CN113502451B - 一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用 - Google Patents

一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用 Download PDF

Info

Publication number
CN113502451B
CN113502451B CN202110681570.1A CN202110681570A CN113502451B CN 113502451 B CN113502451 B CN 113502451B CN 202110681570 A CN202110681570 A CN 202110681570A CN 113502451 B CN113502451 B CN 113502451B
Authority
CN
China
Prior art keywords
layer
sio
antireflection film
solar cell
magnetron sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110681570.1A
Other languages
English (en)
Other versions
CN113502451A (zh
Inventor
李小强
吴立宇
张泽桦
余梓枫
吴祖骥
屈盛官
杨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110681570.1A priority Critical patent/CN113502451B/zh
Publication of CN113502451A publication Critical patent/CN113502451A/zh
Application granted granted Critical
Publication of CN113502451B publication Critical patent/CN113502451B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用。所述减反射膜包括ZnO层及SiO2层,所述ZnO层及SiO2层交替堆叠,所述ZnO层及SiO2层的光学厚度分别为各层对应材料参考波长的0.1~0.25倍;所述ZnO层的折射率为1.9~2.1,所述SiO2层的折射率为1.4~1.6。本发明制备的减反射膜在宽光谱范围内与太阳光谱有较好的匹配性(300~1400nm范围内最优平均反射率低至7.05%),减反射效果较常规的减反射膜体系有所提升。

Description

一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方 法与应用
技术领域
本发明属于光学薄膜技术领域,具体涉及一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用。
背景技术
GaAs系列太阳能电池拥有光电转换效率高、耐高温、耐腐蚀、稳定性好、抗辐照性能高、光谱匹配性能佳、光吸收系数大等特点,在空间能源领域有着广泛的应用,而减少电池表面反射损耗,增加对太阳光的吸收,是进一步提高GaAs系列太阳能电池的光电转换效率的关键所在。
减反射膜可以降低太阳能电池顶层的光反射,增加表面对光子的吸收,达到提高电池光电转换效率的目的,目前常见的减反射膜主要由低折射率材料MgF2、SiO2、CaF2与高折射率材料HfO2、TiO2、Ta2O5、ZrO2等匹配而成,制备工艺有物理法如电子束蒸发沉积法、磁控溅射法、原子层沉积法等,化学法如常压化学气相沉积、等离子体气相沉积等。由于宇宙空间领域环境不确定性较大,GaAs太阳能电池在空间领域的应用工况变得日益恶劣,因此开发一种可以适应恶劣工况的减反射膜成为了该领域研究的重点。
公布号为CN108336179A的中国发明专利申请公开了一种柔性空间用三结太阳能电池减反射膜制备方法,该方法利用电子束热蒸发和离子源辅助沉积相结合,常温条件下在太阳能电池衬底沉积结构为SiO2(53nm)-TiO2(90nm)的双层可控折射率的减反射薄膜,其可控范围分别为2.2~2.25(-TiO2)和1.44~1.46(SiO2)。该专利所涉及的技术内容无法解决前文中所提出的技术问题,主要原因如下:1、空间太阳能电池的主要材质是Ⅲ-Ⅴ族半导体材料,其材料特性与有机聚合物材料不同,电子束蒸发及离子源辅助沉积不可避免地会对半导体的结构带来损伤,导致太阳能电池的光电转换效率受较大的影响。2、该组分薄膜的减反射效果在波长为350~1800nm范围内震荡,平均反射率较高,宽光谱范围内与太阳能电池的匹配性较差,实际应用中并无明确指导意义。
公布号为CN112490297A的中国发明专利申请公开了一种空间三结砷化镓太阳能电池用三层减反射膜及其制备方法,该方法在砷化镓太阳能电池表面沉积TiO2/HfO2/Al2O3减反射薄膜,旨在提高整体太阳能电池组件的输出功率,该专利未能明确宽光谱范围(300~1400nm)内太阳能电池的平均反射率,仅模拟计算得到紫外波长区域320~400nm内的平均反射率,与实际应用存在一定的差距。
因此,需要设计一种新型GaAs太阳能电池用减反射膜来降低太阳能电池表面反射率,进而提高太阳能电池的光电转换效率。
发明内容
为解决现有技术的缺点和不足之处,本发明的首要目的在于提供一种基于磁控溅射的新型GaAs太阳能电池用减反射膜。
本发明的另一目的在于提供上述一种基于磁控溅射的新型GaAs太阳能电池用减反射膜的制备方法。
本发明目的通过以下技术方案实现:
一种基于磁控溅射的GaAs太阳能电池用减反射膜,所述减反射膜包括ZnO层及SiO2层,所述ZnO层及SiO2层交替堆叠,所述ZnO层及SiO2层的光学厚度分别为各层对应材料参考波长的0.1~0.25倍;所述ZnO层的折射率为1.9~2.1,所述SiO2层的折射率为1.4~1.6。所述ZnO层即H层(高折射率层),SiO2层即L层(低折射率层)。
优选的,所述ZnO层和SiO2层的层数为各1层。
优选的,所述GaAs太阳能电池用减反射膜由ZnO层和SiO2层依次叠加而成,GaAs太阳能电池的衬底(GaAs Substrate)与ZnO层接触,入射介质太阳光与SiO2层接触。
优选的,所述ZnO层的厚度为94~96nm,所述SiO2层的厚度为115~120nm。
上述一种基于磁控溅射的GaAs太阳能电池用减反射膜的制备方法,在GaAs太阳能电池的衬底表面采用射频磁控溅射沉积交替沉积ZnO层及SiO2层。
优选的,所述ZnO层的沉积工艺参数为:采用磁控溅射沉积法,选择射频电源,在本底真空度为3×10-2Pa~4.5×10-2Pa、衬底的温度为室温(~25℃)、工件盘转速为5~7rpm,溅射时间为25min,其中靶材为ZnO靶材,溅射功率为100~120W,溅射气压为4×10-2Pa~5×10-2Pa。
更优选地,所述ZnO靶材的纯度99.9%,形状为直径60mm、厚度5mm的圆形状;溅射功率为100W。
优选的,所述SiO2层的沉积工艺参数为:采用磁控溅射沉积法,选择射频电源,在本底真空度为3×10-2Pa~4.5×10-2Pa、衬底的温度为室温(~25℃)、工件盘转速为5~7rpm条件下溅射42min,其中靶材为SiO2靶材,溅射功率为100~120W,溅射气压为4×10-2Pa~5×10-2Pa。
更优选地,所述SiO2靶材的纯度99.9%,形状为直径60mm、厚度5mm的圆形状,溅射功率为120W。
优选的,所述ZnO层及SiO2层均沉积完成后进行退火处理。
优选的,所述退火处理的温度为500~600℃,时间为5min。
优选地,ZnO薄膜的沉积速率为0.064nm/s,SiO2薄膜的沉积速率为0.0475nm/s。
上述一种基于磁控溅射的GaAs太阳能电池用减反射膜在作为GaAs太阳能电池减反射膜中的应用。
本发明以GaAs为衬底,采用射频磁控溅射沉积制备ZnO层及SiO2层交替堆叠而成的叠层减反射膜,该减反射膜在宽光谱范围内与太阳光谱有较好的匹配性,同时减反射效果较现有的减反射膜体系有所提升。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明在传统的单层减反射膜体系基础上,引入新型高折射率材料ZnO,并搭配低折射率材料SiO2构成叠层减反射膜,降低了太阳能电池表面的光学损耗,提高了其对太阳光谱的吸收率。相比现有的减反射膜膜系,本发明中的ZnO/SiO2减反射膜系结构能够实现较高的宽带减反效果,在300~1400nm范围内平均反射率可达7%左右。
(2)本发明在常温下进行ZnO、SiO2薄膜的溅射沉积,既保证双层减反射膜具有满足要求的折射率又保证减反射膜具有足够的附着度,满足膜系设计要求。
附图说明
图1为本发明制备的宽光谱范围减反射膜结构示意图。
图2为实施例1中SiO2/ZnO减反射膜截面的扫描电镜图。
图3为实施例1~3和对比例1~2的反射率曲线对比图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本发明实施例中未注明具体条件者,按照常规条件或者制造商建议的条件进行。所用未注明生产厂商者的原料、试剂等,均为可以通过市售购买获得的常规产品。
本发明实施例中所得ZnO层的折射率均为1.9~2.1,SiO2层的折射率均为1.4~1.6。
实施例1
本实施例的一种基于磁控溅射的新型GaAs太阳能电池用减反射膜,具体通过如下方法制备:
(1)将2英寸的GaAs衬底(350±25μm,晶向<100>,苏州研材微纳科技有限公司)依次置于没过衬底的丙酮(分析纯)、异丙醇(分析纯)、无水乙醇(分析纯)中各超声处理5min,超声处理后采用去离子水清洗样品表面残留的液体;将清洗完毕的衬底使用氮气喷枪吹净表面残存的小液滴,并置于恒温烘烤机(>100℃)上烘烤5min完成样品的预处理。
(2)将干燥完成的衬底使用导电胶固定在磁控溅射设备工件盘上,关闭真空室并抽真空至预定条件,所述镀制ZnO薄膜工艺参数为:磁控溅射沉积ZnO薄膜时采用射频电源,真空度保持为3×10-2Pa,沉积时衬底的温度为室温(~25℃),靶材为纯度99.9%、直径60mm、厚度5mm的圆形状ZnO靶材,工件盘转速设置为5rpm,溅射时间为25min,溅射功率为100W,溅射气压为4×10-2Pa,厚度控制在94~96nm。
(3)完成ZnO薄膜的镀制工艺后,更换射频靶材为SiO2靶材,进一步沉积SiO2薄膜,所述镀制SiO2薄膜工艺参数为:磁控溅射沉积SiO2薄膜时采用射频电源,真空度保持为3×10-2Pa,沉积时衬底的温度为室温,靶材为纯度99.9%、直径60mm、厚度5mm的圆形状SiO2靶材,工件盘转速设置为5rpm,溅射时间为42min,溅射功率为120W,溅射气压为4×10-2Pa,厚度控制在115~120nm。
本实施例中所得ZnO/SiO2减反射膜的结构示意图如图1,截面的扫描电镜图如图2所示。
将本实施例所得ZnO/SiO2减反射膜利用分光光度计测量在300nm~1400nm范围内的反射率曲线(图3),平均反射率约为14.6%,满足设计和使用要求。
实施例2
本实施例的一种基于磁控溅射的新型GaAs太阳能电池用减反射膜,具体通过如下方法制备:
步骤(1)~(3)与实施例1相同;
(4)将所制得的ZnO/SiO2薄膜转移至快速退火炉(RTP-CT150M)的石墨托盘中进行退火处理,所述退火工艺参数为:退火温度500℃,时间5min,N2流量500sccm。
将本实施例所得ZnO/SiO2减反射膜利用分光光度计测量太阳能电池在300nm~1400nm范围内的反射率曲线(图3),平均反射率约为13.59%,满足设计和使用要求。
实施例3
本实施例的一种基于磁控溅射的新型GaAs太阳能电池用减反射膜,具体通过如下方法制备:
步骤(1)~(3)与实施例1相同;
(4)将所制得的ZnO/SiO2薄膜转移至快速退火炉(RTP-CT150M)的石墨托盘中进行退火处理,所述退火工艺参数为:退火温度600℃,时间5min,N2流量500sccm。
将本实施例所得ZnO/SiO2减反射膜利用分光光度计测量太阳能电池在300nm~1400nm范围内的反射率曲线(图3),平均反射率约为7.05%,满足设计和使用要求。
对比例1
本对比例的一种基于磁控溅射的新型GaAs太阳能电池用减反射膜,具体通过如下方法制备:
步骤(1)~(3)与实施例1相同;
(4)将所制得的ZnO/SiO2薄膜转移至快速退火炉(RTP-CT150M)的石墨托盘中进行退火处理,所述退火工艺参数为:退火温度400℃,时间5min,N2流量500sccm。
将本对比例所得ZnO/SiO2减反射膜利用分光光度计测量太阳能电池在300nm~1400nm范围内的反射率曲线(图3),平均反射率约为27.86%,不满足设计和使用要求。
对比例2
本对比例的一种基于磁控溅射的新型GaAs太阳能电池用减反射膜,具体通过如下方法制备:
步骤(1)~(3)与实施例1相同;
(4)将所制得的ZnO/SiO2薄膜转移至快速退火炉(RTP-CT150M)的石墨托盘中进行退火处理,所述退火工艺参数为:退火温度700℃,时间5min,N2流量500sccm。
将本对比例所得ZnO/SiO2减反射膜利用分光光度计测量太阳能电池在300nm~1400nm范围内的反射率曲线(图3),平均反射率约为20.74%,不满足设计和使用要求。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种基于磁控溅射的GaAs太阳能电池用减反射膜,其特征在于,所述减反射膜包括ZnO层及SiO2层,所述ZnO层及SiO2层交替堆叠,所述ZnO层及SiO2层的光学厚度分别为各层对应材料参考波长的0.1~0.25倍;所述ZnO层的折射率为1.9~2.1,所述SiO2层的折射率为1.4~1.6;
所述ZnO层的厚度为94~96nm,所述SiO2层的厚度为115~120nm;
所述基于磁控溅射的GaAs太阳能电池用减反射膜的制备方法包括以下步骤:
在GaAs太阳能电池的衬底表面采用射频磁控溅射沉积交替沉积ZnO层及SiO2层;
所述ZnO层及SiO2层均沉积完成后进行退火处理;所述退火处理的温度为500~600℃。
2.根据权利要求1所述一种基于磁控溅射的GaAs太阳能电池用减反射膜,其特征在于,所述ZnO层和SiO2层的层数为各1层。
3.根据权利要求1所述一种基于磁控溅射的GaAs太阳能电池用减反射膜,其特征在于,所述GaAs太阳能电池用减反射膜由ZnO层和SiO2层依次叠加而成,GaAs太阳能电池的衬底与ZnO层接触,入射介质太阳光与SiO2层接触。
4.权利要求1~3任一项所述一种基于磁控溅射的GaAs太阳能电池用减反射膜的制备方法,其特征在于,在GaAs太阳能电池的衬底表面采用射频磁控溅射沉积交替沉积ZnO层及SiO2层;
所述ZnO层及SiO2层均沉积完成后进行退火处理;所述退火处理的温度为500~600℃。
5.根据权利要求4所述一种基于磁控溅射的GaAs太阳能电池用减反射膜的制备方法,其特征在于,所述退火处理的时间为5min。
6.根据权利要求4所述一种基于磁控溅射的GaAs太阳能电池用减反射膜的制备方法,其特征在于,所述ZnO层的沉积工艺参数为:采用磁控溅射沉积法,选择射频电源,在本底真空度为3×10-2Pa~4.5×10-2Pa、衬底的温度为室温、工件盘转速为5~7rpm,溅射时间为25min,其中靶材为ZnO靶材,溅射功率为100~120W,溅射气压为4×10-2Pa~5×10-2Pa。
7.根据权利要求4所述一种基于磁控溅射的GaAs太阳能电池用减反射膜的制备方法,其特征在于,所述SiO2层的沉积工艺参数为:采用磁控溅射沉积法,选择射频电源,在本底真空度为3×10-2Pa~4.5×10-2Pa、衬底的温度为室温、工件盘转速为5~7rpm条件下溅射42min,其中靶材为SiO2靶材,溅射功率为100~120W,溅射气压为4×10-2Pa~5×10-2Pa。
8.权利要求1~3任一项所述一种基于磁控溅射的GaAs太阳能电池用减反射膜在作为GaAs太阳能电池减反射膜中的应用。
CN202110681570.1A 2021-06-18 2021-06-18 一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用 Active CN113502451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110681570.1A CN113502451B (zh) 2021-06-18 2021-06-18 一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110681570.1A CN113502451B (zh) 2021-06-18 2021-06-18 一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113502451A CN113502451A (zh) 2021-10-15
CN113502451B true CN113502451B (zh) 2022-10-25

Family

ID=78010363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110681570.1A Active CN113502451B (zh) 2021-06-18 2021-06-18 一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113502451B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027599A (zh) * 2008-03-10 2011-04-20 法国圣戈班玻璃厂 包括减反射涂层的透明基材
CN104614787A (zh) * 2015-03-02 2015-05-13 山东阳谷恒晶光电有限公司 一种超宽带减反射膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130069091A1 (en) * 2011-09-20 2013-03-21 Taiwan Micropaq Corporation Progressive-refractivity antireflection layer and method for fabricating the same
DE102012201284B4 (de) * 2012-01-30 2018-10-31 Ewe-Forschungszentrum Für Energietechnologie E. V. Verfahren zum Herstellen einer photovoltaischen Solarzelle
CN102881727B (zh) * 2012-10-15 2015-04-29 浙江大学 一种具有高导电性的减反射膜及其制备方法
CN110499490B (zh) * 2019-08-23 2020-11-27 信利光电股份有限公司 一种减反射盖板及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027599A (zh) * 2008-03-10 2011-04-20 法国圣戈班玻璃厂 包括减反射涂层的透明基材
CN104614787A (zh) * 2015-03-02 2015-05-13 山东阳谷恒晶光电有限公司 一种超宽带减反射膜及其制备方法

Also Published As

Publication number Publication date
CN113502451A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
Bello et al. Achievements in mid and high-temperature selective absorber coatings by physical vapor deposition (PVD) for solar thermal Application-A review
KR101194257B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
CN112259615A (zh) 一种空间用GaAs太阳电池叠层减反射膜及其制备方法与应用
EP2954265B1 (en) A hybrid multilayer solar selective coating for high temperature solar thermal applications and a process for the preparation thereof
Wuu et al. Properties of double-layer Al2O3/TiO2 antireflection coatings by liquid phase deposition
CN102732830B (zh) 一种高透过率低反射率的减反射膜镀膜方法
CN108424007B (zh) 一种光伏玻璃减反膜
CN109136859A (zh) 一种制备高透光率氧化镓薄膜的方法
CN104369440B (zh) 用于激光器的全介质反射膜及其制备方法
CN105951051A (zh) 一种倾斜溅射工艺制备渐变折射率减反射膜的方法
CN112410743A (zh) 一种多孔透明导电膜的制备方法
CN112071930A (zh) 光伏建筑一体化用蓝色盖板玻璃及其制备方法
CN111722307A (zh) 一种以非球面硫系玻璃为基底的红外增透膜及其制备方法
CN113502451B (zh) 一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用
KR101456220B1 (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
US20120263885A1 (en) Method for the manufacture of a reflective layer system for back surface mirrors
CN112553585B (zh) 一种聚甲基丙烯酸甲酯基底介质增透膜及其制备方法
CN101719528B (zh) 玻璃衬底上光控制备硅薄膜太阳能电池的方法及沉积室
CN106630678B (zh) 具有原子氧防护性的抗辐照玻璃盖板薄膜及其制备方法
CN107164729B (zh) 一种TiO2构成的多层减反射自清洁薄膜及其制备方法
CN112853294B (zh) 一种微波透明热控薄膜及其制备方法
CN106584975A (zh) 一种红外增强的宽带光热转换薄膜器件
CN116288175A (zh) 一种减反射膜及其制备方法
CN106024979A (zh) 一种减反射膜的制备方法
Shi et al. Multi-layer antireflection coatings for silicon solar cells using a sol-gel technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant