CN113413923A - 一种由静电纺丝制备酸碱双功能纳米纤维材料的方法 - Google Patents

一种由静电纺丝制备酸碱双功能纳米纤维材料的方法 Download PDF

Info

Publication number
CN113413923A
CN113413923A CN202110704740.3A CN202110704740A CN113413923A CN 113413923 A CN113413923 A CN 113413923A CN 202110704740 A CN202110704740 A CN 202110704740A CN 113413923 A CN113413923 A CN 113413923A
Authority
CN
China
Prior art keywords
acid
nanofiber material
base
pan
lva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110704740.3A
Other languages
English (en)
Inventor
张俊华
黄茹露
刘遥
彭林才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202110704740.3A priority Critical patent/CN113413923A/zh
Publication of CN113413923A publication Critical patent/CN113413923A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/02Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • C07D307/44Furfuryl alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种由静电纺丝制备酸碱双功能纳米纤维材料的方法,该方法以茶多酚为金属离子固载剂,采用静电纺丝技术将活性金属离子,如:Hf4+、Zr4+、Ti4+等负载到聚丙烯腈(PAN)纳米纤维上,得到同时具有路易斯酸(LA)和路易斯碱(LB)位点的双功能纳米纤维材料(M@PAN‑N,其中M为多种活性金属,N为茶多酚中儿茶素类化合物)。该纳米纤维材料具有高比表面积和高孔隙率,其在催化乙酰丙酸(LvA)等生物质羰基化合物及石油基羰基化合物的转移加氢还原过程中表现出极高的反应活性。由于茶多酚成分中存在含有大量羟基的儿茶素类化合物,能有效与金属离子之间配位,从而极大的降低了纳米纤维材料在使用过程中活性金属的淋失,使得M@PAN‑N表现出稳定性和可回收性。

Description

一种由静电纺丝制备酸碱双功能纳米纤维材料的方法
技术领域
本发明属于纳米材料制备和催化领域,具体涉及一种由静电纺丝制备酸碱双功能纳米纤维材料的方法。
背景技术
面对化石资源枯竭的压力以及化石资源过度使用所引发的环境问题,近年来木质纤维素生物质衍生平台化合物催化制备高附加值燃料与化学品的研究备受关注。乙酰丙酸(LvA)是基于美国能源部指定的生物质资源的十大平台化合物之一,被认为是联系生物质资源与石油工业之间的桥梁和关键,可将LvA通过还原方式转化为另一种通用平台化合物γ-戊内酯(GVL),其不仅可作为优良的燃料添加剂、绿色溶剂和有价值的化学品前体,而且还用于纤维素酯和合成纤维的染色。
目前,LvA的催化还原多选用转移加氢的方式,以醇作为氢供体和溶剂,避免了使用具有爆炸性的H2,使得该方法更具有安全性和经济性。基于以醇为氢供体的生物质基化合物的转移加氢,一些金属醇盐、金属配合物、水滑石、金属氧化物或氢氧化合物、金属-有机混合物和各种沸石催化剂已经被广泛的使用。然而,这些催化剂仍然存在一些不可避免的缺点,例如复杂的制备方法、高成本的不可再生的原料、高的反应温度、长的反应时间、目标产物的低选择性以及回收效果差。从已有的研究可以发现,催化剂的载体结构对催化性能有很大的影响,常用的载体有活性炭、石墨、分子筛及沸石等。除上述载体外,目前有人通过静电纺丝技术制备出一维的具有较高比表面积、较高孔隙率的纳米纤维,可作为催化剂良好的支持材料。在中国专利CN112023982A中,利用锆负载PAN制得的复合材料,可以很好地将糠醛催化还原为糠醇,转化率和得率可达90%以上,但活性金属离子在反应过程中存在大量淋失的现象。Zhou Shenghui(2019)等以Hf-LigS为催化剂,形成以Ar-O-Hf和Hf-O-Hf为主的键合结构,并作为催化5-羟甲基糠醛的主要活性成分,催化剂回收利用10次后活性基本不变,但其制备工艺较为复杂,不利于催化剂质量的控制以及工业化生产。为此,寻找一种金属固载剂以形成稳定的键合结构成为解决金属离子淋失问题的关键。
发明内容
针对上述现有技术存在的问题与不足,本发明提供一种由静电纺丝制备酸碱双功能纳米纤维材料的方法。选用茶叶中多羟基酚类化合物的复合物茶多酚作为金属固载剂,通过静电纺丝技术将金属离子负载到聚丙烯腈纳米纤维上,该材料具有高比表面积、高孔隙率的优势,同时形成稳定的Hf-O-N键合结构,具备优异的催化活性和回收性能,该材料的实际运用能有效地减少活性金属离子在使用过程中淋失,为生物质基的实际应用提供理论基础和技术指导。
为了达到上述技术效果,本发明是通过以下技术方案实现的:
一种由静电纺丝制备酸碱双功能纳米纤维材料的方法,其特征在于,包括以下步骤:
S1:以茶多酚为金属离子固载剂,采用静电纺丝技术将活性金属离子,负载到聚丙烯腈(PAN)纳米纤维上,得到同时具有路易斯酸和路易斯碱位点的双功能纳米纤维材料,由下式表示M@PAN-N,其中M为多种活性金属,N为茶多酚中儿茶素类化合物;
S2:将金属化合物、PAN以及儿茶素类物质分别溶于N,N-二甲基甲酰胺(DMF)溶剂中,然后进行共混得到前驱体纺丝液;
S3:通过静电纺丝技术制备出具有高比表面积、高孔隙率的酸碱双功能纳米纤维材料;
优选的,所述S1中活性金属离子为Hf4+、Zr4+、Ti4+中的一种;
优选的,所述S1中的儿茶素类化合物为表儿茶素(EC)、表没食子儿茶素(EGC)、表儿茶素没食子酸酯(ECG)、表没食子儿茶素没食子酸酯(EGCG)中的一种或几种;
优选的,所述S2中的金属化合物为HfCl4、Zr(NO3)4·5H2O、TiCl4中的一种或几种;
优选的,所述S3中制得的酸碱双功能纳米纤维材料应用在LvA转移加氢中;
优选的,所述酸碱双功能纳米纤维材料应用在LvA转移加氢中的具体步骤为:
将0.10g酸碱双功能纳米纤维材料、0.20g LvA和20mL异丙醇溶剂混合置于密封高压反应釜中,在160~180℃,反应4~6h,之后催化剂通过过滤,并用去离子水和无水乙醇的多次洗涤,80℃干燥12h后回收循环利用1~5次。
本发明的有益效果是:
1)本发明由静电纺丝制备同时具有LA和LB的双功能纳米纤维材料,具有高比表面积、高孔隙率,同时形成稳定的Hf-O-N键合结构,能有效解决活性金属离子淋失问题,回收效果好。
2)本发明在催化LvA等生物质羰基化合物及石油基羰基化合物的转移加氢还原过程中表现出极高的反应活性。
3)本发明操作简单,选用茶多酚作为金属固载剂,成本低廉,可构建绿色催化体系,具有广阔的应用前景和发展趋势。
具体实施方式
下面结合实施例对本发明中的技术方案,技术效果做出清楚完整的描述;基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
由静电纺丝制备的酸碱双功能纳米纤维材料的方法,具体步骤如下:
称取1.12g PAN粉末溶解在10mL DMF中,并在65℃下搅拌10min,再将含有0.70mmol HfCl4的5mL DMF滴加在上述溶液中。室温条件下将0.03g EGCG溶解在5mL DMF中,并迅速滴加到PAN/DMF溶液中。最后,在20rpm下磁力搅拌1h实现共混。将上述制得的前驱体溶液适量装入注射器中,将注射器移入静电纺丝系统中,微量注射泵的流量设为0.001mL/min,电压为12kV,针头接收器之间的距离为10cm,纺丝时间10h,即得Hf@PAN-EGCG酸碱双功能纳米纤维材料。
本实施例制备得到的酸碱双功能纳米纤维材料在LvA转移加氢的应用,具体步骤如下:
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,160℃,4h转移加氢反应后得到目标产物GVL,LvA转化率为78.5%,GVL得率为68.2%。
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,170℃,4h转移加氢反应后得到目标产物GVL,LvA转化率为92.3%,GVL得率为83.6%。
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,LvA转化率为100%,GVL得率为99.1%。
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,5h转移加氢反应后得到目标产物GVL,LvA转化率为100%,GVL得率为93.7%。
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,6h转移加氢反应后得到目标产物GVL,LvA转化率为100%,GVL得率为92.8%。
本实施例制备得到的酸碱双功能纳米纤维材料在其他生物质平台化合物转移加氢的应用,具体步骤如下:
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g糠醛和20mL异丙醇溶剂混合加入密闭高压反应釜中,150℃,2h转移加氢反应后得到目标产物糠醇,糠醛转化率为100%,糠醇得率为99.2%。
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g 5-羟甲基糠醛和20mL异丙醇溶剂混合加入密闭高压反应釜中,130℃,2h转移加氢反应后得到目标产物2,5-呋喃二甲醇,5-羟甲基糠醛转化率为98.4%,2,5-呋喃二甲醇得率为95.6%。
本实施例制备得到的酸碱双功能纳米纤维材料在石油基羰基化合物转移加氢的应用,具体步骤如下:
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g苯甲醛和20mL异丙醇溶剂混合加入密闭高压反应釜中,150℃,2h转移加氢反应后得到目标产物苯甲醇,苯甲醛转化率为100%,苯甲醇得率为99.5%。
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g对茴香醛和20mL异丙醇溶剂混合加入密闭高压反应釜中,160℃,4h转移加氢反应后得到目标产物对甲氧基苯甲醇,对茴香醛转化率为98.3%,对甲氧基苯甲醇得率为96.4%。
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g正丁醛和20mL异丙醇溶剂混合加入密闭高压反应釜中,140℃,2h转移加氢反应后得到目标产物正丁醇,正丁醛转化率为96.1%,正丁醇得率为93.9%。
本实施例制备得到的酸碱双功能纳米纤维材料经回收处理后,多次循环用于LvA转移加氢,具体步骤如下:
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,反应结束后,催化剂通过过滤,并用去离子水和无水乙醇的多次洗涤,80℃干燥12h后循环使用,催化剂循环利用第1次,以相同的反应条件用于LvA制备GVL,LvA转化率为100%,GVL得率为98.9%。
将本实例制备得到的0.10g Hf@PAN-EGCG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,反应结束后,催化剂通过过滤,并用去离子水和无水乙醇的多次洗涤,80℃干燥12h后循环使用,催化剂循环利用第5次,以相同的反应条件用于LvA制备GVL,LvA转化率为100%,GVL得率为98.2%。
实施例2
由静电纺丝制备的酸碱双功能纳米纤维材料的方法,具体步骤如下:
称取1.12g PAN粉末溶解在10mL DMF中,并在65℃下搅拌10min,再将含有1.40mmol Zr(NO3)4·5H2O的5mL DMF滴加在上述溶液中。室温条件下将0.03g EGCG溶解在5mL DMF中,并迅速滴加到PAN/DMF溶液中。最后,在20rpm下磁力搅拌1h实现共混。将上述制得的前驱体溶液适量装入注射器中,将注射器移入静电纺丝系统中,微量注射泵的流量设为0.001mL/min,电压为12kV,针头接收器之间的距离为10cm,纺丝时间10h,即得Zr@PAN-EGCG酸碱双功能纳米纤维材料。
本实施例制备得到的酸碱双功能纳米纤维材料在LvA转移加氢的应用,具体步骤如下:
将本实例制备得到的0.10g Zr@PAN-EGCG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,LvA转化率为90.3%,GVL得率为86.6%。
实施例3
由静电纺丝制备的酸碱双功能纳米纤维材料的方法,具体步骤如下:
称取1.12g PAN粉末溶解在10mL DMF中,并在65℃下搅拌10min,再将含有2.60mmol TiCl4的5mL DMF滴加在上述溶液中。室温条件下将0.03g EGCG溶解在5mL DMF中,并迅速滴加到PAN/DMF溶液中。最后,在20rpm下磁力搅拌1h实现共混。将上述制得的前驱体溶液适量装入注射器中,将注射器移入静电纺丝系统中,微量注射泵的流量设为0.001mL/min,电压为12kV,针头接收器之间的距离为10cm,纺丝时间10h,即得Ti@PAN-EGCG酸碱双功能纳米纤维材料。
本实施例制备得到的酸碱双功能纳米纤维材料在LvA转移加氢的应用,具体步骤如下:
将本实例制备得到的0.10gTi@PAN-EGCG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,LvA转化率为75.5%,GVL得率为59.8%。
实施例4
由静电纺丝制备的酸碱双功能纳米纤维材料的方法,具体步骤如下:
称取1.12g PAN粉末溶解在10mL DMF中,并在65℃下搅拌10min,再将含有0.70mmol HfCl4的5mL DMF滴加在上述溶液中。最后,在20rpm下磁力搅拌1h。将上述制得的前驱体溶液适量装入注射器中,将注射器移入静电纺丝系统中,微量注射泵的流量设为0.001mL/min,电压为12kV,针头接收器之间的距离为10cm,纺丝时间10h,即得Hf@PAN酸碱双功能纳米纤维材料。
本实施例制备得到的酸碱双功能纳米纤维材料在LvA转移加氢的应用,具体步骤如下:
将本实例制备得到的0.10g Hf@PAN,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,LvA转化率为95.6%,GVL得率为92.7%。
将本实例制备得到的0.10g Hf@PAN,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,反应结束后,催化剂通过过滤,并用去离子水和无水乙醇的多次洗涤,80℃干燥12h后循环使用,催化剂循环利用第1次,以相同的反应条件用于LvA制备GVL,LvA转化率为84.5%,GVL得率为78.6%。
实施例5
由静电纺丝制备的酸碱双功能纳米纤维材料的方法,具体步骤如下:
称取1.12g PAN粉末溶解在10mL DMF中,并在65℃下搅拌10min,再将含有0.70mmol HfCl4的5mL DMF滴加在上述溶液中。室温条件下将0.03g EC溶解在5mL DMF中,并迅速滴加到PAN/DMF溶液中。最后,在20rpm下磁力搅拌1h实现共混。将上述制得的前驱体溶液适量装入注射器中,将注射器移入静电纺丝系统中,微量注射泵的流量设为0.001mL/min,电压为12kV,针头接收器之间的距离为10cm,纺丝时间10h,即得Hf@PAN-EC酸碱双功能纳米纤维材料。
本实施例制备得到的酸碱双功能纳米纤维材料在LvA转移加氢的应用,具体步骤如下:
将本实例制备得到的0.10g Hf@PAN-EC,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,LvA转化率为97.2%,GVL得率为95.1%。
将本实例制备得到的0.10g Hf@PAN-EC,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,反应结束后,催化剂通过过滤,并用去离子水和无水乙醇的多次洗涤,80℃干燥12h后循环使用,催化剂循环利用第1次,以相同的反应条件用于LvA制备GVL,LvA转化率为92.4%,GVL得率为90.8%。
实施例6
由静电纺丝制备的酸碱双功能纳米纤维材料的方法,具体步骤如下:
称取1.12g PAN粉末溶解在10mL DMF中,并在65℃下搅拌10min,再将含有0.70mmol HfCl4的5mL DMF滴加在上述溶液中。室温条件下将0.03g EGC溶解在5mL DMF中,并迅速滴加到PAN/DMF溶液中。最后,在20rpm下磁力搅拌1h实现共混。将上述制得的前驱体溶液适量装入注射器中,将注射器移入静电纺丝系统中,微量注射泵的流量设为0.001mL/min,电压为12kV,针头接收器之间的距离为10cm,纺丝时间10h,即得Hf@PAN-EGC酸碱双功能纳米纤维材料。
本实施例制备得到的酸碱双功能纳米纤维材料在LvA转移加氢的应用,具体步骤如下:
将本实例制备得到的0.10g Hf@PAN-EGC,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,LvA转化率为98.9%,GVL得率为96.4%。
将本实例制备得到的0.10g Hf@PAN-EGC,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,反应结束后,催化剂通过过滤,并用去离子水和无水乙醇的多次洗涤,80℃干燥12h后循环使用,催化剂循环利用第1次,以相同的反应条件用于LvA制备GVL,LvA转化率为93.9%,GVL得率为91.7%。
实施例7
由静电纺丝制备的酸碱双功能纳米纤维材料的方法,具体步骤如下:
称取1.12g PAN粉末溶解在10mL DMF中,并在65℃下搅拌10min,再将含有0.70mmol HfCl4的5mL DMF滴加在上述溶液中。室温条件下将0.03g ECG溶解在5mL DMF中,并迅速滴加到PAN/DMF溶液中。最后,在20rpm下磁力搅拌1h实现共混。将上述制得的前驱体溶液适量装入注射器中,将注射器移入静电纺丝系统中,微量注射泵的流量设为0.001mL/min,电压为12kV,针头接收器之间的距离为10cm,纺丝时间10h,即得Hf@PAN-ECG酸碱双功能纳米纤维材料。
本实施例制备得到的酸碱双功能纳米纤维材料在LvA转移加氢的应用,具体步骤如下:
将本实例制备得到的0.10g Hf@PAN-ECG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,LvA转化率为98.6%,GVL得率为95.9%。
将本实例制备得到的0.10g Hf@PAN-ECG,0.20g LvA和20mL异丙醇溶剂混合加入密闭高压反应釜中,180℃,4h转移加氢反应后得到目标产物GVL,反应结束后,催化剂通过过滤,并用去离子水和无水乙醇的多次洗涤,80℃干燥12h后循环使用,催化剂循环利用第1次,以相同的反应条件用于LvA制备GVL,LvA转化率为94.3%,GVL得率为92.1%。
以上对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (7)

1.一种由静电纺丝制备酸碱双功能纳米纤维材料的方法,其特征在于,包括以下步骤:
S1:以茶多酚为金属离子固载剂,采用静电纺丝技术将活性金属离子,负载到聚丙烯腈(PAN)纳米纤维上,得到同时具有路易斯酸和路易斯碱位点的双功能纳米纤维材料,由下式表示M@PAN-N,其中M为多种活性金属,N为茶多酚中儿茶素类化合物;
S2:将金属化合物、PAN以及儿茶素类物质分别溶于N,N-二甲基甲酰胺(DMF)溶剂中,然后进行共混得到前驱体纺丝液;
S3:通过静电纺丝技术制备出具有高比表面积、高孔隙率的酸碱双功能纳米纤维材料。
2.根据权利要求1所述一种由静电纺丝制备酸碱双功能纳米纤维材料的方法,其特征在于,所述S1中活性金属离子为Hf4+、Zr4+、Ti4+中的一种。
3.根据权利要求1所述一种由静电纺丝制备酸碱双功能纳米纤维材料的方法,其特征在于,所述S1中的儿茶素类化合物为表儿茶素(EC)、表没食子儿茶素(EGC)、表儿茶素没食子酸酯(ECG)、表没食子儿茶素没食子酸酯(EGCG)中的一种或几种。
4.根据权利要求1所述一种由静电纺丝制备酸碱双功能纳米纤维材料的方法,其特征在于,所述S2中的金属化合物为HfCl4、Zr(NO3)4·5H2O、TiCl4中的一种或几种。
5.根据权利要求1所述一种由静电纺丝制备酸碱双功能纳米纤维材料的方法,其特征在于,所述S3中制得的酸碱双功能纳米纤维材料应用在LvA转移加氢中。
6.根据权利要求5所述一种由静电纺丝制备酸碱双功能纳米纤维材料的方法,其特征在于,所述酸碱双功能纳米纤维材料应用在LvA转移加氢中的具体步骤为:
将0.10g酸碱双功能纳米纤维材料、0.20g LvA和20mL异丙醇溶剂混合置于密封高压反应釜中,在160~180℃,反应4~6h,之后催化剂通过过滤,并用去离子水和无水乙醇的多次洗涤,80℃干燥12h后回收循环利用1~5次。
7.根据权利要求1-6任意一项所述一种由静电纺丝制备酸碱双功能纳米纤维材料的方法,公开了其在纳米材料制备和催化领域的应用。
CN202110704740.3A 2021-06-24 2021-06-24 一种由静电纺丝制备酸碱双功能纳米纤维材料的方法 Pending CN113413923A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110704740.3A CN113413923A (zh) 2021-06-24 2021-06-24 一种由静电纺丝制备酸碱双功能纳米纤维材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110704740.3A CN113413923A (zh) 2021-06-24 2021-06-24 一种由静电纺丝制备酸碱双功能纳米纤维材料的方法

Publications (1)

Publication Number Publication Date
CN113413923A true CN113413923A (zh) 2021-09-21

Family

ID=77716785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110704740.3A Pending CN113413923A (zh) 2021-06-24 2021-06-24 一种由静电纺丝制备酸碱双功能纳米纤维材料的方法

Country Status (1)

Country Link
CN (1) CN113413923A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700064A (zh) * 2022-03-30 2022-07-05 昆明理工大学 一种酸碱双功能金属/埃洛石杂化材料的制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186833A (ja) * 2005-12-16 2007-07-26 Mitsui Norin Co Ltd カテキン類の耐水化方法
CN101124043A (zh) * 2004-12-20 2008-02-13 国际人造丝公司 改进的负载型催化材料
CN104557839A (zh) * 2014-12-24 2015-04-29 浙江远圣茶业有限公司 一种EGCG-Zn配合物的制备方法及其应用
CN106905553A (zh) * 2017-02-27 2017-06-30 昆明理工大学 一种生物多糖层层自组装修饰的醋酸纤维素膜材料及其制备方法
CN107999039A (zh) * 2017-12-06 2018-05-08 苏州大学 一种PLA-TPs纳米纤维膜及其制备方法和应用
CN109453807A (zh) * 2018-09-12 2019-03-12 东南大学 一种利用螯合剂改性Fe3O4材料催化降解水体中磺胺类药物的方法
CN110306290A (zh) * 2019-07-29 2019-10-08 广东工业大学 一种可食用抗菌抗氧化负载型纳米纤维膜的制备方法
CN112023982A (zh) * 2020-07-17 2020-12-04 昆明理工大学 一种静电纺丝制备锆负载pan复合材料的方法及应用
CN112044450A (zh) * 2020-07-17 2020-12-08 昆明理工大学 一种酸碱双功能生物质碳基催化剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124043A (zh) * 2004-12-20 2008-02-13 国际人造丝公司 改进的负载型催化材料
JP2007186833A (ja) * 2005-12-16 2007-07-26 Mitsui Norin Co Ltd カテキン類の耐水化方法
CN104557839A (zh) * 2014-12-24 2015-04-29 浙江远圣茶业有限公司 一种EGCG-Zn配合物的制备方法及其应用
CN106905553A (zh) * 2017-02-27 2017-06-30 昆明理工大学 一种生物多糖层层自组装修饰的醋酸纤维素膜材料及其制备方法
CN107999039A (zh) * 2017-12-06 2018-05-08 苏州大学 一种PLA-TPs纳米纤维膜及其制备方法和应用
CN109453807A (zh) * 2018-09-12 2019-03-12 东南大学 一种利用螯合剂改性Fe3O4材料催化降解水体中磺胺类药物的方法
CN110306290A (zh) * 2019-07-29 2019-10-08 广东工业大学 一种可食用抗菌抗氧化负载型纳米纤维膜的制备方法
CN112023982A (zh) * 2020-07-17 2020-12-04 昆明理工大学 一种静电纺丝制备锆负载pan复合材料的方法及应用
CN112044450A (zh) * 2020-07-17 2020-12-08 昆明理工大学 一种酸碱双功能生物质碳基催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHENGHUI ZHOU ET.AL: "Sustainable hydrothermal self-assembly of hafnium–lignosulfonate nanohybrids for highly efficient reductive upgrading of 5-hydroxymethylfurfural", 《GREEN CHEM.》, 29 January 2019 (2019-01-29) *
卓良明等: "胶原纤维接枝多酚负载纳米钯的制备及其对硝基苯加氢的催化特性", 《化学研究与应用》 *
卓良明等: "胶原纤维接枝多酚负载纳米钯的制备及其对硝基苯加氢的催化特性", 《化学研究与应用》, no. 11, 15 November 2009 (2009-11-15), pages 2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700064A (zh) * 2022-03-30 2022-07-05 昆明理工大学 一种酸碱双功能金属/埃洛石杂化材料的制备方法与应用
CN114700064B (zh) * 2022-03-30 2023-10-27 昆明理工大学 一种酸碱双功能金属/埃洛石杂化材料的制备方法与应用

Similar Documents

Publication Publication Date Title
CN112341394B (zh) 一种氢键供体功能化的聚合离子液体催化制备环状碳酸酯的方法
CN107442177B (zh) 5-羟甲基糠醛选择性加氢合成2,5-呋喃二甲醇的方法
CN108435230B (zh) 一种高效催化5-羟甲基糠醛制2,5-呋喃二甲醛的杂原子掺杂有序介孔炭负载钌催化剂
CN105772057A (zh) 一种醋酸和甲醛合成丙烯酸用有序介孔催化剂的制备方法
CN109772457A (zh) 一种复合催化材料、制备方法及其在双羟基/双甲基呋喃类化合物可控制备中的应用
CN106345530A (zh) 一种磁性核壳纳米催化剂及其制法与催化5‑羟甲基糠醛制备2,5‑二甲酰基呋喃的应用
CN113413923A (zh) 一种由静电纺丝制备酸碱双功能纳米纤维材料的方法
CN102151573B (zh) 一种用于制备氯乙烯的低汞催化剂的制备方法
CN113578387B (zh) 一种静电纺丝自组装木质素负载锆杂化材料的方法及应用
CN114272932B (zh) 一种镍铈生物炭催化剂及其制备方法、应用
CN112023924A (zh) 橡胶籽壳多孔活性炭负载铜基催化剂的制备方法及其应用
CN113262784B (zh) 一种核-壳型脱水-加氢双功能催化剂、制备方法及其在木糖制备二元醇中的应用
CN109622049A (zh) 用于炔丙基醇部分加氢制备烯丙基醇的催化剂及其制法
CN107286006B (zh) 一种催化醇解木质素制备香草乙酮和乙酰丁香酮的方法
CN108640892A (zh) 一种5-羟甲基糠醛的合成方法
CN103801321B (zh) 一种用于制备1,4-丁二醇的催化剂及制备方法
CN106944050A (zh) 一种合成1,3‑丙二醇的催化剂及其制备方法和应用
CN102660035A (zh) 利用磷钨酸与h2o2混合体系催化降解并活化碱木质素的方法
CN111961015B (zh) 一种催化5-羟甲基糠醛制备2,5-呋喃二甲醇的方法
CN111057030B (zh) 水滑石基硫化物催化剂用于合成γ-戊内酯的制备方法及应用
CN113663675A (zh) Edta辅助浸渍法制备镍基催化剂用于木质素还原解聚
CN103657718A (zh) 用于制备碳酸亚烷酯的树脂催化剂及其方法
CN111054337B (zh) 用于生物质制备乙二醇的催化剂
CN112047907A (zh) 一种甲酸供氢、金属卤化物协同催化下葡萄糖一锅法制备2,5-呋喃二甲醇的方法
NL2024500A (en) Method for preparing 4-(3-hydroxyphenyl)-4-oxobutanoic acid from lignin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210921