CN113462708A - 合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途 - Google Patents

合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途 Download PDF

Info

Publication number
CN113462708A
CN113462708A CN202010244552.2A CN202010244552A CN113462708A CN 113462708 A CN113462708 A CN 113462708A CN 202010244552 A CN202010244552 A CN 202010244552A CN 113462708 A CN113462708 A CN 113462708A
Authority
CN
China
Prior art keywords
gene
recombinant
lihfa
escherichia coli
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010244552.2A
Other languages
English (en)
Inventor
宋浩
房立霞
曹英秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010244552.2A priority Critical patent/CN113462708A/zh
Publication of CN113462708A publication Critical patent/CN113462708A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6418Fatty acids by hydrolysis of fatty acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途,构建方法为:将tesA’基因和dcas9基因连接到质粒YX212,构建重组质粒pCF,将其转化大肠杆菌BL21(DE3),得到重组菌株CF;将ihfA‑Low片段与Sg‑S片段连接,构建重组质粒Sg‑LihfA,将其转化菌株CF,得到重组菌株LihfA;将PBAD‑T1片段和aidB基因依次连接到质粒Sg‑LihfA,构建重组质粒Sg‑LihfA‑OaidB,将其转化菌株CF,得到重组菌株LihfA‑OaidB。本发明构建的重组大肠杆菌菌株LihfA和LihfA‑OaidB通过调控与脂肪酸代谢非直接相关基因的表达高效合成游离脂肪酸。

Description

合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途
技术领域
本发明涉及生物合成和生物能源技术领域,更具体的说是涉及合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途。
背景技术
游离脂肪酸被广泛应用于多个领域,可用作洗涤剂、润滑剂、化妆品添加剂和药物制剂;作为重要的前体物,其衍生的烷/烯烃和脂肪酸酯比短链醇具有更高的能量密度,并且与汽油不存在10%~20%的混合壁垒,被认为是更有潜力的替代燃料;而其衍生的脂肪醇和三酰甘油等产品因具有优良的亲疏水性,也是洗涤剂、润滑剂、化妆品和药物等多种化学工业产品的主要原料。
现阶段游离脂肪酸主要从石油或动植物中提取,存在可持续性差、与粮食争地等问题,因此利用工程微生物高效地合成可再生脂肪酸成为了近年来的研究热点。因为遗传背景清晰,大肠杆菌的脂肪酸代谢和调控被最早研究。
野生型大肠杆菌基本不生成游离脂肪酸,表达去掉前导肽的内源硫酯酶基因(tesA’),可以将细胞内积累的酯酰-ACP转化为游离脂肪酸。大肠杆菌脂肪酸代谢过程如图1所示。通过过表达合成路径中的关键基因、敲除旁路代谢途径基因、上下游代谢模块的适配等代谢工程改造,工程大肠杆菌合成脂肪酸的产量取得了很大的进步,展示了大肠杆菌巨大的工业脂肪酸合成潜力。
目前工程大肠杆菌合成游离脂肪酸的研究多集中于对脂肪酸代谢路径相关基因的改造,尚未有通过调控细胞内源与脂肪酸代谢非直接相关的基因的表达来提高大肠杆菌脂肪酸合成的报道。
发明内容
本发明的目的在于克服现有技术的不足,提供一种合成游离脂肪酸重组大肠杆菌菌株。
本发明的第二个目的是提供一种合成游离脂肪酸重组大肠杆菌菌株的构建方法。
本发明的第三个目的是提供一种合成游离脂肪酸重组大肠杆菌菌株合成游离脂肪酸的用途。
本发明的第四个目的是提供第二种合成游离脂肪酸重组大肠杆菌菌株。
本发明的第五个目的是提供第二种合成游离脂肪酸重组大肠杆菌菌株的构建方法。
本发明的第六个目的是提供第二种合成游离脂肪酸重组大肠杆菌菌株合成游离脂肪酸的用途。
本发明的技术方案概述如下:
合成游离脂肪酸重组大肠杆菌菌株的构建方法,包括如下步骤:
(1)将tesA’基因和dcas9基因连接到质粒YX212,构建重组质粒pCF;所述tesA’基因为大肠杆菌BL21(DE3)内源的截掉前导肽序列的硫酯酶基因的缩写;所述dcas9基因是酿脓链霉菌(Streptococcuspyogenes)来源的Cas9蛋白编码基因按大肠杆菌BL21(DE3)密码子优化并突变两个碱基的缩写;
所述tesA’基因的核苷酸序列如SEQ ID NO.1所示;
所述dcas9基因的核苷酸序列如SEQ ID NO.2所示;
所述YX212质粒的核苷酸序列如SEQ ID NO.3所示;
(2)将质粒pCF转化到菌株大肠杆菌BL21(DE3)中,得到重组菌株CF;
(3)将靶向大肠杆菌BL21(DE3)内源基因ihfA的sgRNA表达盒ihfA-Low片段与Sg-S骨架片段酶切连接,构建重组质粒Sg-LihfA;
所述ihfA基因的核苷酸序列如SEQ ID NO.4所示;
所述ihfA-Low片段的核苷酸序列如SEQ ID NO.5所示;
所述Sg-S骨架片段的核苷酸序列如SEQ ID NO.6所示;
(4)将重组质粒Sg-LihfA转化到重组菌株CF中,得到合成游离脂肪酸重组大肠杆菌菌株LihfA。
上述构建方法构建的合成游离脂肪酸重组大肠杆菌菌株LihfA。
上述合成游离脂肪酸重组大肠杆菌菌株LihfA合成游离脂肪酸的用途。
另一种合成游离脂肪酸重组大肠杆菌菌株的构建方法,包括如下步骤:
(1)将tesA’基因和dcas9基因连接到质粒YX212,构建重组质粒pCF;所述tesA’基因为大肠杆菌BL21(DE3)内源的截掉前导肽序列的硫酯酶基因的缩写;所述dcas9基因是酿脓链霉菌(Streptococcuspyogenes)来源的Cas9蛋白编码基因按大肠杆菌BL21(DE3)密码子优化并突变两个碱基的缩写;
所述tesA’基因的核苷酸序列如SEQ ID NO.1所示;
所述dcas9基因的核苷酸序列如SEQ ID NO.2所示;
所述YX212质粒的核苷酸序列如SEQ ID NO.3所示;
(2)将质粒pCF转化到菌株大肠杆菌BL21(DE3)中,得到重组菌株CF;
(3)将靶向大肠杆菌BL21(DE3)内源基因ihfA的sgRNA表达盒ihfA-Low片段与Sg-S骨架片段酶切连接,构建重组质粒Sg-LihfA;
所述ihfA基因的核苷酸序列如SEQ ID NO.4所示;
所述ihfA-Low片段的核苷酸序列如SEQ ID NO.5所示;
所述Sg-S骨架片段的核苷酸序列如SEQ ID NO.6所示;
(4)将PBAD-T1片段和大肠杆菌BL21(DE3)内源的损伤修复蛋白基因aidB依次连接到重组质粒Sg-LihfA,构建重组质粒Sg-LihfA-OaidB;
所述aidB基因的核苷酸序列如SEQ ID NO.7所示;
所述PBAD-T1片段的核苷酸序列如SEQ ID NO.10所示;
(5)将重组质粒Sg-LihfA-OaidB转化到重组菌株CF中,得到合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB。
上述第二种构建方法构建的合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB。
上述合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB合成游离脂肪酸的用途。
本发明的优点:
本发明构建的合成游离脂肪酸重组大肠杆菌菌株LihfA和合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB能够通过调控细胞内源与脂肪酸代谢非直接相关的基因的表达以甘油为碳源高效合成游离脂肪酸。这种利用内源基因的表达调控来促进大肠杆菌合成游离脂肪酸的方法操作简便,同时能得到产量高的游离脂肪酸。
附图说明
图1为大肠杆菌脂肪酸代谢路径。
图2为重组质粒pCF,Sg-LihfA和Sg-LihfA-OaidB的构建示意图。
图3为合成游离脂肪酸重组大肠杆菌菌株LihfA和LihfA-OaidB试管发酵产量图。
图4为合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB补料分批发酵产量图。
具体实施方式
原始菌株大肠杆菌Escherichia coli BL21(DE3)于2014年9月在Thermofisher
(https://www.thermofisher.com/cn/zh/home/brands/invitrogen.html)购买。
ihfA基因:来自大肠杆菌(Escherichia coli BL21(DE3));
aidB基因:来自大肠杆菌(Escherichia coli BL21(DE3))。
YX212质粒的核苷酸序列如SEQ ID NO.3所示(Cao YX,Xiao W H,Liu D,etal.Biosynthesis ofodd-chain fatty alcohols in Escherichia coli[J].MetabolicEngineering,2015,29:113-123)。
微生物内产物的合成通常受到细胞内复杂的基因和代谢网络的调控。因此,识别并有效调控细胞内源潜力基因的表达,不仅能充分挖掘细胞产物合成的潜力,更能加快高产工程大肠杆菌菌株的构建,加深细胞产物合成及调控机制的解析。
下面结合具体实施例对本发明作进一步的说明。
实施例1
合成游离脂肪酸重组大肠杆菌菌株LihfA的构建,包括如下步骤:
(1)人工合成tesA’基因和dcas9基因,通过酶切连接的方法,将tesA’基因和dcas9基因连接到质粒YX212,构建重组质粒pCF,如图2a所示;所述tesA’基因为大肠杆菌BL21(DE3)内源的截掉前导肽序列的硫酯酶基因的缩写;所述dcas9基因是酿脓链霉菌(Streptococcus pyogenes)来源的Cas9蛋白编码基因按大肠杆菌BL21(DE3)密码子优化并突变两个碱基的缩写;
所述tesA’基因的核苷酸序列如SEQ ID NO.1所示;
所述dcas9基因的核苷酸序列如SEQ ID NO.2所示;
所述YX212质粒的核苷酸序列如SEQ ID NO.3所示;
(2)将质粒pCF化学法转化到菌株大肠杆菌BL21(DE3)感受态细胞中,得到重组菌株CF;
(3)从NCBI数据库获得大肠杆菌BL21(DE3)来源的基因ihfA,设计并人工合成靶向此基因的sgRNA表达盒ihfA-Low片段;人工合成Sg-S骨架片段;将ihfA-Low片段与Sg-S骨架片段酶切后连接起来,构建重组质粒Sg-LihfA,如图2b所示;
所述ihfA基因的核苷酸序列如SEQ ID NO.4所示;
所述ihfA-Low片段的核苷酸序列如SEQ ID NO.5所示;
所述Sg-S骨架片段的核苷酸序列如SEQ ID NO.6所示;
(4)将重组质粒Sg-LihfA化学法转化到重组菌株CF感受态细胞中,得到合成游离脂肪酸重组大肠杆菌菌株LihfA。
实施例2
合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB的构建,包括如下步骤:
(1)-(3)同实施例1中的步骤(1)-(3);
(4)从NCBI数据库获得大肠杆菌BL21(DE3)来源的损伤修复蛋白基因aidB,设计并人工合成引物NdeI-aidB-F和NheI-aidB-R;以大肠杆菌BL21(DE3)基因组为模板,用引物NdeI-aidB-F和NheI-aidB-R进行PCR扩增,得到片段NdeI-aidB-XhoI;设计并人工合成表达盒PBAD-T1片段;通过酶切连接的方法将PBAD-T1片段与NdeI-aidB-XhoI片段依次连接到质粒Sg-LihfA中,得到重组质粒Sg-LihfA-OaidB,如图2b所示;
所述aidB基因的核苷酸序列如SEQ ID NO.7所示;
所述NdeI-aidB-F引物的核苷酸序列如SEQ ID NO.8所示;
所述NdeI-aidB-R引物的核苷酸序列如SEQ ID NO.9所示;
所述PBAD-T1片段的核苷酸序列如SEQ ID NO.10所示;
(5)将重组质粒Sg-LihfA-OaidB化学法转化到菌株CF的感受态细胞中,得到合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB。
实施例3:重组大肠杆菌菌株LihfA和LihfA-OaidB试管发酵生产游离脂肪酸
1、菌株活化
将重组大肠杆菌菌株CF,LihfA和LihfA-OaidB从-80℃冰箱取出,在LB液体培养基(培养菌株CF时加入终浓度为34μg/mL的氯霉素;培养菌株LihfA和LihfA-OaidB时加入终浓度为34μg/mL的氯霉素和终浓度为100μg/mL的氨苄霉素)里30℃,220rpm分别过夜培养,活化菌株。
2、试管发酵
将步骤1获得的活化的CF,LihfA和LihfA-OaidB培养液按1%的比例分别转接入装有5mL第一种发酵培养基的试管中,30℃,220rpm培养,OD600为0.5时,在其中的LihfA-OaidB中加入终浓度为10mM的阿拉伯糖,在OD600为1时,在CF,LihfA和LihfA-OaidB中分别加入终浓度为1mM的IPTG,30℃,220rpm继续培养40h,取培养液用于产物分析。
第一种发酵培养基的配方为:17.1g/LNa2HPO4·12H2O,3g/L KH2PO4,0.5g/LNaCl,2g/L NH4Cl,2g/L酵母提取物,30g/L甘油,0.25g/LMgSO4·7H2O,11.1mg/L CaCl2,1mL/L微量元素母液,10mg/L VB1,0.1%(v/v)Triton-X100,余量为水;培养菌株CF时加入终浓度为34μg/mL的氯霉素;培养菌株LihfA和LihfA-OaidB时加入终浓度为34μg/mL的氯霉素和终浓度为100μg/mL的氨苄霉素;
微量元素母液为:27g/L FeCl3·6H2O,2g/L ZnCl2,2g/LNa2MoO4·2H2O,1.9g/LCuSO4·5H2O和0.5g/LH3BO3,余量为水。
3、游离脂肪酸的提取和分析
分别取0.5mL本实施例步骤2获得的CF,LihfA和LihfA-OaidB培养液,分别加入50μL盐酸和60μg十七酸作为内标,分别加入0.5mL乙酸乙酯后漩涡震荡5min,12000rpm离心2min,分别收集350μL上层有机相,向下层溶液中再次加入0.5mL乙酸乙酯,漩涡震荡5min,12000rpm离心2min,分别取500μL上层有机相;将前两步收集的有机相合并,分别用0.22μm有机系滤膜过滤。滤液通过气相色谱法(GC)进行检测分析。使用Thermo ScientificTRACE1300GC仪器,TG-WaxMSA色谱柱(30m×0.32mm×0.25μm;Thermo Scientific)和氢火焰离子检测器(FID),氮气为载气,流速为1mL/min,不分流进样,进样量为1uL。色谱柱升温程序如下:初始温度50℃,保持1min,以30℃/min的速度升到245℃,并在245℃保持22.5min。脂肪酸种类参考相应的脂肪酸标准品的出峰时间进行定性,脂肪酸的量参考脂肪酸峰面积与内标(十七酸)峰面积来定量,脂肪酸的终浓度为链长为C12,C14,C16,C18的饱和脂肪酸和单不饱和脂肪酸的浓度之和。
4、结果
如图1所示,表达大肠杆菌BL21(DE3)内源的截掉前导肽的硫酯酶tesA’,可转化酯酰-ACP成游离脂肪酸。由图3可以看出,重组大肠杆菌菌株CF试管培养得到631mg/L游离脂肪酸;重组大肠杆菌菌株LihfA具备较佳的脂肪酸合成能力,试管培养得到1306mg/L游离脂肪酸,相对于菌株CF提高了107%;重组大肠杆菌菌株LihfA-OaidB具备更佳的脂肪酸合成能力,试管培养得到2052mg/L游离脂肪酸,相对于菌株CF和LihfA分别提高了225%和57%。
实施例4:重组大肠杆菌菌株LihfA-OaidB补料分批发酵生产游离脂肪酸
1、菌株活化
将重组大肠杆菌菌株LihfA-OaidB从-80℃冰箱取出,在LB液体培养基(含终浓度为34μg/mL的氯霉素和终浓度为100μg/mL的氨苄霉素)里30℃,220rpm过夜培养,活化菌株。
2、补料分批发酵
将步骤1获得的活化的LihfA-OaidB菌株培养液按1%的比例转接入200mL第二种发酵培养基中培养,OD600达4时,全部转接入含1.8L第二种发酵培养基的5L发酵罐中。发酵温度设置为30℃,pH由氨水调控至7,空气流速设置为2L/min。转速设置为300至800rpm调控溶氧在30%以上。当OD600为5.95(培养6.63h)时加入终浓度为10mM的阿拉伯糖,当OD600为17.62(培养13.66h)时加入终浓度为1mM的IPTG。当第二种发酵培养基中的甘油耗尽时,开启补料。溶氧高于60%时,补料以5mL/min的速度流加至发酵罐中,直至溶氧低于60%。接入发酵罐后,培养0h,6.63h、12h、13.66h、17.66h、21.66h、31.66h、35.66h、39.66h、43.66h、45.66h、47.66h和51.66h时,分别取5mL发酵液,用于OD600的测定和后续的代谢物(甘油,游离脂肪酸)分析。
所述第二种发酵培养基的配方为:6g/LNH4Cl,8.5g/L KH2PO4,0.5g/L柠檬酸钠,5g/L酵母提取物,15g/L甘油,1g/L MgSO4·7H2O,0.07g/L CaCl2·2H2O,4mL/L微量元素母液,100mg/LVB1,以及100μg/mL氨苄霉素,34μg/mL氯霉素,余量为水;
微量元素母液为:27g/L FeCl3·6H2O,2g/L ZnCl2,2g/LNa2MoO4·2H2O,1.9g/LCuSO4·5H2O和0.5g/LH3BO3,余量为水;
补料配方为:2.47g/L MgSO4·7H2O,500g/L甘油和100g/L酵母提取物,余量为水。
3、代谢物分析
(1)游离脂肪酸的提取和分析:本实施例步骤2获得的培养时长为13.66h和17.66h的发酵液分别取0.5mL,培养时长为21.66h、31.66h、35.66h、39.66h、43.66h、45.66h、47.66h和51.66h的发酵液加水稀释10倍后分别取0.5mL,按照实施例3步骤3游离脂肪酸的提取和分析进行操作。
(2)甘油的提取和分析:本实施例步骤2获得的全部培养时长的发酵液分别取1mL,14000rpm离心5min,上清液分别再次14000rpm离心5min,将收集到的上清液分别用0.22μm水系滤膜过滤。滤液通过高效液相色谱法(HPLC)进行检测分析。使用Waters e2695HPLC仪器,Waters 2414示差检测器,Aminex HPX-87H色谱柱(Bio-Rad),流动相为5mM H2SO4,流速为0.6mL/min,进样量为10uL,65℃维持30min。以甘油标准品的出峰时间进行定性,甘油标准品的浓度与峰面积的标准曲线来定量。
4、结果
由图4可以看出,重组大肠杆菌菌株LihfA-OaidB菌株在5L发酵罐中进行补料分批发酵进一步提高脂肪酸产量,得到21.6g/L游离脂肪酸,生产速率是0.636g/L/h,产率是0.146g游离脂肪酸/g甘油。发酵结束时,我们发现发酵罐内壁上和各种感应设备上都聚沉着死细胞和脂肪酸颗粒,虽然无法被准确计量,但这代表了额外合成的脂肪酸。
序列表
<110> 天津大学
<120> 合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 561
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
catatggcgg acacgttatt gattctgggt gatagcctga gcgccgggta tcgaatgtct 60
gccagcgcgg cctggcctgc cttgttgaat gataagtggc agagtaaaac gtcggtagtt 120
aatgccagca tcagcggcga cacctcgcaa caaggactgg cgcgccttcc ggctctgctg 180
aaacagcatc agccgcgttg ggtgctggtt gaactgggcg gcaatgacgg tttgcgtggt 240
tttcagccac agcaaaccga gcaaacgctg cgccagattt tgcaggatgt caaagccgcc 300
aacgctgaac cattgttaat gcaaatacgt ctgcctgcaa actatggtcg ccgttataat 360
gaagccttta gcgccattta ccccaaactc gccaaagagt ttgatgttcc gctgctgccc 420
ttttttatgg aagaggtcta cctcaagcca caatggatgc aggatgacgg tattcatccc 480
aaccgcgacg cccagccgtt tattgccgac tggatggcga agcagttgca gcctttagta 540
aatcatgact cataaggtac c 561
<210> 2
<211> 4115
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ccatggacaa aaaatactct atcggtctgg ctatcggtac taactctgtt ggttgggctg 60
ttatcaccga cgaatacaaa gttccgtcta aaaaattcaa agttctgggt aacaccgacc 120
gtcactctat caaaaaaaac ctgatcggtg ctctgctgtt cgactctggt gaaaccgctg 180
aagctacccg tctgaaacgt accgctcgtc gtcgttacac ccgtcgtaaa aaccgtatct 240
gctacctgca agaaatcttc tctaacgaaa tggctaaagt tgacgactct ttcttccacc 300
gtctcgaaga atcgttcctg gttgaagagg acaaaaaaca cgaacgtcac ccgatcttcg 360
gtaacatcgt tgacgaagtt gcttaccacg aaaaataccc gaccatctac cacctgcgta 420
aaaaactggt tgactctacc gacaaagctg acctgcgtct gatctacctg gctctggctc 480
acatgatcaa attccgtggt cacttcctga tcgaaggtga cctgaacccg gacaactctg 540
acgttgacaa actgttcatc cagctggttc agacctacaa ccagctgttc gaagaaaacc 600
cgatcaacgc ttctggtgtt gacgctaaag ctatcctgtc tgctcgtctg tctaaatctc 660
gtcgtctgga aaacctgatc gctcagctgc cgggtgaaaa aaaaaacggt ctgttcggta 720
acctgatcgc tctgtctctg ggtctgaccc cgaacttcaa atctaacttc gacctggctg 780
aagacgctaa actgcaactg tctaaagaca cctacgacga cgacctggac aacctgctgg 840
ctcagatcgg tgaccagtac gctgacctgt tcctggctgc taaaaacctg tctgacgcta 900
tcctgctgtc tgacatcctg cgtgttaaca ccgaaatcac caaagctccg ctgtctgctt 960
ctatgatcaa acgttacgac gaacaccacc aggacctgac cctgctgaaa gctctggttc 1020
gtcagcagct gccggaaaaa tacaaagaaa tcttcttcga ccagtctaaa aacggttacg 1080
ctggttacat cgacggtggt gcttctcagg aagaatttta caaattcatc aaaccgatcc 1140
tggaaaaaat ggacggtact gaagaactgc tggttaaact gaaccgtgaa gacctgctgc 1200
gtaaacagcg taccttcgac aacggttcta tcccgcacca gatccacctg ggtgaactgc 1260
acgctatcct gcgtcgtcag gaagacttct acccgttcct gaaagacaac cgtgaaaaaa 1320
tcgaaaaaat cctgaccttc cgtatcccgt actacgttgg tccgctggct cgtggtaact 1380
ctcgtttcgc ttggatgacc cgtaaatctg aagaaaccat caccccgtgg aacttcgaag 1440
aagttgttga caaaggtgct tctgctcagt ctttcatcga acgtatgacc aacttcgaca 1500
aaaacctgcc gaacgaaaaa gttctgccga aacactctct gctgtacgaa tacttcaccg 1560
tttacaacga actgaccaaa gttaaatacg ttaccgaagg tatgcgtaaa ccggctttcc 1620
tgtctggtga acagaaaaaa gctatcgttg acctgctgtt caaaaccaac cgtaaagtta 1680
ccgttaaaca gctgaaagaa gactacttca aaaaaatcga atgcttcgac tctgttgaaa 1740
tctctggtgt tgaagaccgt ttcaacgctt ctctgggtac ttaccacgac ctgctgaaaa 1800
tcatcaaaga caaagacttc ctggacaacg aagaaaacga agacatcctg gaagacatcg 1860
ttctgaccct gaccctgttc gaagaccgtg aaatgatcga agaacgtctg aaaacctacg 1920
ctcacctgtt cgacgacaaa gttatgaaac agctgaaacg tcgtcgttac accggttggg 1980
gtcgtctgtc tcgtaaactg atcaacggta tccgtgacaa acagtctggt aaaaccatcc 2040
tggacttcct gaaatctgac ggtttcgcta accgtaactt catgcagctg atccacgacg 2100
actctctgac cttcaaagaa gacatccaga aggcgcaggt aagcggtcag ggtgactctc 2160
tgcacgaaca catcgctaac ctggctggtt ctccggctat caaaaaaggt atcctgcaaa 2220
ccgttaaagt tgttgacgaa ctggttaaag ttatgggtcg tcacaaaccg gaaaacatcg 2280
ttatcgaaat ggctcgtgaa aaccagacca cccagaaagg tcagaaaaac tctcgtgaac 2340
gtatgaaacg tatcgaagaa ggtatcaaag aactgggttc tcagatcctg aaagaacacc 2400
cggttgaaaa cacccagctg caaaacgaaa aactgtacct gtactacctg caaaacggtc 2460
gtgacatgta cgttgaccag gaactggaca tcaaccgtct gtctgactac gacgttgacg 2520
ctatcgttcc gcagtctttc ctgaaagacg actctatcga caacaaagtt ctgacccgtt 2580
ctgacaaaaa ccgtggtaaa tctgacaacg ttccgtctga agaagttgtt aaaaaaatga 2640
aaaactactg gcgtcagctg ctgaacgcta aactgatcac ccagcgtaaa ttcgacaacc 2700
tgaccaaagc tgaacgtggt ggtctgtctg aactggacaa agctggtttc atcaaacgtc 2760
agctggttga aacccgtcag atcaccaaac acgttgctca gatcctggac tctcgtatga 2820
acaccaaata cgacgaaaac gacaaactga tccgtgaagt taaagttatc accctgaaat 2880
ctaaactggt ttctgacttc cgtaaagact tccagttcta caaagttcgt gaaatcaaca 2940
actaccacca cgctcacgac gcttacctga acgctgttgt tggtactgct ctgatcaaaa 3000
aatacccgaa actggagtcg gaatttgtgt acggggacta caaagtttac gacgttcgta 3060
aaatgatcgc taaatctgaa caggaaatcg gtaaagctac cgctaaatac ttcttctact 3120
ctaacatcat gaacttcttc aaaaccgaaa tcaccctggc taacggtgaa atccgtaaac 3180
gtccgctgat cgaaaccaac ggtgaaaccg gcgagatcgt ctgggacaaa ggccgtgact 3240
tcgctaccgt tcgtaaagtt ctgtctatgc cgcaggttaa catcgttaaa aaaaccgaag 3300
ttcagaccgg tggtttctct aaagaatcta tcctgccgaa acgtaactct gacaaactga 3360
tcgctcgtaa aaaagactgg gacccaaaaa aatacggtgg cttcgactct ccgactgttg 3420
cttactctgt tctggttgtt gctaaagttg aaaaaggtaa atctaaaaaa ctgaaatctg 3480
ttaaagaact gctgggtatc accatcatgg aacgttcttc tttcgaaaaa aacccgatcg 3540
acttcctgga agctaaaggt tacaaagaag ttaaaaaaga cctgatcatc aaactgccga 3600
aatactctct gttcgaactg gaaaacggtc gtaaacgtat gctggcttct gctggtgaac 3660
tgcaaaaagg taacgaactg gctctgccgt ctaaatacgt taacttcctg tacctggctt 3720
ctcactacga aaaactgaaa ggttctccgg aagacaacga acagaaacag ctgttcgttg 3780
aacagcacaa acactacctg gacgaaatca tcgaacagat cagtgaattt tctaaacgtg 3840
ttatcctggc tgacgctaac ctggacaaag ttctgtctgc ttacaacaaa caccgtgaca 3900
aaccgatccg tgaacaggct gaaaacatca tccacctgtt caccctgacc aacctcggtg 3960
ctccagctgc gttcaaatac ttcgacacca ccatcgaccg taaacgttac acctctacca 4020
aagaagttct ggacgctacc ctgatccacc agtctatcac cggtctgtac gaaacccgta 4080
tcgacctgtc tcagctgggt ggtgactaag gatcc 4115
<210> 3
<211> 4154
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ctgaaccgac gaccgggtcg aatttgcttt cgaatttctg ccattcatcc gcttattatc 60
acttattcag gcgtagcacc aggcgtttaa gggcaccaat aactgcctta aaaaaattac 120
gccccgccct gccactcatc gcagtactgt tgtaattcat taagcattct gccgacatgg 180
aagccatcac agacggcatg atgaacctga atcgccagcg gcatcagcac cttgtcgcct 240
tgcgtataat atttgcccat agtgaaaacg ggggcgaaga agttgtccat attggccacg 300
tttaaatcaa aactggtgaa actcacccag ggattggctg agacgaaaaa catattctca 360
ataaaccctt tagggaaata ggccaggttt tcaccgtaac acgccacatc ttgcgaatat 420
atgtgtagaa actgccggaa atcgtcgtgg tattcactcc agagcgatga aaacgtttca 480
gtttgctcat ggaaaacggt gtaacaaggg tgaacactat cccatatcac cagctcaccg 540
tctttcattg ccatacggaa ctccggatga gcattcatca ggcgggcaag aatgtgaata 600
aaggccggat aaaacttgtg cttatttttc tttacggtct ttaaaaaggc cgtaatatcc 660
agctgaacgg tctggttata ggtacattga gcaactgact gaaatgcctc aaaatgttct 720
ttacgatgcc attgggatat atcaacggtg gtatatccag tgattttttt ctccatttta 780
gcttccttag ctcctgaaaa tctcgataac tcaaaaaata cgcccggtag tgatcttatt 840
tcattatggt gaaagttgga acctcttacg tgccgatcaa cgtctcattt tcgccaaaag 900
ttggcccagg gcttcccggt atcaacaggg acaccaggat ttatttattc tgcgaagtga 960
tcttccgtca caggtattta ttcggcgcaa agtgcgtcgg gtgatgctgc caacttactg 1020
atttagtgta tgatggtgtt tttgaggtgc tccagtggct tctgtttcta tcagctgtcc 1080
ctcctgttca gctactgacg gggtggtgcg taacggcaaa agcaccgccg gacatcagcg 1140
ctagcggagt gtatactggc ttactatgtt ggcactgatg agggtgtcag tgaagtgctt 1200
catgtggcag gagaaaaaag gctgcaccgg tgcgtcagca gaatatgtga tacaggatat 1260
attccgcttc ctcgctcact gactcgctac gctcggtcgt tcgactgcgg cgagcggaaa 1320
tggcttacga acggggcgga gatttcctgg aagatgccag gaagatactt aacagggaag 1380
tgagagggcc gcggcaaagc cgtttttcca taggctccgc ccccctgaca agcatcacga 1440
aatctgacgc tcaaatcagt ggtggcgaaa cccgacagga ctataaagat accaggcgtt 1500
tcccctggcg gctccctcgt gcgctctcct gttcctgcct ttcggtttac cggtgtcatt 1560
ccgctgttat ggccgcgttt gtctcattcc acgcctgaca ctcagttccg ggtaggcagt 1620
tcgctccaag ctggactgta tgcacgaacc ccccgttcag tccgaccgct gcgccttatc 1680
cggtaactat cgtcttgagt ccaacccgga aagacatgca aaagcaccac tggcagcagc 1740
cactggtaat tgatttagag gagttagtct tgaagtcatg cgccggttaa ggctaaactg 1800
aaaggacaag ttttggtgac tgcgctcctc caagccagtt acctcggttc aaagagttgg 1860
tagctcagag aaccttcgaa aaaccgccct gcaaggcggt tttttcgttt tcagagcaag 1920
agattacgcg cagaccaaaa cgatctcaag aagatcatct tattaatcag ataaaatatt 1980
tctagatttc agtgcaattt atctcttcaa atgtagcacc tgaagtcagc cccatacgat 2040
ataagttgta attctcatgt tagtcatgcc ccgcgcccac cggaaggagc tgactgggtt 2100
gaaggctctc aagggcatcg gtcgagatcc cggtgcctaa tgagtgagct aacttacatt 2160
aattgcgttg cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta 2220
atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt gggcgccagg gtggtttttc 2280
ttttcaccag tgagacgggc aacagctgat tgcccttcac cgcctggccc tgagagagtt 2340
gcagcaagcg gtccacgctg gtttgcccca gcaggcgaaa atcctgtttg atggtggtta 2400
acggcgggat ataacatgag ctgtcttcgg tatcgtcgta tcccactacc gagatgtccg 2460
caccaacgcg cagcccggac tcggtaatgg cgcgcattgc gcccagcgcc atctgatcgt 2520
tggcaaccag catcgcagtg ggaacgatgc cctcattcag catttgcatg gtttgttgaa 2580
aaccggacat ggcactccag tcgccttccc gttccgctat cggctgaatt tgattgcgag 2640
tgagatattt atgccagcca gccagacgca gacgcgccga gacagaactt aatgggcccg 2700
ctaacagcgc gatttgctgg tgacccaatg cgaccagatg ctccacgccc agtcgcgtac 2760
cgtcttcatg ggagaaaata atactgttga tgggtgtctg gtcagagaca tcaagaaata 2820
acgccggaac attagtgcag gcagcttcca cagcaatggc atcctggtca tccagcggat 2880
agttaatgat cagcccactg acgcgttgcg cgagaagatt gtgcaccgcc gctttacagg 2940
cttcgacgcc gcttcgttct accatcgaca ccaccacgct ggcacccagt tgatcggcgc 3000
gagatttaat cgccgcgaca atttgcgacg gcgcgtgcag ggccagactg gaggtggcaa 3060
cgccaatcag caacgactgt ttgcccgcca gttgttgtgc cacgcggttg ggaatgtaat 3120
tcagctccgc catcgccgct tccacttttt cccgcgtttt cgcagaaacg tggctggcct 3180
ggttcaccac gcgggaaacg gtctgataag agacaccggc atactctgcg acatcgtata 3240
acgttactgg tttcacattc accaccctga attgactctc ttccgggcgc tatcatgcca 3300
taccgcgaaa ggttttgcgc cattcgatgg tgtccgggat ctcgacgctc tcccttatgc 3360
tgcagacatc ataacggttc tggcaaatat tctgaaatga gctgttgaca attaatcatc 3420
cggctcgtat aatgtgtgga attgtgagcg gataacaatt tcacacagga aacagcgccg 3480
ctgagaaaaa gcgaagcggc actgctcttt aacaatttat cagacaatct gtgtgggcac 3540
tcgaccggaa ttatcgatta actttattat taaaaattaa agaggtatat attaatgtat 3600
cgattaaata aggaggaata aaccatggaa ggatccgagc tccaattcgc cctatagtga 3660
gacgcgtgct agaggcatca aataaaacga aaggctcagt cgaaagactg ggcctttcgt 3720
tttatctgtt gtttgtcggt gaacgcttaa gtcgaacaga aagtaatcgt attgtacacg 3780
gccgcataat cgaaattaat acgactcact ataggggaat tgtgagcgga taacaattcc 3840
ccatcttagt atattagtta agtataagaa ggagatatac atatggaagg tacccctcga 3900
gtctggtaaa gaaaccgctg ctgcgaaatt tgaacgccag cacatggact cgtctactag 3960
cgcagcttaa ttaacctagg ctgctgccac cgctgagcaa taactagcat aaccccttgg 4020
ggcctctaaa cgggtcttga ggggtttttt gctgaaacct caggcatttg agaagcacac 4080
ggtcacactg cttccggtag tcaataaacc ggtaaaccag caatagacat aagcggctat 4140
ttaacgaccc tgcc 4154
<210> 4
<211> 300
<212> DNA
<213> 大肠杆菌(Escherichia coli BL21DE3)
<400> 4
atggcgctta caaaagctga aatgtcagaa tatctgtttg ataagcttgg gcttagcaag 60
cgggatgcca aagaactggt tgaactgttt ttcgaagaga tccgtcgcgc tctggaaaac 120
ggcgaacagg tgaaactctc tggttttggt aacttcgatc tgcgtgataa gaatcaacgc 180
ccgggacgta acccgaaaac gggcgaggat attcccatta cagcacggcg cgtggtgacc 240
ttcagacccg ggcagaagtt aaaaagccgg gtcgaaaacg cttcgcccaa agacgagtaa 300
<210> 5
<211> 262
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gaattcgcgg ccgcttctag agtaacaccg tgcgtgttga ctattttacc tctggcggtg 60
ataatggttg ctgggcgaag cgttttcgac cgttttagag ctagaaatag caagttaaaa 120
taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt ttttcaaata 180
aaacgaaagg ctcagtcgaa agactgggcc tttcgtttta tctgttgttt gtcggtgaac 240
tactagtagc ggccgcctgc ag 262
<210> 6
<211> 1969
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ctgcagcgtt cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc 60
cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag 120
gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgccccc ctgacgagca 180
tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca 240
ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg 300
atacctgtcc gcctttctcc cttcgggaag cgtggcgctt tctcatagct cacgctgtag 360
gtatctcagt tcggtgtagg tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt 420
tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc cggtaagaca 480
cgacttatcg ccactggcag cagccactgg taacaggatt agcagagcga ggtatgtagg 540
cggtgctaca gagttcttga agtggtggcc taactacggc tacactagaa ggacagtatt 600
tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta gctcttgatc 660
cggcaaacaa accaccgctg gtagcggtgg tttttttgtt tgcaagcagc agattacgcg 720
cagaaaaaaa ggatctcaag aagatccttt gatcttttct acggggtctg acgctcagtg 780
gaacgaaaac tcacgttaag ggattttggt catgaggtac cgcctaagct tgcttggatt 840
ctcaccaata aaaaacgccc ggcggcaacc gagcgttctg aacaaatcca gatggagttc 900
tgaggtcatt actggatcta tcaacaggag tccatatata tgagtaaact tggtctgaca 960
gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca 1020
tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc 1080
ccagtgctgc aatgataccg cgtgacccac gctcaccggc tccagattta tcagcaataa 1140
accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc 1200
agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat agtttgcgca 1260
acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat 1320
tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag 1380
cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca gtgttatcac 1440
tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt 1500
ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg cgaccgagtt 1560
gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact ttaaaagtgc 1620
tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat 1680
ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt actttcacca 1740
gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga 1800
cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc atttatcagg 1860
gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 1920
ttccgcgcac atttccccga aaagtgccac ctggagctcg cctgaattc 1969
<210> 7
<211> 1626
<212> DNA
<213> 大肠杆菌(Escherichia coli BL21DE3)
<400> 7
gtgcactggc aaactcacac cgtttttaat caacctatac cattaaataa cagcaactta 60
tacctgtctg atggcgcgct ctgcgaagcg gtaacgcgtg aaggtgctgg ctgggatagc 120
gattttctag ccagtattgg tcagcagtta ggaacggctg aatcccttga actggggcgg 180
ctggcgaatg tgaatccgcc tgaattattg cgctacgatg cgcaaggacg ccgtctggac 240
gatgtgcgtt ttcaccccgc ctggcacctg ctgatgcagg cgctatgtac caatcgggtg 300
cacaatcttg cctgggaaga agacgctcgc tccggcgcat ttgtggcgcg cgcggcgcgt 360
tttatgttac atgcgcaggt tgaggcaggg tcgttatgtc cgataaccat gacctttgcc 420
gccacgccat tgttgttaca gatgttaccc gcgccgtttc aggactggac cacgccgcta 480
ttgagcgatc gctacgattc tcacttattg ccaggtgggc aaaaacgcgg tttgttgatt 540
ggcatgggaa tgacggaaaa gcagggcggt tccgatgtta tgagcaacac cacccgtgca 600
gagcgtctgg aagatggctc ttatcggctg gtggggcata aatggttttt ctcggttccg 660
caaagcgatg cgcatctggt gctggcgcag accgcgggtg gtctgtcctg cttttttgtg 720
ccgcgctttt tgcctgacgg gcaacgcaac gcgattcgcc tcgagcggct gaaagataag 780
ctgggtaatc gctctaacgc cagttgcgaa gtggagtttc aggatgccat tggttggttg 840
ttggggcagg aaggggaagg aattcgtctg atcctgaaaa tgggtgggat gacgcgtttt 900
gattgcgccc tgggtagcca tgccatgatg cgccgtgcat tttcgctggc gatttatcat 960
gcacatcaac gccatgtttt tggtaatcca ttgatccaac agccccttat gcgtcatgtc 1020
ttaagtcgca tggcacttca gcttgaaggg caaacggcgt tgctgtttcg tcttgcgcga 1080
gcgtgggacc ggcgtgccga tgccaaagaa gccctgtggg cgcgtttatt tacgcctgcg 1140
gcaaaatttg tgatctgcaa aagaggtatg ccgtttgtgg ccgaagcgat ggaggtgctg 1200
ggcggcattg gttattgcga ggagagcgag ctgccgcggc tttaccggga gatgccggta 1260
aacagtattt gggaaggttc cggcaatatt atgtgcctgg atgtgttgcg cgttctcaat 1320
aagcaagcgg gcgtatacga cttattgtcg gaagcatttg tggaagtgaa agggcaggat 1380
cgctattttg atcgcgcggt tcgtcgttta cagcagcagc tgcgtaagcc agctgaagaa 1440
ctggggcgag agattactca tcagctattc ctgctgggct gcggtgcgca aatgttgaaa 1500
tatgcttctc cgccaatggc gcaggcgtgg tgtcaggtga tgttagatac gcgcggcggc 1560
gtacggttgt cagagcagat ccagaatgat ttattgctgc gggcgacggg gggagtgtgt 1620
gtgtaa 1626
<210> 8
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
caagaagcat atgcactggc aaactcaca 29
<210> 9
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
attgctagct tacacacaca ctccccccg 29
<210> 10
<211> 1462
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
tctagagcct gtcaaatgga cgaagcaggg attctgcaaa ccctatgcta ctccgtcaag 60
ccgtcaattg tctgattcgt taccaattat gacaacttga cggctacatc attcactttt 120
tcttcacaac cggcacggaa ctcgctcggg ctggccccgg tgcatttttt aaatacccgc 180
gagaaataga gttgatcgtc aaaaccaaca ttgcgaccga cggtggcgat aggcatccgg 240
gtggtgctca aaagcagctt cgcctggctg atacgttggt cctcgcgcca gcttaagacg 300
ctaatcccta actgctggcg gaaaagatgt gacagacgcg acggcgacaa gcaaacatgc 360
tgtgcgacgc tggcgatatc aaaattgctg tctgccaggt gatcgctgat gtactgacaa 420
gcctcgcgta cccgattatc catcggtgga tggagcgact cgttaatcgc ttccatgcgc 480
cgcagtaaca attgctcaag cagatttatc gccagcagct ccgaatagcg cccttcccct 540
tgcccggcgt taatgatttg cccaaacagg tcgctgaaat gcggctggtg cgcttcatcc 600
gggcgaaaga accccgtatt ggcaaatatt gacggccagt taagccattc atgccagtag 660
gcgcgcggac gaaagtaaac ccactggtga taccattcgc gagcctccgg atgacgaccg 720
tagtgatgaa tctctcctgg cgggaacagc aaaatatcac ccggtcggca aacaaattct 780
cgtccctgat ttttcaccac cccctgaccg cgaatggtga gattgagaat ataacctttc 840
attcccagcg gtcggtcgat aaaaaaatcg agataaccgt tggcctcaat cggcgttaaa 900
cccgccacca gatgggcatt aaacgagtat cccggcagca ggggatcatt ttgcgcttca 960
gccatacttt tcatactccc gccattcaga gaagaaacca attgtccata ttgcatcaga 1020
cattgccgtc actgcgtctt ttactggctc ttctcgctaa ccaaaccggt aaccccgctt 1080
attaaaagca ttctgtaaca aagcgggacc aaagccatga caaaaacgcg taacaaaagt 1140
gtctataatc acggcagaaa agtccacatt gattatttgc acggcgtcac actttgctat 1200
gccatagcat ttttatccat aagattagcg gatcctacct gacgcttttt atcgcaactc 1260
tctactgttt ctccataccc gtttttttgg gccctaggaa taattttgtt taactttaag 1320
aaggagatat acatatgaaa gctagcggct cgagcaaata aaacgaaagg ctcagtcgaa 1380
agactgggcc tttcgtttta tctgttgttt gtcggtgaac gctctcctga gtaggacaaa 1440
ttactagtag cggccgctgc ag 1462

Claims (6)

1.合成游离脂肪酸重组大肠杆菌菌株的构建方法,其特征是包括如下步骤:
(1)将tesA’基因和dcas9基因连接到质粒YX212,构建重组质粒pCF;所述tesA’基因为大肠杆菌BL21(DE3)内源的截掉前导肽序列的硫酯酶基因的缩写;所述dcas9基因是酿脓链霉菌(Streptococcuspyogenes)来源的Cas9蛋白编码基因按大肠杆菌BL21(DE3)密码子优化并突变两个碱基的缩写;
所述tesA’基因的核苷酸序列如SEQ ID NO.1所示;
所述dcas9基因的核苷酸序列如SEQ ID NO.2所示;
所述YX212质粒的核苷酸序列如SEQ ID NO.3所示;
(2)将质粒pCF转化到菌株大肠杆菌BL21(DE3)中,得到重组菌株CF;
(3)将靶向大肠杆菌BL21(DE3)内源基因ihfA的sgRNA表达盒ihfA-Low片段与Sg-S骨架片段酶切连接,构建重组质粒Sg-LihfA;
所述ihfA基因的核苷酸序列如SEQ ID NO.4所示;
所述ihfA-Low片段的核苷酸序列如SEQ ID NO.5所示;
所述Sg-S骨架片段的核苷酸序列如SEQ ID NO.6所示;
(4)将重组质粒Sg-LihfA转化到重组菌株CF中,得到合成游离脂肪酸重组大肠杆菌菌株LihfA。
2.权利要求1的构建方法构建的合成游离脂肪酸重组大肠杆菌菌株LihfA。
3.权利要求2的合成游离脂肪酸重组大肠杆菌菌株LihfA合成游离脂肪酸的用途。
4.合成游离脂肪酸重组大肠杆菌菌株的构建方法,其特征是包括如下步骤:
(1)将tesA’基因和dcas9基因连接到质粒YX212,构建重组质粒pCF;所述tesA’基因为大肠杆菌BL21(DE3)内源的截掉前导肽序列的硫酯酶基因的缩写;所述dcas9基因是酿脓链霉菌(Streptococcuspyogenes)来源的Cas9蛋白编码基因按大肠杆菌BL21(DE3)密码子优化并突变两个碱基的缩写;
所述tesA’基因的核苷酸序列如SEQ ID NO.1所示;
所述dcas9基因的核苷酸序列如SEQ ID NO.2所示;
所述YX212质粒的核苷酸序列如SEQ ID NO.3所示;
(2)将质粒pCF转化到菌株大肠杆菌BL21(DE3)中,得到重组菌株CF;
(3)将靶向大肠杆菌BL21(DE3)内源基因ihfA的sgRNA表达盒ihfA-Low片段与Sg-S骨架片段酶切连接,构建重组质粒Sg-LihfA;
所述ihfA基因的核苷酸序列如SEQ ID NO.4所示;
所述ihfA-Low片段的核苷酸序列如SEQ ID NO.5所示;
所述Sg-S骨架片段的核苷酸序列如SEQ ID NO.6所示;
(4)将PBAD-T1片段和大肠杆菌BL21(DE3)内源的损伤修复蛋白基因aidB依次连接到重组质粒Sg-LihfA,构建重组质粒Sg-LihfA-OaidB;
所述aidB基因的核苷酸序列如SEQ ID NO.7所示;
所述PBAD-T1片段的核苷酸序列如SEQ ID NO.10所示;
(5)将重组质粒Sg-LihfA-OaidB转化到重组菌株CF中,得到合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB。
5.权利要求4的构建方法构建的合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB。
6.权利要求5的合成游离脂肪酸重组大肠杆菌菌株LihfA-OaidB合成游离脂肪酸的用途。
CN202010244552.2A 2020-03-31 2020-03-31 合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途 Pending CN113462708A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010244552.2A CN113462708A (zh) 2020-03-31 2020-03-31 合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010244552.2A CN113462708A (zh) 2020-03-31 2020-03-31 合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途

Publications (1)

Publication Number Publication Date
CN113462708A true CN113462708A (zh) 2021-10-01

Family

ID=77865436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010244552.2A Pending CN113462708A (zh) 2020-03-31 2020-03-31 合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途

Country Status (1)

Country Link
CN (1) CN113462708A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014027A (zh) * 2012-11-26 2013-04-03 上海交通大学 一种优化大肠杆菌脂肪酸合成途径的方法
CN107177541A (zh) * 2017-04-27 2017-09-19 中国农业科学院油料作物研究所 一种产羟基脂肪酸的工程菌株及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014027A (zh) * 2012-11-26 2013-04-03 上海交通大学 一种优化大肠杆菌脂肪酸合成途径的方法
CN107177541A (zh) * 2017-04-27 2017-09-19 中国农业科学院油料作物研究所 一种产羟基脂肪酸的工程菌株及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIXIA FANG等: "Genome-wide targets identification by CRISPRi-Omics for high-titer production of free fatty acids in Escherichia coli", 《BIORXIV》, 12 March 2020 (2020-03-12), pages 9 *

Similar Documents

Publication Publication Date Title
Bassham The Control of Photosynthetic Carbon Metabolism: Photosynthesis of carbon compounds is regulated to allocate intermediates according to metabolic need.
Nguyen et al. The green microalga Chlamydomonas reinhardtii has a single ω-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids
Minajigi et al. Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase
CA2104698A1 (en) Aptamers specific for biomolecules and methods of making
Roberts et al. Cooperation and competition between adenylate kinase, nucleoside diphosphokinase, electron transport, and ATP synthase in plant mitochondria studied by 31P-nuclear magnetic resonance
CN113430155B (zh) 高产游离脂肪酸重组大肠杆菌菌株及其构建方法和用途
CN113462708A (zh) 合成游离脂肪酸重组大肠杆菌菌株及其构建方法和用途
KR20220020826A (ko) 바실러스에서의 푸코실화 올리고당의 생산
CN108138168A (zh) 芳樟醇组合物及其制造方法
CN116391044A (zh) 类异戊二烯的发酵生产
Hochberg et al. Rhythms of enzyme activity associated with circadian conidiation in Neurospora crassa
Marchand et al. The influence of adenosine on intermediary metabolism of isolated hepatocytes
CN101963614A (zh) 毛细管电泳电化学酶联免疫分析检测雪卡毒素的方法
CN108517321B (zh) 棒状杆菌诱导型启动子及含有该启动子的表达载体与应用
CN111363711B (zh) 一种利用重组谷氨酸棒杆菌吸附固定化发酵生产赖氨酸的方法
Lowary et al. Recognition of synthetic analogues of the acceptor, β-d-Gal p-OR, by the blood-group H gene-specified glycosyltransferase
CN108531495A (zh) 一种光控基因表达系统及其应用
SAKAMOTO Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase
CN112111505B (zh) 一种氧化葡萄糖酸杆菌中基因敲除的方法
CN114032248B (zh) 一种黄色黏球菌大片段敲除质粒及其敲除方法
CN1252262C (zh) 双启动子DNA疫苗表达载体pCMVnir及其制备方法
Wasserman et al. Biosynthesis of cell-wall polysaccharides: membrane isolation, in vitro glycosyl transferase assay and enzyme solubilization
RU2810729C2 (ru) Продукция фукозилированных олигосахаридов в bacillus
Fredlund et al. Comparison of the stereospecificity and immunoreactivity of NADH-ferricyanide reductases in plant membranes
Pettersson A kinetic study of metabolite transfer in coupled two-enzyme reactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211001

WD01 Invention patent application deemed withdrawn after publication