骗干扰识别的特征融合方法
CN115906667A (zh) 一种海洋环境参数反演模型构建方法及装置
CN111562569A (zh) 基于加权群稀疏约束的Weibull背景下多目标恒虚警检测方法
Doyuran et al. Expectation maximization-based detection in range-heterogeneous Weibull clutter
CN113673565A (zh) 多传感器gm-phd自适应序贯融合多目标跟踪方法
CN113253235A (zh) 一种严重非均匀环境中的自适应信号检测方法与系统
CN111413682A (zh) 基于顺序统计量的合成极窄脉冲雷达检测门限计算方法
CN108761384B (zh) 一种抗差的传感器网络目标定位方法
CN108152796B (zh) 一种基于灰色卡尔曼滤波的主瓣移动干扰消除方法
Corsini et al. Cramer-Rao bounds and estimation of the parameters of the Gumbel distribution
CN110531362A (zh) 一种高分辨率运动声呐知识基的目标检测方法
CN115856819A (zh) 一种基于平稳高斯过程的雷达目标恒虚警检测方法
CN114415135B (zh) 基于变化指数的多策略韦布尔cfar检测方法
CN111262556A (zh) 一种同时估计未知高斯测量噪声统计量的多目标跟踪方法
Li et al. Signals Deinterleaving for ES systems using Improved CFSFDP Algorithm
Liu et al. Particle filtering for target tracking using plot-sequences of multi-frame track before detect
CN113946955A (zh) 基于融合中心反馈信息的多目标贝叶斯波达方向估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant