CN113502300B - 一种含有hdac10基因启动子序列和报告基因的重组质粒、制备方法及应用 - Google Patents

一种含有hdac10基因启动子序列和报告基因的重组质粒、制备方法及应用 Download PDF

Info

Publication number
CN113502300B
CN113502300B CN202110826322.1A CN202110826322A CN113502300B CN 113502300 B CN113502300 B CN 113502300B CN 202110826322 A CN202110826322 A CN 202110826322A CN 113502300 B CN113502300 B CN 113502300B
Authority
CN
China
Prior art keywords
hdac10
recombinant plasmid
gene promoter
pgl3
promoter sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110826322.1A
Other languages
English (en)
Other versions
CN113502300A (zh
Inventor
刘志伟
李梦伟
徐妍
袁琪
蒋昕娈
朱立东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Medical University
Original Assignee
Xuzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Medical University filed Critical Xuzhou Medical University
Priority to CN202110826322.1A priority Critical patent/CN113502300B/zh
Publication of CN113502300A publication Critical patent/CN113502300A/zh
Application granted granted Critical
Publication of CN113502300B publication Critical patent/CN113502300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明构建了一种含有HDAC10基因启动子序列和报告基因的重组质粒,本发明利用基因工程技术,设计HDAC10启动子的引物,以大鼠基因组为模板进行PCR扩增得到的目的片段,将其与pGL3‑basic载体双酶切后再连接,经酶切鉴定并测序后,得到pGL3‑HDAC10重组质粒,构建H9c2细胞的氧糖剥夺模型后,将本发明构建的pGL3‑HDAC10重组质粒转染到H9c2细胞中,通过同时检测萤火虫荧光素酶和海肾荧光素酶的活性来反映HDAC10基因启动子活性在不同缺氧时间下的变化情况,用于筛选抗缺氧损伤药物,该方法具有靶向性强、灵敏度高、检测速度快的特点。

Description

一种含有HDAC10基因启动子序列和报告基因的重组质粒、制 备方法及应用
技术领域
本发明属基因工程技术领域,具体涉及一种含有HDAC10基因启动子序列和报告基因的重组质粒、制备方法及应用。
背景技术
缺氧(hypoxia)是指因组织用氧障碍或氧气供应不足而导致组织的代谢、功能和形态结构发生异常变化的病理过程。缺氧时间过长会给机体造成严重的损害,导致细胞凋亡,引起癌症、慢性炎症、心肌梗死、心绞痛、卒中和缺血性急性肾损伤等一些疾病的产生,最终可引起人体心、脑、肝等重要脏器由于能量供应不足而死亡。
急性心肌梗死(AMI)在世界范围内导致高发病率和高死亡率是最严重的心血管疾病之一,缺氧发生在急性冠状动脉阻塞中,并导致心肌细胞死亡,是AMI的第一阶段。在原发性血管成形术中会发生完全的缺氧/复氧,是一个有害事件,缺氧/复氧(H/R)诱导局部心肌细胞凋亡,导致心肌产生不可逆的损伤。
HDACs抑制剂在心肌缺血/再灌注损伤中通过抑制未成熟血管的产生、减少炎症或促进能量代谢来介导对心肌的保护作用,被认为是减少I/R损伤、改善心脏功能障碍和减少梗死大小的有效药物。研究发现,HDACs参与一系列心脏和血管的事件,包括心肌细胞的胚胎发生、生长发育、凋亡,缺血心肌的修复,血管内皮的分化、抗凝、纤溶,血管平滑肌细胞的迁移和增殖,心脏氧化应激、炎症细胞募集等。在AMI、心力衰竭、心脏肥大、动脉粥样硬化、先天性心脏病如室间隔缺损和薄壁心肌等疾病模型中,都报道检测到某些特定的HDAC的表达水平较基线水平有较为明显的升高或降低。HDAC10在HDACs家族中属于IIb类,位于细胞质和细胞核中,可作为转录调节剂。有研究发现,HDAC10与血管新生抑制因子PEDF在蛋白表达上显著负相关,HDAC10通过其去乙酰化酶活性,参与介导了MI大鼠心肌组织中PEDF的基因沉默,从而导致心肌细胞死亡和心功能障碍,与心肌细胞缺氧损伤密切相关。
HDAC10表达受启动子区域的调控。因此,针对HDAC10基因启动子设计相应的筛选和检测方法很有必要,这对进一步研究HDAC10调控心肌细胞缺氧损伤的作用有重要意义。本发明人利用基因重组技术,采用PCR的方法,从大鼠基因组中扩增出了1613bp的HDAC10启动子序列,并将其克隆到荧光素酶报告基因载体上。将荧光素酶报告基因的重组质粒转染到H9c2细胞中,成功构建了HDAC10启动子细胞模型,研究不同缺氧时间对HDAC10启动子表达的影响,后续可用于抗缺氧损伤药物的筛选。
发明内容
本发明的目的在于针对现有技术的不足,提供一种含有HDAC10基因启动子序列和报告基因的重组质粒及制备方法。
技术方案
一种含有HDAC10基因启动子序列和报告基因的重组质粒:以含双荧光素酶报告基因(萤火虫荧光素酶和海参荧光素酶)的pGL3-basic质粒为载体,在pGL3-basic质粒的KpnI和MluI的限制性酶切位点之间,插入HDAC10基因启动子序列,得到含有HDAC10基因启动子序列和报告基因的重组质粒;所述HDAC10基因启动子序列的核苷酸序列如SEQ ID NO.1所示。
进一步,所述pGL3-basic质粒为pGL3-basic质粒4818bp。
上述含有HDAC10基因启动子序列和报告基因的重组质粒的制备方法,包括如下步骤:
(1)设计HDAC10基因启动子的引物,以大鼠基因组为模板,进行PCR扩增,得到含有HDAC10基因启动子的目的片段;
(2)采用限制性内切酶KpnI和MluI分别对含有HDAC10基因启动子的目的片段和pGL3-basic基础质粒进行双酶切,然后将酶切产物进行连接,得到连接后的重组质粒;
(3)筛选连接后的重组质粒,并测序鉴定,得到含有HDAC10基因启动子序列和报告基因的重组质粒。
进一步,步骤(1)中,所述HDAC10基因启动子的引物由上游引物和下游引物组成,上游引物序列为:5’-GGGGTACCTTCTTTCTGAGTTTGC-3’(SEQ ID NO.2),下游引物序列为:5’-CCGACGCGTACTTAACAGTATGC-3’(SEQ ID NO.3)。
进一步,步骤(1)中,所述PCR扩增的反应体系为:25μL体系,premix:12.5μL,模板:2μL,引物:5μL,ddH2O:5.5μL。
进一步,步骤(1)中,所述PCR扩增的反应条件为:98℃变性2min;循环为98℃20s,58℃20s,72℃1min30 s,共进行32个循环,72℃延伸10min。
上述重组质粒在制备筛选抗缺氧损伤药物中的应用。
通过氯化钴和无糖培养基双刺激构建H9c2心肌细胞的氧气-葡萄糖剥夺(Oxygen-glucose deprivation,OGD)模型,采用CCK-8检测细胞凋亡,采用RT-qPCR检测不同缺氧时间下HDAC10在mRNA水平上的表达情况。将构建的含有HDAC10基因启动子序列和报告基因的重组质粒采用PEI试剂转染到H9c2细胞中,24h后换液进行缺氧处理,双荧光素酶报告基因检测荧光素酶活性,确定HDAC10基因启动子活性在不同缺氧时间下的变化情况。
本发明的有益效果:
本发明利用基因工程技术,设计HDAC10启动子的引物,以大鼠基因组为模板进行PCR扩增得到的目的片段,将其与pGL3-basic载体双酶切后再连接,经酶切鉴定并测序后,得到pGL3-HDAC10重组质粒,构建H9c2细胞的氧糖剥夺模型后,将构建的pGL3-HDAC10重组质粒转染到H9c2细胞中,通过同时检测萤火虫荧光素酶和海肾荧光素酶的活性来反应HDAC10基因启动子活性在不同缺氧时间下的变化情况,用于筛选抗缺氧损伤药物,该方法具有靶向性强、灵敏度高、检测速度快的特点。
附图说明
图1为pGL3-HDAC10重组质粒的构建图;
图2为pGL3-HDAC10重组质粒的双酶切验证结果;
图3为H9c2心肌细胞在不同处理条件下的增殖活性测试结果;
图4为OGD处理不同时间下HDAC10 mRNA水平表达情况的Real-time PCR检测结果;
图5为OGD处理不同时间对HDAC10基因启动子活性的影响测试结果。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案作进一步说明。
备注:1.下述实施例中,所用的试剂及来源见表1:
表1
其余试剂均为国产分析纯。
2.采用的主要溶液和培养基如下:
2.1培养基
LB液体培养基(1L):胰蛋白胨10g;酵母抽提物5g;NaCl 10g
LB固体培养基(1L):胰蛋白胨10g;酵母抽提物5g;NaCl 10g;琼脂粉15g
2.2小提质粒溶液
溶液Ⅰ:葡萄糖:分析纯,0.9g,终浓度为50mmol/L;1mol/LTris-HL(pH8.0)2.5mL,
终浓度25mmol/L;0.5mol/L EDTA(pH8.0)2mL,终浓度10mmol/L;加水定容至
100mL。高压蒸汽灭菌后,4℃贮存。
溶液Ⅱ:0.4mol/L NaOH与2%SDS按1:1比例混合,现用现配。
溶液Ⅲ:5mol/L KAc 60mL,冰醋酸11.5mL,无菌水28.5mL,终含3mol/L KAc,5mol/L冰醋酸(pH4.8)。
2.3大提质粒溶液
溶液Ⅰ:1mol/LTris-HL(pH8.0)2.5mL,终浓度25mmol/L;0.5mol/L EDTA(pH8.0)2mL,终浓度10mmol/L;加水定容至100mL。高压灭菌保存。
溶液Ⅱ:0.2mol/L NaOH与1%SDS按1:1比例混合,现用现配。
溶液Ⅲ:5mol/L KAc 60mL,冰醋酸11.5mL,无菌水28.5mL,终含3mol/L KAc,5mol/L冰醋酸(pH4.8)。高压灭菌保存。
2.4琼脂糖凝胶溶液配制
(1)50×TAE电泳缓冲液:Tris碱242g,EDTA钠盐37.2g,加双蒸水至1L,pH约8.5。
(2)1.5%琼脂糖凝胶溶液:1.5g琼脂糖,加1×TAE电泳缓冲液至100mL。
(3)6×上样缓冲液。
(4)Gel green核酸染料:5μL/100mL。
实施例1
一种含有HDAC10基因启动子序列和报告基因的重组质粒:以含双荧光素酶报告基因的pGL3-basic质粒为载体,在pGL3-basic质粒的KpnI和MluI的限制性酶切位点之间,插入HDAC10基因启动子序列,得到含有HDAC10基因启动子序列和报告基因的重组质粒(pGL3-HDAC10重组质粒);所述pGL3-basic质粒为pGL3-basic质粒4818bp。pGL3-HDAC10重组质粒的构建图见图1。
上述含有HDAC10基因启动子序列和报告基因的重组质粒的制备方法,包括如下步骤:
(1)pGL3-basic质粒的大量扩增、抽提:
用pGL3-basic质粒(美国Addgene公司)转化DH5a感受态细胞(北京全式金生物技术(TransGen Biotech)有限公司),进行大量的扩增;碱裂解法大量制备pGL3-basic质粒,电泳检测质粒的纯度和含量。具体步骤如下:
制备感受态:
1)取Ecoli DH5ɑ甘油菌按1:100接于3mL LB液体培养基中,37℃培养过夜。
2)取1mL活化DH5ɑ菌液,接于100mL LB液体培养基中,37℃摇菌至OD600为0.4-0.6。
3)将菌液转至2个50mL预冷的离心管中,冰浴10min。
4)4℃、4000rpm离心10min,弃上清,倒置1min。
5)用冰预冷的0.1M CaCl2 10mL悬浮沉淀,冰浴30min。
6)4℃4000rpm离心10min,弃上清,用冰预冷的0.1M CaCl2 2mL悬浮沉淀。
7)分装细胞,100μL/管,加入等体积40%甘油,摇匀,-70℃保存。
转化:
1)于冰上将1μL质粒加入到200μl感受态细胞,冰浴30min。
2)42℃热激90s。
3)冰浴1-2min。
4)在超净台上加入800μL培养基预培养50min,然后离心,弃掉上面800μL培养基,打散沉淀。
5)涂布平板,37℃正置培养1h,倒置培养过夜。
保存菌种:从固体培养基上挑取单菌落接种到含有氨苄的LB液体培养基中,37℃、100rpm摇菌过夜,取摇完的菌液,按照40%甘油:菌液=1:1的比例保存菌种600μL于-80℃环境下。
小量提取纯化质粒:
1)收集剩余菌体于2mL离心管12000rpm、4℃离心1min,一次不够可分两次或多次离心。
2)弃上清,向菌体沉淀中加入预冷的小提溶液Ⅰ150μL,用力振荡使混合均匀,冰上放置5min。
3)向其中加入小提溶液Ⅱ(现用现配的2%SDS+0.4M NaOH按照1:1体积比),轻柔颠倒几下离心管,使尽可能混匀,不要振荡,放置冰上5min。
4)向其中加入小提溶液Ⅲ150μL,温和振荡数次,冰浴3-5min。
5)12000rpm、4℃离心5min,转移上清至1新管中。
6)加入等体积酚/氯仿(1:1)约450μL,振荡混匀,12000rpm、4℃离心5min。
7)小心转移上清(勿吸太多且勿吸入中间蛋白层及下层氯仿)至1新管中。
8)向其中加入2倍体积的无水乙醇,振荡均匀,-20℃醇沉20min或更长时间。
9)12000rpm、4℃离心10min,弃上清。
10)向沉淀中加入1mL 70%乙醇洗涤沉淀,12000rpm、4℃离心2min。
11)弃上清,抽干乙醇,室温干燥5-15min。
12)向其中加入20μL TER(含0.5%RNase的TE溶液)溶解DNA。
大量制备质粒:
1)收集生长饱和的250mL菌液,4℃1000rpm离心3min,弃上清,加20mL Solution I(冰预冷),重悬均匀。
2)加20mL Solution II,轻轻转动瓶子,混匀至透明。
3)加20mL Solution III(冰预冷)充分混匀,置冰浴30min。
4)4℃16000rpm离心30min,取上清再离心20min,上清转入另一离心管中,加0.7倍异丙醇,混匀,冰浴10min,4℃16000rpm离心3min。
5)2mL无菌水充分溶解,转入50mL离心管中,用65℃的5mL无菌水分3次清洗原离心管残留DNA,一并转入50mL离心管中。
6)加入等体积5M LiCl 5mL,混匀,冰浴10min,4℃、16000rpm离心20min,上清转入另一离心管中,加等体积异丙醇(10mL),冰浴30min,4℃、16000rpm离心20min,烘干。
7)500μL无菌水分三次溶解转入1.5mLEp管中,加入10μL RNA酶,室温1h或37℃30min,过夜,加入管体积13%PEG8000(600μL)混匀,室温1h。
8)4℃、13800rpm离心10min,弃上清,用吸水纸吸干余下的液体,400μL无菌水溶解沉淀,加入400μL酚/氯仿,混匀。
9)4℃、13800rpm离心10min,转移上层水相到另一离心管。
10)加200μL无菌水到酚/氯仿中,4℃、13800rpm离心10min,转移上层水相到一新管中,合并两次水相,加入1/10体积SolutionIII(NaAc)。
11)加入1mL无水乙醇,4℃、13800rpm离心15min。
12)400μL无菌水溶解沉淀,测A260/280nm吸光值确定浓度。
(2)通过ensembl网站查找HDAC10启动子序列,HDAC10基因启动子序列的核苷酸序列如SEQ ID NO.1所示,设计HDAC10基因启动子的引物,所述HDAC10基因启动子的引物由上游引物和下游引物组成,上游引物序列为:5’-GGGGTACCTTCTTTCTGAGTTTGC-3’(SEQ IDNO.2),下游引物序列为:5’-CCGACGCGTACTTAACAGTATGC-3’(SEQ ID NO.3);
以大鼠基因组为模板,进行PCR扩增,反应体系为:25μL体系,premix:12.5μL,模板:2μL,引物:5μL,ddH2O:5.5μL;反应条件为98℃变性2min;循环为98℃20s,58℃20s,72℃1min30 s,共进行32个循环,72℃延伸10min;
反应结束后,取8μL PCR扩增反应产物用1.5%琼脂糖凝胶电泳检测,电泳图见图1,其中,通道1为marker DL2000,2、3、4为目的样本,箭头所指为目的片段,可看到明显的1613bp片段,即扩增的HDAC10基因片段。取PCR产物,琼脂糖凝胶电泳后,切胶,用凝胶回收试剂盒回收,得到含有HDAC10基因启动子的目的片段;
(3)采用限制性内切酶KpnI和MluI分别对含有HDAC10基因启动子的目的片段和pGL3-basic基础质粒进行双酶切,然后将酶切产物进行连接反应,得到连接后的重组质粒;
连接反应体系为10μL体系:稀释DNA片段1μL;10×Buffer 1μL;载体1μL;T4连接酶1μL;无菌水6μL;循环水浴16℃过夜反应。
(4)筛选连接后的重组质粒:
取10μL连接产物直接转化100μL感受态大肠杆菌,经过含有氨苯青霉素的LB培养基(氨苄浓度为100mg/mL)中选择培养,从转化子的平板上随即挑取10个菌落,扩增培养后用碱裂解法少量提取质粒备用;进行酶切、电泳、测序鉴定:
重组质粒的双酶切验证结果见图2,其中,6为marker DL2000,通道1、2是pGL3-basic空载体,1无酶切,2经过KpnI和MluI双酶切,3、4、5是重组质粒,3无酶切,4、5经KpnI和MluI双酶切,可以看出,切出了载体和HDAC10启动子目的片段两部分,说明重组质粒构建成功。
测试结果显示,重组质粒中含有插入的HDAC10基因启动子片段并且未发现有碱基突变。
经鉴定,得到含有HDAC10基因启动子序列和报告基因的重组质粒。
实施例2HDAC10基因启动子缺氧调控功能研究
1.H9c2心肌细胞在不同处理条件下的增殖活性测试
实验方法如下:
1)细胞培养
取H9c2心肌细胞(购于美国模式菌种收集中心)用高糖DMEM培养基培养,添加10%胎牛血清、1%青链霉素混合液。细胞在37℃,5%CO2恒温培养箱中培养。
2)H9c2心肌细胞铺板
吸弃培养基,加入2mLPBS进行简单清洗;吸弃PBS,加入适量胰酶作用15s,吸弃大部分,用残余继续消化直至可以看到细胞开始脱落;加入含血清培养基终止并吹打H9c2细胞使其完全脱离并分散开,800rpm、常温离心5min;吸弃培养基,向离心管中加入适量培养基和胎牛血清轻轻混匀;吸取细胞悬浮液均匀地滴入板中(按照6孔板每孔2mL、24孔板每孔1mL、96孔板每孔0.5mL原则),加入1%的青霉素和链霉素混合液,摇匀后放置于37℃、5%CO2培养箱中培养。
3)建立H9c2心肌细胞的OGD模型
为了研究不同培养环境对H9c2细胞增殖活性的影响(n=6),建立H9c2心肌细胞的OGD模型,共分6个处理组:A、Normoxia组:常氧条件下,完全培养基培养的H9c2细胞;B、Hypoxia组:缺氧条件下(15min),完全培养基培养的H9c2细胞;C、OGD 1h组:OGD处理H9c2细胞1h;D、OGD 2h组:OGD处理H9c2细胞2h;E、OGD 4h组:OGD处理H9c2细胞4h;F、OGD 8h组:OGD处理H9c2细胞8h。
OGD(缺氧)处理方法为:待H9c2心肌细胞生长至融合密度80%左右进行缺氧处理,先将不含FBS的无糖DMEM和氯化钴混合(每mL无糖培养基中加入1.2μL氯化钴),再对H9c2细胞换液加入混有氯化钴的无糖DMEM,进行不同时间的缺氧(1h、2h、4h、8h)。
4)细胞活力检测(使用Vicmed公司CCK-8试剂盒)
将各处理组H9c2心肌细胞接种于96孔板中(1×105/孔),每组6个复孔,每孔100μL相应培养基,24h后进行处理。各组细胞经相应处理后,使用多通道移液器向各孔加入10μLCCK-8试剂。将孔板放入相应培养条件下,1h后使用酶标仪测量450nm波长处的吸光度(A)。
细胞活力(%)=[(As–Ab)/(Ac–Ab)]×100%
As:实验孔(含有细胞并经OGD处理、含CCK-8)的吸光度;
Ac:对照孔(含有细胞而不经OGD处理、含CCK-8)的吸光度;
Ab:空白孔(不含有细胞和不经OGD处理、含CCK-8)的吸光度。
实验结果:
H9c2心肌细胞在不同处理条件下的增殖活性测试结果见图3,可以看出,与常氧组相比,单独缺氧15min显著降低H9c2细胞的增殖活性(**P<0.01);OGD处理具有显著地抑制作用(**P<0.01),并且随着缺氧时间的延长细胞活性逐渐降低。
2.OGD处理不同时间对HDAC10 mRNA表达水平的影响
实验方法:
1)PEI试剂转染
转染前一小时换无血清无双抗培养基。准备若干酶切管,先加入适量质粒,做好标记。每管中加入100μL无血清培养基稀释质粒。取出PEI(sigma)转染试剂(避光),以质粒:PEI试剂=4:1比例加入PEI试剂,混匀,孵育20min。孵育完后,将混合物均匀加入细胞板各孔中,前后轻晃使混匀,做好标记。37℃、5%CO2培养箱中培养。24h后进行换液并分组进行缺氧处理。
2)采用Real-time PCR测定方法,检测HDAC10基因在RNA水平的表达变化
