CN113463150A - 还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用 - Google Patents

还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用 Download PDF

Info

Publication number
CN113463150A
CN113463150A CN202110775705.0A CN202110775705A CN113463150A CN 113463150 A CN113463150 A CN 113463150A CN 202110775705 A CN202110775705 A CN 202110775705A CN 113463150 A CN113463150 A CN 113463150A
Authority
CN
China
Prior art keywords
titanium dioxide
graphene oxide
film
reduced graphene
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110775705.0A
Other languages
English (en)
Inventor
赵敏
吕建国
沈新怡
王顺
周高良
马宇璇
汪莹
胡昌娟
张钧君
舒志峰
章雅林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Normal University
Original Assignee
Hefei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Normal University filed Critical Hefei Normal University
Priority to CN202110775705.0A priority Critical patent/CN113463150A/zh
Publication of CN113463150A publication Critical patent/CN113463150A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/084Investigating materials by wave or particle radiation secondary emission photo-electric effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/61Specific applications or type of materials thin films, coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用,方法步骤中包含:将盐酸、去离子水和钛酸丁酯混合均匀,得到混合液;高压釜底部放置FTO玻璃,作为反应容器;将装有混合液的反应容器置于烘箱中,混合液反应后得到生成物,将生成物清洗干净、并烘干,得到二氧化钛薄膜;以二氧化钛薄膜为工作电极,铂片为对电极,Ag/AgCl为参比电极,采用三电极法在0.5g/L的氧化石墨烯磷酸溶液中进行电沉积,得到样品,将样品清洗干净、并烘干,得到rGO‑TiO2薄膜。本发明可以调控二氧化钛薄膜表面还原氧化石墨烯的负载量,进而调节复合薄膜晶体结构、表面形貌、光电转换及其电催化性能。

Description

还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用
技术领域
本发明涉及一种还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用。
背景技术
现代社会对能源的依赖程度日益提高,能源对人类社会发展起着至关重要的作用。然而,传统的不可再生的化石能源(如:煤、石油和天然气等)在地球的储量有限,而且在使用过程中会排放出大量有毒有害气体和颗粒物,严重破坏人类和其它生物生存和生活的环境,空气污染、水污染、土壤污染等正严重影响到人们的健康,受到了全球的广泛关注。能源和环境问题是全球各个国家所面临的两大课题,因此,合理开发和利用无污染的可再生能源,改善能源的供给结构,减少温室气体和有毒有害气体排放,保护人类赖以生存的地球,已经成为世界能源可持续发展战略的重要组成部分;另一方面,传统的环境治理方法存在诸如对污染物降解不彻底、耗能高、投入大以及容易引起对环境的二次污染等不足,寻找降解效率高、能耗低、不产生二次污染的污染物降解方法成为当今学术界的研究热点,宽禁带半导体因其较好的光催化降解污染污染物的能力受到科研工作者的广泛关注。
二氧化钛(TiO2)作为一种重要的宽禁带半导体材料,因其储量丰富、制备成本相对较低、无毒以及独特的光电特性,使得TiO2在气敏传感器、光电探测、光电转换、燃料电池、太阳能电池、污水处理及空气净化等诸多领域具有广泛的应用前景,受到了大家的极大关注。然而,未掺杂的TiO2材料仅能吸收太阳光谱中少量的紫外光线,而太阳光的能量绝大部分集中在可见光和红外部分,另外,该材料的光生电子空穴对容易复合,光生电子-空穴复合率高,使得该材料的光量子产率较低,不利于对太阳光利用,禁带宽度较宽和光量子效率较低限制了二氧化钛的在光电领域的推广和应用。因此,如何构筑TiO2基复合材料,使其禁带延伸到可见光区域,同时降低光生电子-空穴对复合率成为科研工作者重点关注的问题。电催化全解水被认为是一种具有重要应用前景的能源转换和存储技术,它把电能转换成化学能,并以氢能的形式存储起来,然而,电催化裂解水反应高度依赖电催化剂在析氢反应和析氧反应中的活性,因此,提高电催化析氢的效率成为广大科研工作者努力的方向。研究表明,二氧化钛是一种潜在的电催化剂,然而纯的二氧化钛内在导电性能较差,限制了其整体的电催化性能,电催化效率不高。研究结果显示,通过元素掺杂或者与一些二维材料复合可以有效调控二氧化钛的电子结构,提高其电导率、降低吸附自由能,以提高催化剂的催化效率。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种还原氧化石墨烯负载二氧化钛薄膜的制备方法,它可以调控二氧化钛薄膜表面还原氧化石墨烯的负载量,进而调节复合薄膜晶体结构、表面形貌、光电转换及其电催化性能。
为了解决上述技术问题,本发明的技术方案是:一种还原氧化石墨烯负载二氧化钛薄膜的制备方法,方法步骤中包含:
将盐酸、去离子水和钛酸丁酯混合均匀,得到混合液;高压釜底部放置FTO玻璃,作为反应容器;
将装有混合液的反应容器置于烘箱中,混合液反应后得到生成物,将生成物清洗干净、并烘干,得到二氧化钛薄膜;
以二氧化钛薄膜为工作电极,铂片为对电极,Ag/AgCl为参比电极,采用三电极法在0.5g/L的氧化石墨烯磷酸溶液中进行电沉积,得到样品,将样品清洗干净、并烘干,得到rGO-TiO2薄膜。
进一步,混合液中,盐酸、去离子水和钛酸丁酯的体积比为30:30:1。
进一步,所述高压釜的内衬为聚四氟乙烯。
进一步,电沉积电压为-0.1V。
进一步,混合液的反应时间为12H,烘箱中的温度为150℃。
进一步,在清洗生成物及样品的过程中,均是利用去离子水清洗。
进一步,烘干条件为:大气氛围下60℃。
进一步,制备混合液的过程中,将盐酸、去离子水和钛酸丁酯在室温条件下搅拌30min。
本发明还提供了rGO-TiO2薄膜的两种应用,rGO-TiO2薄膜可应用于光电探测及催化反应。
采用了上述技术方案后,本发明可以调控二氧化钛薄膜表面还原氧化石墨烯的负载量,进而调节复合薄膜晶体结构、表面形貌、光电转换及其电催化性能,找出最佳还原氧化石墨烯的负载量,获得具有优异光电转换性能和电催化性能的rGO/TiO2薄膜复合材料,可应用于光电检测及催化反应,本制备方法还具有工艺简单、制备成本不高等优点。
附图说明
图1为本发明的实施例一所制备的rGO-TiO2薄膜的XRD图谱;
图2为本发明的实施例一所制备的rGO-TiO2薄膜的Raman光谱;
图3为本发明的实施例一所制备的rGO-TiO2薄膜的可见光响应曲线;
图4为本发明的实施例一所制备的rGO-TiO2薄膜的OER极化曲线;
图5为本发明的实施例一所制备的rGO-TiO2薄膜的阻抗谱;
图6为本发明的实施例一所制备的rGO-TiO2薄膜的HER极化曲线。
具体实施方式
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。
实施例一
分别量取30毫升盐酸、30毫升去离子和1毫升钛酸丁酯,在烧杯中将其混合,并在室温条件下磁力搅拌30分钟,然后将混合溶液转移到100毫升内衬聚四氟乙烯的高压釜中,并将清洗干净的氟掺杂二氧化锡透明导电玻璃置于高压釜的底部,将高压釜置于150 ºC的烘箱中反应12小时,反应结束后,高压釜自然冷却至室温,取出生成物,用去离子水清洗干净,随后将其放置到60 ºC的烘箱中,在大气氛围中烘干,得到二氧化钛薄膜。
称取一定量的氧化石墨烯,配置0.5 g/L氧化石墨烯的磷酸溶液,并将其置于超声清洗机中超声中处理2小时,然后以制备的二氧化钛薄膜作为工作电极,铂片作为对电极,Ag/AgCl作为参比电极,采用三电极法在二氧化钛薄膜表面沉积还原氧化石墨烯,沉积电压为-0.1V,电沉积时间为15分钟,将制备好的样品用去离子水清洗数次,并在60 ºC的大气氛围中烘干,得到rGO-TiO2薄膜。
图1为实施例一制备的rGO-TiO2薄膜的XRD图谱,可以看出,衍射谱在2θ=33.89°,37.95°, 51.78°, 54.75°和61.89°处出现衍射峰,该衍射峰分别对应于氟掺杂二氧化锡薄膜透明导电玻璃的(101),(200),(211),(220)和(310)晶面,还有一个衍射峰位于2θ=36.08°处,该衍射峰与金红石相TiO2的(101)晶面相对应。未观察到与还原氧化石墨烯相对应的衍射峰,可能与薄膜中还原氧化石墨烯的含量或者仪器探测精度有关。
图2为实施例一制备的rGO-TiO2薄膜的拉曼光谱图,可以看出,样品在445cm-1和607cm-1处出现了两个相对较强的拉曼散射峰,分别对应于金红石相二氧化钛的B1g 和Eg振动模式。在拉曼光谱中还有两个较弱的中心位于1418 和1615 cm-1的拉曼散射峰,这两个衍射峰分别对应于还原氧化石墨烯的D带和G带,说明有少量的还原氧化石墨烯沉积在二氧化钛薄膜表面。
图3为实施例一制备的rGO-TiO2薄膜的可见光响应曲线,样品的光电响应性能测试采用标准的三电极系统,以rGO-TiO2薄膜作为工作电极(浸入溶液的面积为1×1 cm2),铂片为对电极,Ag/AgCl (3.5 mol/L KCl)作为参比电极,0.5 mol/L的Na2SO4溶液作为薄膜光电响应测试的电解液,光源为AM 1.5标准模拟太阳光。rGO-TiO2薄膜对太阳光的响应时间很快,约为2s,光电流密度约为7×10-7A/cm2
图4为实施例一制备的rGO-TiO2薄膜在碱性条件下的OER测试结果,可以看出,该样品在10mA cm-2时的过电位为281 mV (vs. RHE)。
图5为实施例一制备的rGO-TiO2薄膜的阻抗谱,根据等效电路模型对该曲线进行拟合,得到该催化剂的电荷转移电阻(Rct)约为11.04Ω。
图6为本实施例制备的rGO/TiO2复合薄膜的在碱性条件下的HER极化曲线,结果显示,该样品在10mA cm-2时的过电位为334 mV (vs. RHE)。
实施例二
将30毫升盐酸、30毫升去离子和1毫升钛酸丁酯混合并在室温条件下磁力搅拌30分钟,然后将混合溶液倒入100毫升的高压釜中,并将清洗干净的FTO透明导电玻璃置于高压釜的底部,将高压釜置于150 ºC的烘箱中反应12小时,反应结束后,高压釜自然冷却至室温,取出生成物,用去离子水清洗干净,随后将其放置到60 ºC的烘箱中,在大气氛围中烘干,得到二氧化钛薄膜。
称取一定量的氧化石墨烯,配置0.5 g/L氧化石墨烯的磷酸溶液,并将其置于超声清洗机中超声中处理2小时,然后以制备的二氧化钛薄膜作为工作电极,铂片作为对电极,Ag/AgCl作为参比电极,采用三电极法在二氧化钛薄膜表面沉积还原氧化石墨烯,采用电沉积法在二氧化钛薄膜表面沉积还原氧化石墨烯,沉积电压为-0.1V,电沉积时间为20分钟,将制备好的样品用去离子水清洗数次,并在60 ºC的大气氛围中烘干,得到rGO-TiO2薄膜。
与实施例一对比,本实施例得到的X射线衍射谱中衍射峰的数目和峰位未发生明显变化,衍射峰的相对强度略有减小,可能与还原氧化石墨烯沉积厚度增加有关。本实施例的拉曼光谱显示,依然在445cm-1和607cm-1处出现了两个相对较强的拉曼散射峰,分别对应于金红石相二氧化钛的B1g 和Eg振动模式。在1418 和1615 cm-1处出现两个相对较弱的拉曼散射峰,分别对应于还原氧化石墨烯的D带和G带。本实施例得到的复合薄膜的可见光响应速度也很快,与实施例一基本相同,光电流密度约为1×10-6A/cm2。本实施例制备的样品的OER测试结果显示,样品在10mA cm-2时的过电位为280 mV (vs. RHE)。本实施例制备样品的的电荷转移电阻(Rct)约为4.57Ω。本实施例制备的样品的HER测试结果表明,样品在10mA cm-2时的过电位为347mV (vs. RHE)。
实施例三
本实施例采用与实施例一相同的工艺条件制备二氧化钛薄膜,采用电沉积法制备还原氧化石墨烯过程中,沉积电压为-0.1V,电沉积时间为5分钟。
与实施例一对比,本实施例得到的X射线衍射谱中衍射峰的数目和峰位也未发生明显改变,也未观测到还原氧化石墨烯的衍射峰。本实施例的拉曼光谱在445cm-1和607cm-1处出现了两个相对较强的拉曼散射峰,分别对应于金红石相二氧化钛的B1g 和Eg振动模式。由于还原氧化石墨烯的含量相对较少,在1418 和1615 cm-1处出现两个非常弱的拉曼散射峰,分别对应于还原氧化石墨烯的D带和G带。本实施例得到的复合薄膜的也具有较快的可见光响应速度,光电流密度约为5.5×10-7A/cm2。本实施例制备的样品的OER测试结果显示,样品在10mA cm-2时的过电位为290 mV (vs. RHE)。本实施例制备的样品的的电荷转移电阻(Rct)约为7.45Ω。本实施例制备的样品的HER测试结果表明,样品在10mA cm-2时的过电位为326mV (vs. RHE)。
以上所述的具体实施例,对本发明解决的技术问题、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种还原氧化石墨烯负载二氧化钛薄膜的制备方法,其特征在于,
方法步骤中包含:
将盐酸、去离子水和钛酸丁酯混合均匀,得到混合液;高压釜底部放置FTO玻璃,作为反应容器;
将装有混合液的反应容器置于烘箱中,混合液反应后得到生成物,将生成物清洗干净、并烘干,得到二氧化钛薄膜;
以二氧化钛薄膜为工作电极,铂片为对电极,Ag/AgCl为参比电极,采用三电极法在0.5g/L的氧化石墨烯磷酸溶液中进行电沉积,得到样品,将样品清洗干净、并烘干,得到rGO-TiO2薄膜。
2.根据权利要求1所述的还原氧化石墨烯负载二氧化钛薄膜的制备方法,其特征在于,
混合液中,盐酸、去离子水和钛酸丁酯的体积比为30:30:1。
3.根据权利要求1所述的还原氧化石墨烯负载二氧化钛薄膜的制备方法,其特征在于,
所述高压釜的内衬为聚四氟乙烯。
4.根据权利要求1所述的还原氧化石墨烯负载二氧化钛薄膜的制备方法,其特征在于,
电沉积电压为-0.1V。
5.根据权利要求1所述的还原氧化石墨烯负载二氧化钛薄膜的制备方法,其特征在于,
混合液的反应时间为12H,烘箱中的温度为150℃。
6.根据权利要求1所述的还原氧化石墨烯负载二氧化钛薄膜的制备方法,其特征在于,
在清洗生成物及样品的过程中,均是利用去离子水清洗。
7.根据权利要求1所述的还原氧化石墨烯负载二氧化钛薄膜的制备方法,其特征在于,
烘干条件为:大气氛围下60℃。
8.根据权利要求1所述的还原氧化石墨烯负载二氧化钛薄膜的制备方法,其特征在于,
制备混合液的过程中,将盐酸、去离子水和钛酸丁酯在室温条件下搅拌30min。
9.一种采用权利要求1~8任一项所述的还原氧化石墨烯负载二氧化钛薄膜的制备方法所制备的rGO-TiO2薄膜的应用,其特征在于,
rGO-TiO2薄膜应用于光电探测。
10.一种采用权利要求1~8任一项所述的还原氧化石墨烯负载二氧化钛薄膜的制备方法所制备的rGO-TiO2薄膜的应用,其特征在于,
rGO-TiO2薄膜应用于催化反应。
CN202110775705.0A 2021-07-09 2021-07-09 还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用 Pending CN113463150A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110775705.0A CN113463150A (zh) 2021-07-09 2021-07-09 还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110775705.0A CN113463150A (zh) 2021-07-09 2021-07-09 还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用

Publications (1)

Publication Number Publication Date
CN113463150A true CN113463150A (zh) 2021-10-01

Family

ID=77879320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110775705.0A Pending CN113463150A (zh) 2021-07-09 2021-07-09 还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113463150A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198560A (zh) * 2014-08-20 2014-12-10 江苏大学 一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
CN106868530A (zh) * 2017-01-18 2017-06-20 黄河科技学院 修饰二氧化钛光电极及其制备方法、应用
CN107515237A (zh) * 2017-07-12 2017-12-26 惠州学院 用于测量土霉素的光电化学传感器及其制备方法和应用
CN107583642A (zh) * 2017-09-15 2018-01-16 合肥师范学院 石墨烯量子点负载Ag‑TiO2纳米阵列的制备方法
CN110227506A (zh) * 2019-07-08 2019-09-13 暨南大学 一种电沉积制备石墨烯-碘氧化铋-石墨烯复合光催化剂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198560A (zh) * 2014-08-20 2014-12-10 江苏大学 一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
CN106868530A (zh) * 2017-01-18 2017-06-20 黄河科技学院 修饰二氧化钛光电极及其制备方法、应用
CN107515237A (zh) * 2017-07-12 2017-12-26 惠州学院 用于测量土霉素的光电化学传感器及其制备方法和应用
CN107583642A (zh) * 2017-09-15 2018-01-16 合肥师范学院 石墨烯量子点负载Ag‑TiO2纳米阵列的制备方法
CN110227506A (zh) * 2019-07-08 2019-09-13 暨南大学 一种电沉积制备石墨烯-碘氧化铋-石墨烯复合光催化剂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张旭: "基于rGO/TiO2复合光阳极绿色硫化物量子点敏化太阳能电池的制备与性能", 中国知网, pages 1 - 64 *

Similar Documents

Publication Publication Date Title
Marwat et al. Advanced catalysts for photoelectrochemical water splitting
Lewis Developing a scalable artificial photosynthesis technology through nanomaterials by design
CN107012474B (zh) 一种规模化太阳能光催化-光电催化分解水制氢的方法
CN106222685B (zh) 一种光电催化水分解用的wo3-ldh复合薄膜的制备方法
CN109621981B (zh) 一种金属氧化物-硫化物复合析氧电催化剂及其制备方法和应用
CN108206094B (zh) 一种钴元素掺杂TiO2纳米管的制备方法
CN108842168B (zh) 一种两步电化学法制备g-C3N4/MMO复合薄膜光电极
Wang et al. A ternary hybrid CuS/Cu2O/Cu nanowired photocathode for photocatalytic fuel cell
Wang et al. The feasible photoanode of graphene oxide/zinc aluminum mixed metal oxides for the dye-sensitized solar cell
Villarreal et al. Bio-sensitized solar cells built from renewable carbon sources
Pan et al. Floating Seawater Splitting Device Based on NiFeCrMo Metal Hydroxide Electrocatalyst and Perovskite/Silicon Tandem Solar Cells
Jin et al. Efficient photocatalytic hydrogen production achieved by WO3 coupled with NiP2 over ZIF-8
CN104789984A (zh) 一种抗坏血酸促进葡萄糖光电催化氧化制氢的方法
CN106374118A (zh) 一种具备高效电催化氧还原性能的ZnO/rGO复合材料
CN105887130B (zh) 一种电连接剂制备光催化分解水颗粒膜电极的方法
Zhang et al. Bi2O2S topological transformation and in-situ regrowth of [hk1]-oriented SbBiS3-xSex 2D skeleton structure for construction of efficient quasi-two-dimensional Sb2S3-xSex-based heterojunction photoanodes
CN111952606A (zh) 一种Fe/HKUST-1催化剂及其制备方法与应用
CN113463150A (zh) 还原氧化石墨烯负载二氧化钛薄膜的制备方法及应用
CN113832479B (zh) 一种Fe2O3(Ti)@NH2-MIL-101(Fe)复合光电催化剂及其制备方法
CN113549931B (zh) 一种Fe@CuMoO4NWA/Cu催化剂的制备方法及应用
CN111778518B (zh) 一种高性能P:Fe2O3/FeOOH复合光电极及其制备方法和应用
CN111755255B (zh) 一种增强型二氧化钛基薄膜电池
Long et al. Glucose-derived porous carbon as a highly efficient and low-cost counter electrode for quantum dot-sensitized solar cells
CN107268014A (zh) 一种二氧化钛/碳气凝胶光阴极的制备方法和应用
Biswas et al. Role of electrolytic pH on the performance of nanostructured partially crystalline Nitrogen-doped Titanium Dioxide thin films in photoelectrochemical water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination