CN113461046B - 一种梳状氮掺杂硫化铟气敏材料、制备方法及应用 - Google Patents

一种梳状氮掺杂硫化铟气敏材料、制备方法及应用 Download PDF

Info

Publication number
CN113461046B
CN113461046B CN202110857790.5A CN202110857790A CN113461046B CN 113461046 B CN113461046 B CN 113461046B CN 202110857790 A CN202110857790 A CN 202110857790A CN 113461046 B CN113461046 B CN 113461046B
Authority
CN
China
Prior art keywords
comb
indium sulfide
doped indium
sensitive material
sulfide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110857790.5A
Other languages
English (en)
Other versions
CN113461046A (zh
Inventor
程银芬
周辉
欧建臻
徐凯
唐涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Kebo Enterprise Management Co ltd
Original Assignee
Sichuan Hengrui Tiancheng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Hengrui Tiancheng Technology Co ltd filed Critical Sichuan Hengrui Tiancheng Technology Co ltd
Priority to CN202110857790.5A priority Critical patent/CN113461046B/zh
Publication of CN113461046A publication Critical patent/CN113461046A/zh
Application granted granted Critical
Publication of CN113461046B publication Critical patent/CN113461046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • B01J20/0266Compounds of S
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种梳状氮掺杂硫化铟气敏材料、制备方法及应用,包括以下步骤:步骤1:将四水合氯化铟和硫代乙酰胺加入溶剂中,充分混合均匀得到混合溶液A;其中四水合氯化铟和硫代乙酰胺的摩尔比为1:1~3;步骤2:将混合溶液A在160℃条件下保温16小时,冷却至室温;步骤3:将步骤2得到的溶液超声破碎;步骤4:将步骤3得到的溶液离心,取上清液,滴到基底上即可得到所需梳状氮掺杂硫化铟气敏材料;本发明结合水热法和机械破碎法制备得到高度分散的梳状氮掺杂硫化铟,改善硫化铟的电子结构,其在室温条件下对NO2具有气敏性能。

Description

一种梳状氮掺杂硫化铟气敏材料、制备方法及应用
技术领域
本发明涉及纳米结构半导体气敏传感器材料技术领域,具体涉及一种梳状氮掺杂硫化铟气敏材料、制备方法及应用。
背景技术
随着工业化的快速发展,近几十年来,空气污染对全球健康构成的威胁越来越严重。二氧化氮是最重要的环境气体污染物之一,是造成大气污染的罪魁祸首。短时间暴露于高于空气质量标准(53ppb)的二氧化氮浓度时,人们急性呼吸道疾病发病率可能会增加。长时间暴露于150ppm以上的浓度可能会导致肺水肿、甚至死亡。
气敏传感器是一种检测特定气体的传感器件,例如用于监测空气中二氧化氮浓度的半导体材料。目前主要的气敏材料主要是采用金属氧化物半导体,其制造容易、成本低和灵敏度高。但是现有的金属氧化物半导体的工作温度在200℃以上,高温会影响传感器的稳定和寿命,是目前传感器材料面对的最大瓶颈。近年来,利用一些特殊方法,比如制备纳米结构、引入第二相构建异质结合光激发等来降低传感材料的工作温度取得一些进展,但是这种材料的制备方法流程复杂,并且效果并不理想。
发明内容
本发明针对现有技术存在的问题提供一种梳状氮掺杂硫化铟气敏材料、制备方法及应用。
本发明采用的技术方案是:
一种梳状氮掺杂硫化铟气敏材料的制备方法,包括以下步骤:
步骤1:将四水合氯化铟和硫代乙酰胺加入溶剂中,充分混合均匀得到混合溶液A;其中四水合氯化铟和硫代乙酰胺的摩尔比为1:1~3;
步骤2:将混合溶液A在160℃条件下保温16小时,冷却至室温;
步骤3:将步骤2得到的溶液超声破碎;
步骤4:将步骤3得到的溶液离心,取上清液,滴到基底上即可得到所需梳状氮掺杂硫化铟气敏材料。
进一步的,所述步骤1中混合过程如下:
将混合溶液在室温下磁力搅拌30min。
进一步的,所述步骤3中,超声破碎之前还包括搅拌过程,搅拌3min。
进一步的,所述步骤3中超声破碎时间为3小时。
进一步的,所述步骤4中离心条件如下:
以4000转/分钟的速度离心30min。
一种梳状氮掺杂硫化铟气敏材料,梳状结构的梳齿直径范围为2~5μm。
一种梳状氮掺杂硫化铟气敏材料的应用,所述梳状氮掺杂硫化铟气敏材料用于气体传感器。
本发明的有益效果是:
(1)本发明结合水热法和机械破碎法制备得到高度分散的梳状氮掺杂硫化铟,改善硫化铟的电子结构,其在室温条件下对NO2具有气敏性能;
(2)本发明制备得到的氮掺杂硫化铟纳米结构高度分散,有大量的超薄硫化铟纳米片自组装而成;这种结构既有较高的比表面积有利于气体的吸附,又有利于气体的扩散,所以在室温条件下即可具有气敏性能,且稳定性好。
附图说明
图1为本发明制备方法流程示意图。
图2为本发明实施例1制备得到的氮掺杂硫化铟的SEM图。
图3为本发明实施例1制备得到的氮掺杂硫化铟的AFM图。
图4为本发明实施例1制备得到的氮掺杂硫化铟稀释后的AFM图。
图5为本发明实施例1制备得到的氮掺杂硫化铟的XPS图。
图6为本发明实施例1制备得到的氮掺杂硫化铟在气体切换环境下的电阻响应示意图。
图7为本发明反应原理示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
一种梳状氮掺杂硫化铟气敏材料的制备方法,包括以下步骤:
步骤1:将四水合氯化铟和硫代乙酰胺加入溶剂中,将混合溶液在室温下磁力搅拌30min,充分混合均匀得到混合溶液A;其中四水合氯化铟和硫代乙酰胺的摩尔比为1:1~3;
步骤2:将混合溶液A在160℃条件下保温16小时,冷却至室温;
步骤3:将步骤2得到的溶液搅拌3min后,在细胞破碎机下超声破碎3小时;
步骤4:将步骤3得到的溶液以4000转/分钟的速度离心30min。取上清液,滴到硅片基底上即可得到所需梳状氮掺杂硫化铟气敏材料。
梳状结构的梳齿直径范围为2~5μm。梳状氮掺杂硫化铟气敏材料用于气体传感器。
实施例1
按照以下步骤制备梳状氮掺杂硫化铟气敏材料:
步骤1:将0.22g四水合氯化铟和0.15g硫代乙酰胺,溶于40mL去离子水中;在室温条件下用磁力搅拌器搅拌30分钟,使其充分混合、溶解;
步骤2:将混合溶液转移至50mL高压釜的聚四氟乙烯内胆中,放入马弗炉中加热到160℃保温16小时,然后随炉冷却至室温。
步骤3:将步骤2冷却至室温的高压釜中的材料转移至100mL的烧杯中,搅拌3分钟,然后在细胞破碎机下超声破碎3小时。
步骤4:破碎后的材料转移至50mL的离心管内,然后在离心机中,以4000转/分的速度离心30分钟。用滴管取离心管中的上清液,将其滴到硅片基底上,即可得到所需梳状氮掺杂硫化铟。
图2为本实施例得到的梳状氮掺杂硫化铟的SEM图,a为低倍镜图,b为高倍镜图。从图中可以看出自组装形成的梳状纳米结构高度分散,并且平铺在基底上面。梳状结构的梳齿的直径范围为2-5μm。
图3为本实施例得到的梳状氮掺杂硫化铟的AFM图。沿AFM图像插图中红线的典型梳齿的高度剖面,该结构横向尺寸为3μm,厚度为1.53μm。
将自组装材料稀释1000倍后,滴在硅片基底上,其AFM图如图4所示。从图4可以看出,稀释后In2S3的纳米片厚度约为5nm的,这意味着大量超薄纳米片自组装形成梳状结构。
图5为本实施例得到的梳状氮掺杂硫化铟的XPS图。从图谱中可以看见N元素的激发峰,表明N元素被有效的掺杂进In2S3内部。
本实施例制备得到的氮掺杂硫化铟纳米结构高度分散,且有大量的超薄硫化铟纳米片自组装而成。这种结构既有较高的比表面积有利于气体的吸附,又有利于气体的扩散,所以可以达到室温传感。图6为本实施例得到的梳状氮掺杂硫化铟制备的气体传感器在室温下环境气体从氮气切换到10ppm NO2气体时的电阻响应。氮掺杂硫化铟在室温条件下对NO2具有传感性能,且稳定性好。
实施例2
按照以下步骤制备梳状氮掺杂硫化铟气敏材料:
步骤1:将0.29g四水合氯化铟和0.075g硫代乙酰胺,溶于40mL去离子水中;在室温条件下用磁力搅拌器搅拌30分钟,使其充分混合、溶解;
步骤2:将混合溶液转移至50mL高压釜的聚四氟乙烯内胆中,放入马弗炉中加热到160℃保温16小时,然后随炉冷却至室温。
步骤3:将步骤2冷却至室温的高压釜中的材料转移至100mL的烧杯中,搅拌3分钟,然后在细胞破碎机下超声破碎3小时。
步骤4:破碎后的材料转移至50mL的离心管内,然后在离心机中,以4000转/分的速度离心30分钟。用滴管取离心管中的上清液,将其滴到硅片基底上,即可得到所需梳状氮掺杂硫化铟。
实施例3
按照以下步骤制备梳状氮掺杂硫化铟气敏材料:
步骤1:将0.29g四水合氯化铟和0.23g硫代乙酰胺,溶于40mL去离子水中;在室温条件下用磁力搅拌器搅拌30分钟,使其充分混合、溶解;
步骤2:将混合溶液转移至50mL高压釜的聚四氟乙烯内胆中,放入马弗炉中加热到160℃保温16小时,然后随炉冷却至室温。
步骤3:将步骤2冷却至室温的高压釜中的材料转移至100mL的烧杯中,搅拌3分钟,然后在细胞破碎机下超声破碎3小时。
步骤4:破碎后的材料转移至50mL的离心管内,然后在离心机中,以4000转/分的速度离心30分钟。用滴管取离心管中的上清液,将其滴到硅片基底上,即可得到所需梳状氮掺杂硫化铟。
从图7可以看出,首先,硫代乙酰胺(TAA)和In3+可以形成铟-TAA络合物。在长时间高温和高压下,S-C键断裂并水解生成S2-,水解反应如下式(1)所示。根据反应(2),形成In2S3晶核。为了降低表面能,晶核不断生长(或聚集)成微晶。由于各向异性生长而形成一维纳米棒和二维纳米片。在Ostwald熟化过程的推动下,纳米片通过自组装形成In2S3微球。在长期高温条件下,乙酰胺(CH3CONH2)进一步水解生成铵根粒子,由于硫化铟具有电负性,铵根粒子将被吸附在硫化铟纳米球表面。探针超声破碎3小时后,In2S3微球破碎成许多纳米片,铵离子依旧吸附在纳米片表面。由于溶液混合物以4000rpm的速度离心30min,留在上清液中超薄纳米片,由于硫化铟的各向异性和晶体趋向,纳米片通过自组装形成梳状纳米结构。
CH3CSNH2+H2O→CH3CONH2+H++S2- (1)
In3++S2-→In2S3(s) (2)
CH3CONH2+H2O→CH3COONH4 (3)
通常,半导体气体传感器的气体传感机制与传感器电阻的变化有关。当目标气体与传感器接触时,由于与目标气体的电荷转移,传感器表面会发生吸附/解吸过程。当N-In2S3传感材料暴露于NO2气体时,根据以下反应,NO2作为强氧化剂,具有很强的亲电子特性,使得电子从N-In2S3转移到NO2表面,最终导致NO2迅速吸附在N-In2S3表面。P型N-In2S3半导体形成空穴积累层,伴随着电阻的降低。一旦N-In2S3传感材料暴露在N2气体中,就会引起N-In2S3高效解吸NO2气体,从而将电子释放到导带中,导致传感电阻恢复到初始值。
Figure BDA0003184745240000051
本发明结合水热法和机械破碎法制备出的高度分散的梳状氮掺杂硫化铟,改善硫化铟的电子结构,使其在室温条件下对NO2具有气敏性能,解决的传统材料高温工作造成材料性能不稳定、寿命短等问题。本发明提供的制备方法简单可控,所需设备简单,具有很强的商业价值。

Claims (6)

1.一种梳状氮掺杂硫化铟气敏材料的制备方法,其特征在于,包括以下步骤:
步骤1:将四水合氯化铟和硫代乙酰胺加入溶剂中,充分混合均匀得到混合溶液A;其中四水合氯化铟和硫代乙酰胺的摩尔比为1:1~3;
步骤2:将混合溶液A在160℃条件下保温16小时,冷却至室温;
步骤3:将步骤2得到的溶液超声破碎;
步骤4:将步骤3得到的溶液离心,取上清液,滴到基底上即可得到所需梳状氮掺杂硫化铟气敏材料;梳状结构的梳齿直径范围为2~5μm。
2.根据权利要求1所述的一种梳状氮掺杂硫化铟气敏材料的制备方法,其特征在于,所述步骤1中混合过程如下:
将混合溶液在室温下磁力搅拌30min。
3.根据权利要求1所述的一种梳状氮掺杂硫化铟气敏材料的制备方法,其特征在于,所述步骤3中,超声破碎之前还包括搅拌过程,搅拌3min。
4.根据权利要求1所述的一种梳状氮掺杂硫化铟气敏材料的制备方法,其特征在于,所述步骤3中超声破碎时间为3小时。
5.根据权利要求1所述的一种梳状氮掺杂硫化铟气敏材料的制备方法,其特征在于,所述步骤4中离心条件如下:
以4000转/分钟的速度离心30min。
6.一种如权利要求1所述制备方法得到的梳状氮掺杂硫化铟气敏材料的应用,其特征在于,所述梳状氮掺杂硫化铟气敏材料用于气体传感器。
CN202110857790.5A 2021-07-28 2021-07-28 一种梳状氮掺杂硫化铟气敏材料、制备方法及应用 Active CN113461046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110857790.5A CN113461046B (zh) 2021-07-28 2021-07-28 一种梳状氮掺杂硫化铟气敏材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110857790.5A CN113461046B (zh) 2021-07-28 2021-07-28 一种梳状氮掺杂硫化铟气敏材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113461046A CN113461046A (zh) 2021-10-01
CN113461046B true CN113461046B (zh) 2023-03-28

Family

ID=77882930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110857790.5A Active CN113461046B (zh) 2021-07-28 2021-07-28 一种梳状氮掺杂硫化铟气敏材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113461046B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115959701B (zh) * 2023-02-20 2024-04-26 西南交通大学 一种3d自组装绣球花状硫化铟的制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102849786A (zh) * 2012-09-27 2013-01-02 电子科技大学 一种簇状硫化铟材料的制备方法
CN110217814A (zh) * 2019-06-19 2019-09-10 昆明物理研究所 一种硫化铟纳米点的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335616A (zh) * 2011-07-21 2012-02-01 北京工业大学 一种新型可见光光催化剂硫化铟的合成方法
CN106745199B (zh) * 2016-12-30 2018-10-23 东华大学 一种常压低温无模板制备中空硫化铟微球的方法
CN106944101B (zh) * 2017-05-03 2019-04-19 淮北师范大学 一步法制备氮掺杂二硫化钼纳米片的方法
WO2019172151A1 (ja) * 2018-03-08 2019-09-12 富士フイルム株式会社 インジウムスズ酸化物粒子の製造方法及び硬化性組成物の製造方法
CN110102315A (zh) * 2019-04-28 2019-08-09 大连工业大学 一种具有硫空位的硫化铟光催化剂的制备及太阳能固氮应用
CN110282653A (zh) * 2019-08-08 2019-09-27 东北师范大学 一种用于气体检测的氧化铟材料及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102849786A (zh) * 2012-09-27 2013-01-02 电子科技大学 一种簇状硫化铟材料的制备方法
CN110217814A (zh) * 2019-06-19 2019-09-10 昆明物理研究所 一种硫化铟纳米点的制备方法

Also Published As

Publication number Publication date
CN113461046A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
Ding et al. Controlled growth of SnO2 nanorods clusters via Zn doping and its influence on gas-sensing properties
Wang et al. Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence
Ramgir et al. Reactive VLS and the reversible switching between VS and VLS growth modes for ZnO nanowire growth
Jiang et al. Zinc selenide nanoribbons and nanowires
Rahnama et al. Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures
Zhao et al. Hydrothermal synthesis of uniform cuprous oxide microcrystals with controlled morphology
Zeng et al. Synthesis and ethanol sensing properties of self-assembled monocrystalline ZnO nanorod bundles by poly (ethylene glycol)-assisted hydrothermal process
Chen et al. Sonochemical synthesis and ppb H2S sensing performances of CuO nanobelts
Liu et al. Self-assembly of [101 [combining macron] 0] grown ZnO nanowhiskers with exposed reactive (0001) facets on hollow spheres and their enhanced gas sensitivity
Hu et al. MoO3 structures transition from nanoflowers to nanorods and their sensing performances
Rakkesh et al. Structural, electrical transport and optical studies of Li ion doped ZnO nanostructures
Sawant et al. Synthesis of cuprous oxide (Cu2O) nanoparticles–a review
CN113461046B (zh) 一种梳状氮掺杂硫化铟气敏材料、制备方法及应用
CN107433402B (zh) 一种石墨烯-纳米银焊膏的制备方法及其应用
Liu et al. Rapid and high-efficiency laser-alloying formation of ZnMgO nanocrystals
Wang et al. Self-assembled CuO nanoarchitectures and their catalytic activity in the thermal decomposition of ammonium perchlorate
Rawat et al. Synthesis of Cu2ZnSnS4 nanoparticles and controlling the morphology with polyethylene glycol
Wei et al. Enhanced triethylamine gas sensing performance of the PbS nanoparticles-functionalized MoO 3 nanobelts
Sagadevan et al. Influence of Mn doping on the properties of Tin oxide nanoparticles prepared by Co-precipitation method
CN107452865B (zh) 一种金纳米颗粒包覆纳米片结构Sb2Te3热电材料的制作方法
TW201515990A (zh) 製備低維度材料之方法
Liang et al. Conversion of MoS2 to ternary alloyed MoS2− xSex for resistive NO2 sensors
Zeng et al. Fabrication and optical properties of large-scale nutlike ZnO microcrystals via a low-temperature hydrothermal route
TWI439578B (zh) 硒化銅奈米粉體和電泳沉積硒化銅薄膜之製造方法
CN1544334A (zh) 一种氧化锡粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231206

Address after: No. 442, Zhongshan Avenue Middle, Tianhe District, Guangzhou, Guangdong 510599

Patentee after: Guangzhou Kebo Enterprise Management Co.,Ltd.

Address before: 10 / F, area a, building 4, No. 200, Tianfu 5th Street, Chengdu hi tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan 610000

Patentee before: Sichuan Hengrui Tiancheng Technology Co.,Ltd.