细胞分组:OGD处理不同时间对HDAC10mRNA水平的影响(n=3)
A、Normoxia组:常氧条件下,完全培养基培养的H9c2细胞;
B、OGD 1h组:OGD处理H9c2细胞1h
C、OGD 2h组:OGD处理H9c2细胞2h
D、OGD 4h组:OGD处理H9c2细胞4h
E、OGD 8h组:OGD处理H9c2细胞8h
细胞总RNA的提取:
(1)弃去培养基,加入1mL的Trizol,摇晃15s,静置3min;
(2)用加样器反复吹打液体后,移至1.5mL的Eppendorf管中(核酸专用);
(3)加入200μL(Trizol的1/5体积)氯仿,盖紧离心管盖,用手剧烈震荡1min,待溶液充分乳化后再静置5min,12000g,4℃,离心8min;
(4)离心后分三层,小心吸取无色上清至新的Eppendorf管中,每管加入等体积的异丙醇,上下颠倒离心管充分混匀后静置10min,12000g,4℃,离心7min,离心后管底出现沉淀;
(5)弃去上清,缓慢向离心管壁加入1mL的75%乙醇(切勿触及沉淀),上下颠倒使沉淀漂浮,12000g,4℃,离心5min,弃去乙醇(尽量除净),倒完乙醇后倒扣在滤纸上,再用小吸水纸将管壁液滴吸净(切勿触及沉淀);
(6)室温干燥5-10min,每管加入20-30μL RNase-free水溶解沉淀。用移液枪轻吹沉淀待沉淀完全溶解后放置冰上;
(7)测浓度,先用RNase-free水清洗,再加1.5μL RNase-free水选Blank做对照。之后每加一次样品都要用纸擦净、样品加1.5μL(360nm 280nm),在侧壁上记下浓度。提取的核酸-80℃保存。
逆转录:
逆转录用Promega公司的Reverse Transcription System试剂盒进行,具体体系如下:体系①:RNA≦2μg,oligo 1μL,DEPC水补至11μL,65-70℃水浴10min后放置冰上;体系②:体系①11μL,5xbuffer 4μL,RNA酶抑制剂0.5μL,RT酶0.5μL,dNTP 2μL,MgCl2 2μL。程序为25℃10min,42℃1h,70℃15min。逆转录完成后加100μL DEPC水稀释,放入-20℃保存。
Q-PCR检测:
本实验中HDAC10、内参18srRNA基因均使用SYBR Green I进行检测,采用2-△△Ct法进行结果分析,具体程序及步骤如下:
实时定量荧光PCR反应上下游引物为:
ratHDAC10:上游引物,5’-TCCCGTTGGCCTTTGAGTTT-3’;
下游引物,5’-TAGACTCCAGGGCACTCCAA-3’。
18srRNA:上游引物,5’-CCTGGATACCGCAGCTAGGA-3’;
下游引物,5’-GCGGCGCAATACGAATGCCCC-3’。
数据处理:各组DNA定量变化值采用2-△△Ct法进行结果分析。
实验结果:
OGD处理不同时间下HDAC10 mRNA水平表达情况的Real-time PCR检测结果见图4,可以看出,与常氧组对照比较,OGD组HDAC10 mRNA水平表达量出现了增加现象(**P<0.01)。
3.OGD处理不同时间对HDAC10活性的影响
1)PEI试剂转染
转染前一小时换无血清无双抗培养基。准备若干酶切管,先加入适量质粒,做好标记。每管中加入100μL无血清培养基稀释质粒。取出PEI(sigma)转染试剂(避光),以质粒:PEI试剂=4:1比例加入PEI试剂,混匀,孵育20min。孵育完后,将混合物均匀加入细胞板各孔中,前后轻晃使混匀,做好标记。37℃、5%CO2培养箱中培养。24h后进行换液并分组进行缺氧处理。共分7个组,分组情况如下:组1:空载体组:pGL3-basic(1μg)+Renilla;组2:低剂量组:pGL3-basic(0.8μg)+Renilla+pGL3-HDAC10(0.2μg);组3:常氧组:pGL3-HDAC10(1μg)+Renilla;组4:pGL3-HDAC10(1μg)+Renilla+OGD 1h;组5:pGL3-HDAC10(1μg)+Renilla+OGD2h;组6:pGL3-HDAC10(1μg)+Renilla+OGD 4h;组7:pGL3-HDAC10(1μg)+Renilla+OGD 8h。
2)细胞转染后24h,按照分组对细胞进行不同处理(Normoxia/OGD),吸尽细胞培养液,加入PBS,轻轻洗涤细胞,弃去洗涤液;
3)裂解细胞;向24孔板中分别加100μL Lysis(5x),室温15min,吹打使其充分裂解。每孔吸取20μL充分裂解的细胞到96孔板中;
4)溶解荧光素酶检测试剂和Renilla荧光素酶检测缓冲液,并达到室温。Renilla荧光素酶检测底物(100×)置于冰浴或冰盒上备用;
5)按照每个样品需100μL的量,取适量Renilla荧光素酶检测缓冲液,按照1:100加入Renilla荧光素酶检测底物(100×)配制成Renilla荧光素酶检测工作液;
6)开启酶标仪,将测定间隔设为2s,测定时间设为10s;
7)每个样品测定时,取样品50μL,加入100μL荧光素酶检测试剂,混匀,Synergy2多功能酶标仪测定RLU(relative light unit)。以报告基因细胞裂解液做为空白对照;
8)完成上述测定荧光素酶步骤后,加入100μL Renilla荧光素酶检测工作液,用移液器打匀或用其它适当方混匀,测定RLU(relative light unit);
9)在以Renilla荧光素酶为内参的情况下,用荧光素酶测定得到的RLU值除以Renilla荧光素酶测定得到的RLU值。根据测得比值,比较不同样品间目的报告基因的激活程度。
OGD处理不同时间对HDAC10基因启动子活性的影响测试结果见图5,其中,n=3,*对照pGL3-vector组,**P<0.01;#对照常氧组1μg HDAC10-luc组,##P<0.01。双报告检测结果显示,与常氧对照比较,在OGD条件下,随着缺氧时间的延长HDAC10基因启动子活性逐渐升高,OGD4h的时候达到峰值(**P<0.01)。
综上,本实验成功构建了pGL3-HDAC10启动子荧光素酶报告基因质粒;并证实HDAC10基因启动子活性与细胞缺氧程度密切相关,随着缺氧时间的延长HDAC10基因启动子活性逐渐增强,在OGD4h的时候达到峰值,HDAC10基因启动子具有缺氧调控功能。通过同时检测萤火虫荧光素酶和海肾荧光素酶的活性来反应HDAC10基因启动子活性在不同缺氧时间下的变化情况,具备灵敏度高,检测速度快的特点,后期可用于抗缺氧损伤药物的筛选。
/>
序列表
<110> 徐州医科大学
<120> 一种含有HDAC10基因启动子序列和报告基因的重组质粒、制备方法及应用
<140> 202110826322 .1
<141> 2021-07-21
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1630
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
cttctttctg agtttgcaac ctttgtcttc caactcaaca tttgtcttcc aatggcccaa 60
acgtctagtg aggaaggtct tagaggctct ctgagaccca gagaggtagg ttctactctc 120
tgaccagcag cctccctgaa cctaactgtc atccaagcca ttagacacaa actgcctggt 180
cagaggccat acttgggctg gttagatggc ccacgttctt ccccacgtcc caaggacagg 240
tgccacaggg caggtcataa gggtaaggcc tttcatttcc ctcatttggc aagttctggg 300
caaatacact ttgcctggtc taatctggtc agagaagctg ctatgatcac agtccctctg 360
cctgagcacc cttgtgataa ccatggtctg agatttcaaa tacttcaccc aattatgggg 420
gtgtggctca catgccctac cccacaaata cacataatcc agagtgatca gtcatgagtg 480
tcctgagttc ctctgcttga tgcctttggc ctttagaaga tggagaagcc ttaggtttct 540
ccagaacctg ggcctgaact cccaactcct gagtgtgcag tgggcaccta ctcctaacca 600
ctccagggct ctttggtttc ccctgtacat gatagttgtg tgtgttccta tcatagatgt 660
cagtggcagc cttgctccct tccccctcat catcctgagg gtgtgtctgg tcccctctcc 720
ccatctttgg gcatcttgct ttggaagcat gatgggacac gtctgtaatc ccagcactca 780
ctttccaact ggagacaagc ctgggctatg gaacagacta caaatatgca cagccttagt 840
tcatgtttga gctcatgtct gctttgcctc ctttccaagg ccccctcctc ttcctcaccc 900
ttccttgctc agaaccctct gcccttccta acctcacact gggctgcagt tttcctggct 960
ggcctggcgt cttacataac ccttctattc cagtggcctc ttgttcacct gtggtctttc 1020
catggaagtc ccttctggaa gttccgtgcc ttgatccagc ccaggctagc ccctgcatgc 1080
gctcacatac acaccctgct cacttccctc ctctccatcc ttcaccccag gagcaggcaa 1140
attggttgtg gttgacagtt ggcatatcag ggtagactag gaggatgctg gggacaagac 1200
gggagcataa ctgtagctgc agcgatggcc tgagaacaag cagccctgtc ttcccaccct 1260
tttcaagaga gacactggag gcggcactgg ttgcaggatc cgtgccacac gttgttggcg 1320
gtggcacagc agctgaagcc cctgagagag ataccagatc cagagacgag ggcgaaatcc 1380
tagcgaagct cagccttctg ctttactcca ccctaatctc gcctgggggc gggacggagc 1440
ctgtaaaaga ggaagccgga agttaggcgt ttggagccac gcttagctca gtttccagcg 1500
gttagcttct gactatcggg cgggcttgag ccgggacctg gtcttggggt ggttccctct 1560
tgcccaggtc cagtgtccac tacccggctc tgtcccaagc gagggctgtt tacgtgcata 1620
ctgttaagta 1630
<210> 2
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ggggtacctt ctttctgagt ttgc 24
<210> 3
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ccgacgcgta cttaacagta tgc 23

Claims (1)

1.一种含有HDAC10基因启动子序列和报告基因的重组质粒在制备筛选抗缺氧损伤药物中的应用,其特征在于,以含双荧光素酶报告基因的pGL3-basic质粒为载体,在pGL3-basic质粒的KpnI和MluI的限制性酶切位点之间,插入HDAC10基因启动子序列,得到含有HDAC10基因启动子序列和报告基因的重组质粒;所述HDAC10基因启动子序列的核苷酸序列如SEQ ID NO.1所示;
所述含有HDAC10基因启动子序列和报告基因的重组质粒的制备方法包括如下步骤:
(1)设计HDAC10基因启动子的引物,以大鼠基因组为模板,进行PCR扩增,得到含有HDAC10基因启动子的目的片段;
(2)采用限制性内切酶KpnI和MluI分别对含有HDAC10基因启动子的目的片段和pGL3-basic基础质粒进行双酶切,然后将酶切产物进行连接,得到连接后的重组质粒;
(3)筛选连接后的重组质粒,并测序鉴定,得到含有HDAC10基因启动子序列和报告基因的重组质粒;
步骤(1)中,所述HDAC10基因启动子的引物由上游引物和下游引物组成,上游引物序列如SEQ ID NO.2所示,下游引物序列如SEQ ID NO.3所示;
步骤(1)中,所述PCR扩增的反应体系为:25μL体系,premix:12.5μL,模板:2μL,引物:5μL,ddH2O:5.5μL;
步骤(1)中,所述PCR扩增的反应条件为:98℃变性2min;循环为98℃ 20s,58℃ 20s,72℃ 1min30s,共进行32个循环,72℃延伸10min;
所述筛选抗缺氧损伤药物的应用为:筛选抗心肌细胞缺氧损伤药物的应用。
CN202110826322.1A 2021-07-21 2021-07-21 一种含有hdac10基因启动子序列和报告基因的重组质粒、制备方法及应用 Active CN113502300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110826322.1A CN113502300B (zh) 2021-07-21 2021-07-21 一种含有hdac10基因启动子序列和报告基因的重组质粒、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110826322.1A CN113502300B (zh) 2021-07-21 2021-07-21 一种含有hdac10基因启动子序列和报告基因的重组质粒、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113502300A CN113502300A (zh) 2021-10-15
CN113502300B true CN113502300B (zh) 2024-02-06

Family

ID=78014154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110826322.1A Active CN113502300B (zh) 2021-07-21 2021-07-21 一种含有hdac10基因启动子序列和报告基因的重组质粒、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113502300B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898158A (zh) * 2014-03-04 2014-07-02 上海中医药大学附属曙光医院 一种含有malat1启动子序列和报告基因的载体及其构建方法和用途
WO2016102272A1 (en) * 2014-12-23 2016-06-30 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers
CN109576297A (zh) * 2018-12-27 2019-04-05 上海中医药大学附属曙光医院 一种含wsb1基因启动子和报告基因的重组质粒及其构建方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094068A2 (en) * 2005-03-01 2006-09-08 The Regents Of The University Of Michigan Hdac inhibitors that promote brm expression and brm related diagnostics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898158A (zh) * 2014-03-04 2014-07-02 上海中医药大学附属曙光医院 一种含有malat1启动子序列和报告基因的载体及其构建方法和用途
WO2016102272A1 (en) * 2014-12-23 2016-06-30 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (hcc) and other cancers
CN109576297A (zh) * 2018-12-27 2019-04-05 上海中医药大学附属曙光医院 一种含wsb1基因启动子和报告基因的重组质粒及其构建方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Byung Lae Park等.HDAC10 promoter polymorphism associated with development of HCC among chronic HBV patients.《Biochemical and Biophysical Research Communications》.2007,第363卷第776-791页. *
HDAC10 promoter polymorphism associated with development of HCC among chronic HBV patients;Byung Lae Park等;《Biochemical and Biophysical Research Communications》;20071231;第363卷;第776-781页 *
新生大鼠脑组织缺血缺氧后表观遗传学基因的表达;战美芹等;《江苏医药》;20180430(第04期);第452-454页 *
李燕.《精编分子生物学实验技术》.世界图书出版西安有限公司,2017,第151-153页. *
邹小波.《现代食品检测技术》.中国轻工业出版社,2021,第333页. *

Also Published As

Publication number Publication date
CN113502300A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN107502608A (zh) 用于敲除人ALDH2基因的sgRNA、ALDH2基因缺失细胞株的构建方法及应用
CN112980848B (zh) 一种水稻糖诱导启动子srn1及其应用
CN113502300B (zh) 一种含有hdac10基因启动子序列和报告基因的重组质粒、制备方法及应用
CN111471699B (zh) 一种调控cpeb3基因表达的方法
CN110204605B (zh) 转录因子C/EBPα作为ACOX1启动子区的转录因子的应用
CN114517198B (zh) 一种半滑舌鳎miRNA及其在调控tgfb2基因表达中的应用
CN114134174B (zh) 一种LncRNA TUG1靶向调控hsa-miR-4638-3p的方法
CN112553198B (zh) 一种有活性的落叶松增强子、获取及鉴定方法
CN114107304B (zh) 一种表达α毒素蛋白和荧光标签蛋白的重组球虫载体及其检测方法
CN111893118B (zh) 一种来源于甘蓝型油菜的双向启动子及其应用
CN112553197B (zh) 一种有活性的落叶松启动子、获取及鉴定方法
CN113201541A (zh) 日本鳗鲡转录因子ap-1基因启动子及其应用
JP6037339B2 (ja) 形質転換植物細胞を用いたタンパク質製造方法
CN112011628A (zh) 一种与湖羊肌肉细胞增殖相关的LncRNA标志物及其检测引物和应用
CN108085331B (zh) 用于环状rna过表达的dna框架及其应用
CN111154780A (zh) 一种利用双荧光素酶报告基因检测西方蜜蜂Dnmt3基因启动子活性的方法
US11897923B2 (en) Panicum virgatum SOSEKI protein SOK2, coding gene and application thereof
CN113322278B (zh) 一种含有肉牛dkk3基因3’utr序列和双荧光素酶报告基因的质粒及其应用
CN111100873B (zh) 激活rna调控启动子克服转基因沉默效应的方法
CN108504683B (zh) 一种miR-3880靶基因筛选方法
CN116102630B (zh) 一种紫心甘薯花色素苷合成调控因子IbPDC及其应用
CN115960188B (zh) 一种FvNAC073蛋白质及其编码基因和用途
US11913002B2 (en) Modified plant endosperm specific promoter and use thereof
WO2024098353A1 (zh) 一种产大麻萜酚酸的重组酿酒酵母及其构建方法和应用
WO2022143784A1 (en) Methods for producing extracellular vesicles enriched in anti-inflammatory micrornas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant