CN113447842B - 一种电池模型参数在线辨识的方法与系统 - Google Patents

一种电池模型参数在线辨识的方法与系统 Download PDF

Info

Publication number
CN113447842B
CN113447842B CN202110788622.5A CN202110788622A CN113447842B CN 113447842 B CN113447842 B CN 113447842B CN 202110788622 A CN202110788622 A CN 202110788622A CN 113447842 B CN113447842 B CN 113447842B
Authority
CN
China
Prior art keywords
battery
model
terminal voltage
output voltage
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110788622.5A
Other languages
English (en)
Other versions
CN113447842A (zh
Inventor
梁惠施
周奎
史梓男
林俊
胡东辰
孙爱春
杨一飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Xiqing Energy Technology Co ltd
Original Assignee
Beijing Xiqing Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Xiqing Energy Technology Co ltd filed Critical Beijing Xiqing Energy Technology Co ltd
Priority to CN202110788622.5A priority Critical patent/CN113447842B/zh
Publication of CN113447842A publication Critical patent/CN113447842A/zh
Application granted granted Critical
Publication of CN113447842B publication Critical patent/CN113447842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种电池模型参数在线辨识的方法,属于电池模型参数辨识技术领域。本发明的一种电池模型参数在线辨识的方法,首先根据待测电池建立电池等效电路模型;然后当所述待测电池在放电过程中,放电电流降为0时,根据所述电池等效电路模型建立电池输出电压公式和电池端电压的时域响应模型;最后根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数。本发明利用电池放电降到0时的暂态片段,计算出电路模型中的待测电池模型参数,可以大大简化计算步骤,保证了在线监测的实时性和准确性。本发明还提供一种电池模型参数在线辨识的系统。

Description

一种电池模型参数在线辨识的方法与系统
技术领域
本发明属于电池模型参数辨识技术领域,更具体地说,是涉及一种电池模型参数在线辨识的方法与系统。
背景技术
近年来,随着国家大规模新能源的建设,利用超大型电池组进行电力存储的储能电站作为智能电网的重要支撑技术,迎来了迅猛的发展。锂离子电池凭借其稳定性高、容量大、使用寿命长、绿色环保等显著优势,成为目前我国储能电站的主流电池技术。锂离子电池可以等效成一阶RC电路模型,等效电路的开路电压、欧姆电阻、极化电容、极化电阻是表征电池健康状态的关键参数。为了保障锂电池储能电站的安全运行,并进行有效的能量管理和状态评估,对储能电站的锂电池进行在线参数评估是十分必要的。
目前常用的电池模型主要通过在线或离线进行参数辨识,离线参数辨识是通过多次试验数据以端电压误差最小为目标进行曲线拟合,但实际使用时要插值获得当前状态的模型参数;在线参数辨识是利用电池运行中的数据对模型参数进行拟合。对于锂电池内阻的试验测试方法主要有:开路电压法、直流放电法和交流测试法。开路电压法是通过锂电池的电压来估算内阻,但在电池亏电的状态下,精度会显著降低;直流放电法是将电池注入一股比较大的恒定直流,测量电池两端的电压,利用此时的电压电流计算当前内阻;交流测试法是利用低频率的交变电流获得电池两端电压来计算内阻。
现有的等效电路模型以理想的电气元件描述电池的动态响应,恒压源表征电池的静态电压,RC网络表征电池的极化和迟滞等动态电池特性,参数辨识简单、模型计算量小、实时性好,广泛应用于各类电池管理系统和能量管理算法。但该模型参数辨识过程中缺少各参数的实际约束,使得辨识后的参数可能显著偏离实际,以致缺乏真正物理意义。
目前常用的离线参数辨识在实际计算中由于电池温度变化或同批电池参数差别明显时,识别参数的普适性显著下降,继而影响对电池运行状态的估计;在线参数辨识虽能在一定程度上解决上述问题,但其所需数据量大,计算复杂而过程繁琐,计算时间长,难以确保在线监测的快速性,且算法完善和修改也较困难。
发明内容
本发明的目的在于提供一种电池模型参数在线辨识的方法与系统,旨在解决现有离线参数辨识方法计算出的电池模型参数精度低,且计算时间长的问题。
为实现上述目的,本发明采用的技术方案是:一种电池模型参数在线辨识的方法,包括以下步骤:
步骤1:根据待测电池建立电池等效电路模型;
步骤2:当所述待测电池在放电过程中,放电电流降为0时,根据所述电池等效电路模型建立电池输出电压公式和电池端电压的时域响应模型;
步骤3:根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数。
优选的,所述电池等效电路模型为Thevenin一阶电路模型;所述电池输出电压公式为:
U0=Uocv-I0Rs-Ud0,t=t0
其中,U0表示t0时刻电池端电压,Uocv表示电池达到稳态之后电池端电压,I0表示t0时刻电池的电流,Rs表示欧姆内阻,Ud0表示t0时刻RC回路电压。
优选的,所述电池等效电路模型为Thevenin一阶电路模型;所述电池端电压的时域响应模型为:
Figure BDA0003160139120000021
Ut表示t0+1时刻之后电池端电压,τ表示RC回路的时间常数,Uocv表示电池达到稳态之后电池端电压,其中t0+1时刻为电池的电流I0突降到零的时刻。
优选的,所述步骤3:根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数,包括:
步骤3.1:根据所述电池端电压的时域响应模型得到RC回路参数模型;
步骤3.2:根据所述RC回路参数模型和所述电池输出电压公式得到待测电池模型参数;其中所述待测电池模型参数包括欧姆内阻、极化内阻和极化电容。
优选的,所述RC回路参数模型为:
Figure BDA0003160139120000031
其中,t1和t2表示在电流降为0至输出电压升为Uocv之中的时间段内任取的两个时刻,U1表示在t1时刻电池端电压,U2表示在t2时刻电池端电压。
优选的,所述步骤3.2:根据所述RC回路参数模型和所述电池输出电压公式得到待测电池模型参数,包括:
联立所述RC回路参数模型和所述电池输出电压公式得到:
Figure BDA0003160139120000032
其中,Rs表示欧姆内阻,Rd表示极化内阻,Cd表示极化电容。
优选的,所述Thevenin一阶电路模型的微分方程为:
Figure BDA0003160139120000033
其中,IL表示电流,Rd表示极化内阻,Cd表示极化电容,Rs表示欧姆内阻。
本发明还提供了一种电池模型参数在线辨识系统,包括:
电池等效电路模型建立模块,用于根据待测电池建立电池等效电路模型;
电压模型建立模块,用于当所述待测电池在放电过程中,放电电流降为0时,根据所述电池等效电路模型建立电池输出电压公式和电池端电压的时域响应模型;
待测电池模型参数计算模块,用于根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数。
本发明提供的一种电池模型参数在线辨识的方法与系统的有益效果在于:与现有技术相比,本发明的一种电池模型参数在线辨识的方法,首先根据待测电池建立电池等效电路模型;然后当所述待测电池在放电过程中,放电电流降为0时,根据所述电池等效电路模型建立电池输出电压公式和电池端电压的时域响应模型;最后根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数。本发明利用电池放电降到0时的暂态片段,计算出电路模型中的待测电池模型参数,可以大大简化计算步骤,保证了在线监测的实时性和准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种电池模型参数在线辨识的方法流程图。
图2为本发明实施例提供的Thevenin一阶电路模型示意图。
图3为本发明实施例提供的放电电流降为0时的暂态片段示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的目的在于提供一种电池模型参数在线辨识的方法与系统,旨在解决现有离线参数辨识方法计算出的电池模型参数精度低,且计算时间长的问题。
请参阅图1,为实现上述目的,本发明采用的技术方案是:一种电池模型参数在线辨识的方法,包括以下步骤:
S1:根据待测电池建立电池等效电路模型;
本方法所提出的电池模型参数在线辨识的方法针对的电池等效电路模型为Thevenin一阶电路模型。该模型对锂电池的运行状况的表征有足够的精度,辨识参数的难度适中,也能保证在线系统监测的快速性和准确性,故本方法采用此模型来描述储能电站的运行状况。
Thevenin一阶电路模型如图2所示,电路模型全部的特征参数可以描述为:欧姆内阻Rs,极化阻抗Rd,Cd,电流IL,电池开路电压Uocv,电池端电压Ut,RC回路电压Ud。欧姆内阻Rs表征电极材料、隔膜和接触部分的电阻,极化阻抗Rd是由正负极电化学反应时由极化形成的。模型的微分方程如式(1):
Figure BDA0003160139120000051
S2:当待测电池在放电过程中,放电电流降为0时,根据电池等效电路模型建立电池输出电压公式和电池端电压的时域响应模型;
电池输出电压公式为:
U0=Uocv-I0Rs-Ud0,t=t0
其中,U0表示t0时刻电池端电压,Uocv表示电池达到稳态之后电池端电压,I0表示t0时刻电池的电流,Rs表示欧姆内阻,Ud0表示t0时刻RC回路电压。
电池端电压的时域响应模型为:
Figure BDA0003160139120000052
Ut表示t0+1时刻之后电池端电压,τ表示RC回路的时间常数,其中t0+1时刻为电池的电流I0突降到零的时刻。
在实际应用中,本方法采用电池放电过程中电流从某个值突降到零的片段来辨识Thevenin电路参数。如图3所示,电池在t0+1时刻从I0突降到零。由于电流降到零之后,电池停止放电,t0+1之后电池的荷电状态(SOC)跟t0时刻相比并没有发生变化,因此相应地电池开路电压没有发生变化。t0及t0+1之后电池的开路电压可由停止充电)电池达到稳态之后,RC回路电压衰减至零,电池端电压即为Uocv,即均记为Uocv。在t0时刻电池输出电压为:
U0=Uocv-I0Rs-Ud0,t=t0 (式2)
其中U0和Ud0分别为t0时刻电池端电压和RC回路电压。当电流突降到零之后,Rs两端的电压会突降为零,但由于电容对电流变化的阻碍效应,RC回路电压会缓慢下降,导致输出电压Ut会缓慢增长至电池开路电压Uocv。t0+1之后电池端电压的时域响应为
Figure BDA0003160139120000061
其中τ为RC回路的时间常数。
S3:根据电池输出电压公式和电池端电压的时域响应模型得到待测电池模型参数。
具体的,S3包括:
S3.1:根据电池端电压的时域响应模型得到RC回路参数模型;
S3.2:根据RC回路参数模型和电池输出电压公式得到待测电池模型参数;其中待测电池模型参数包括欧姆内阻、极化内阻和极化电容。
RC回路参数模型为:
Figure BDA0003160139120000062
其中,t1和t2表示在电流降为0至输出电压升为Uocv之中的时间段内任取的两个时刻,U1表示在t1时刻电池端电压,U2表示在t2时刻电池端电压。
具体的,S3.2包括:
联立RC回路参数模型和电池输出电压公式得到:
Figure BDA0003160139120000071
其中,Rs表示欧姆内阻,Rd表示极化内阻,Cd表示极化电容。
在实际应用中,在电流降为0至输出电压升为Uocv之中任取t1,t2两个时刻,电池端电压为:
Figure BDA0003160139120000072
将式(4)和式(5)联立,可计算得出RC回路的时间常数τ和t0时刻RC回路的电压Ud0
Figure BDA0003160139120000073
结合式(2),可得出电池模型的欧姆内阻Rs、极化内阻Rd和极化电容Cd
Figure BDA0003160139120000074
与现有技术相比,本发明具有以下优点:
1)基于电池的实时电压、电流运行数据,提出对电池一阶等效电路的在线参数辨识方法,能够对电池的时变电路参数进行准确估计,使得辨识出的参数能反映电池内部的真实状态。
2)优化电池参数的计算方法,降低计算的迭代次数,提高运算实时性,同时能够保证模型计算的精度。
本发明还提供了一种电池模型参数在线辨识系统,包括:
电池等效电路模型建立模块,用于根据待测电池建立电池等效电路模型;
电压模型建立模块,用于当待测电池在放电过程中,放电电流降为0时,根据电池等效电路模型建立电池输出电压公式和电池端电压的时域响应模型;
待测电池模型参数计算模块,用于根据电池输出电压公式和电池端电压的时域响应模型得到待测电池模型参数。
本发明公开了一种电池模型参数在线辨识的方法,首先根据待测电池建立电池等效电路模型;然后当所述待测电池在放电过程中,放电电流降为0时,根据所述电池等效电路模型建立电池输出电压公式和电池端电压的时域响应模型;最后根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数。本发明利用电池放电降到0时的暂态片段,计算出电路模型中的待测电池模型参数,可以大大简化计算步骤,保证了在线监测的实时性和准确性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种电池模型参数在线辨识的方法,其特征在于,包括以下步骤:
步骤1:根据待测电池建立电池等效电路模型;
步骤2:当所述待测电池在放电过程中,放电电流降为0时,根据所述电池等效电路模型建立电池输出电压公式和电池端电压的时域响应模型;
步骤3:根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数;
所述步骤3:根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数,包括:
步骤3.1:根据所述电池端电压的时域响应模型得到RC回路参数模型;
所述RC回路参数模型为:
Figure FDA0003882115760000011
其中,t1和t2表示在电流降为0至输出电压升为Uocv之中的时间段内任取的两个时刻,U1表示在t1时刻电池端电压,U2表示在t2时刻电池端电压;
步骤3.2:根据所述RC回路参数模型和所述电池输出电压公式得到待测电池模型参数;其中所述待测电池模型参数包括欧姆内阻、极化内阻和极化电容;
所述步骤3.2:根据所述RC回路参数模型和所述电池输出电压公式得到待测电池模型参数,包括:
联立所述RC回路参数模型和所述电池输出电压公式得到:
Figure FDA0003882115760000012
其中,Rs表示欧姆内阻,Rd表示极化内阻,Cd表示极化电容;
所述电池等效电路模型为Thevenin一阶电路模型;所述电池输出电压公式为:
I0=Uocv-I0Rs-Ud0,t=t0
其中,U0表示t0时刻电池端电压,Uocv表示电池达到稳态之后电池端电压,I0表示t0时刻电池的电流,Rs表示欧姆内阻,Ud0表示t0时刻RC回路电压。
2.如权利要求1所述的一种电池模型参数在线辨识的方法,其特征在于,所述电池等效电路模型为Thevenin一阶电路模型;所述电池端电压的时域响应模型为:
Figure FDA0003882115760000021
Ut表示t0+1时刻之后电池端电压,τ表示RC回路的时间常数,Uocv表示电池达到稳态之后电池端电压,其中t0+1时刻为电池的电流I0突降到零的时刻。
3.如权利要求2所述的一种电池模型参数在线辨识的方法,其特征在于,所述Thevenin一阶电路模型的微分方程为:
Figure FDA0003882115760000022
其中,IL表示电流,Rd表示极化内阻,Cd表示极化电容,Rs表示欧姆内阻。
4.一种电池模型参数在线辨识系统,其特征在于,包括:
电池等效电路模型建立模块,用于根据待测电池建立电池等效电路模型;
电压模型建立模块,用于当所述待测电池在放电过程中,放电电流降为0时,根据所述电池等效电路模型建立电池输出电压公式和电池端电压的时域响应模型;
待测电池模型参数计算模块,用于根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数;
所述根据所述电池输出电压公式和所述电池端电压的时域响应模型得到待测电池模型参数,包括:
步骤3.1:根据所述电池端电压的时域响应模型得到RC回路参数模型;
所述RC回路参数模型为:
Figure FDA0003882115760000031
其中,t1和t2表示在电流降为0至输出电压升为Uocv之中的时间段内任取的两个时刻,U1表示在t1时刻电池端电压,U2表示在t2时刻电池端电压;
步骤3.2:根据所述RC回路参数模型和所述电池输出电压公式得到待测电池模型参数;其中所述待测电池模型参数包括欧姆内阻、极化内阻和极化电容;
所述步骤3.2:根据所述RC回路参数模型和所述电池输出电压公式得到待测电池模型参数,包括:
联立所述RC回路参数模型和所述电池输出电压公式得到:
Figure FDA0003882115760000032
其中,Rs表示欧姆内阻,Rd表示极化内阻,Cd表示极化电容;
所述电池等效电路模型为Thevenin一阶电路模型;所述电池输出电压公式为:
U0=Uocv-I0Rs-Ud0,t=t0
其中,U0表示t0时刻电池端电压,Uocv表示电池达到稳态之后电池端电压,I0表示t0时刻电池的电流,Rs表示欧姆内阻,Ud0表示t0时刻RC回路电压。
CN202110788622.5A 2021-07-13 2021-07-13 一种电池模型参数在线辨识的方法与系统 Active CN113447842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110788622.5A CN113447842B (zh) 2021-07-13 2021-07-13 一种电池模型参数在线辨识的方法与系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110788622.5A CN113447842B (zh) 2021-07-13 2021-07-13 一种电池模型参数在线辨识的方法与系统

Publications (2)

Publication Number Publication Date
CN113447842A CN113447842A (zh) 2021-09-28
CN113447842B true CN113447842B (zh) 2022-11-15

Family

ID=77816085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110788622.5A Active CN113447842B (zh) 2021-07-13 2021-07-13 一种电池模型参数在线辨识的方法与系统

Country Status (1)

Country Link
CN (1) CN113447842B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10830821B2 (en) * 2014-05-05 2020-11-10 Apple Inc. Methods and apparatus for battery power and energy availability prediction
CN106908732B (zh) * 2017-02-09 2019-05-10 北京长城华冠汽车科技股份有限公司 一种锂离子电池等效电路模型参数辨识方法和装置
CN109188290A (zh) * 2018-05-31 2019-01-11 东北电力大学 基于脉冲放电压差的储能电池模型参数辨识方法
CN109633453B (zh) * 2018-12-28 2021-04-02 东莞钜威动力技术有限公司 电池参数在线辨识方法、装置及计算机可读存储介质
CN109783993B (zh) * 2019-03-07 2023-04-18 北京经纬恒润科技股份有限公司 一种电池等效模型参数确定方法及装置
CN111208434A (zh) * 2020-01-16 2020-05-29 北方工业大学 一阶rc等效电路模型的参数辨识方法及装置
CN112147514B (zh) * 2020-09-25 2023-08-11 河南理工大学 基于rls的锂电池全工况自适应等效电路模型

Also Published As

Publication number Publication date
CN113447842A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
Zhu et al. A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter
CN106909716B (zh) 计及容量损耗的磷酸铁锂电池建模及soc估计方法
CN109557477B (zh) 一种电池系统健康状态估算方法
CN111736085B (zh) 一种基于电化学阻抗谱的锂离子电池健康状态估计方法
CN105548898B (zh) 一种离线数据分段矫正的锂电池soc估计方法
CN105277898B (zh) 一种电池荷电状态的检测方法
CN105572596B (zh) 锂电池soc估算方法及系统
CN108445422B (zh) 基于极化电压恢复特性的电池荷电状态估算方法
CN112180274B (zh) 一种动力电池组快速检测测评方法
CN112710955B (zh) 一种用于提高电池容量估计精度的算法
CN109752660B (zh) 一种无电流传感器的电池荷电状态估计方法
CN115494400B (zh) 一种基于集成学习的锂电池析锂状态在线监控方法
CN113484771A (zh) 一种锂离子电池宽温度全寿命soc及容量估计的方法
CN112733427A (zh) 锂离子电池的负极电位估算模型建立方法及计算机设备
CN115219905A (zh) 一种电池内短路在线检测方法、装置及存储介质
CN112147514A (zh) 基于rls的锂电池全工况自适应等效电路模型
CN115856685A (zh) 一种全钒液流电池在不同充放电状态下内阻的测量方法
CN116203428A (zh) 基于恒压充电解算锂电池等效模型参数的自放电检测方法
CN113466728B (zh) 一种两阶段电池模型参数在线辨识的方法与系统
CN104833856A (zh) 电池内阻估测方法及装置
CN114720881A (zh) 一种基于改进初值带遗忘因子递推最小二乘法的锂电池参数辨识方法
CN113156316B (zh) 盐水电池soc估算算法
CN114200321A (zh) 一种锂离子电池变阶数等效电路模型建模方法
CN107402356B (zh) 一种基于动态参数辨识的ekf估算铅酸电池soc方法
Tang et al. An aging-and load-insensitive method for quantitatively detecting the battery internal-short-circuit resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant