CN113402755A - 军机复合材料热补仪补片多壁碳纳米管层间增韧方法 - Google Patents

军机复合材料热补仪补片多壁碳纳米管层间增韧方法 Download PDF

Info

Publication number
CN113402755A
CN113402755A CN202110629169.3A CN202110629169A CN113402755A CN 113402755 A CN113402755 A CN 113402755A CN 202110629169 A CN202110629169 A CN 202110629169A CN 113402755 A CN113402755 A CN 113402755A
Authority
CN
China
Prior art keywords
composite material
walled carbon
patch
carbon nanotube
interlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110629169.3A
Other languages
English (en)
Inventor
刘斌
段晓波
杨腾飞
吕亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202110629169.3A priority Critical patent/CN113402755A/zh
Publication of CN113402755A publication Critical patent/CN113402755A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种军机复合材料热补仪补片多壁碳纳米管层间增韧方法,属于航空航天技术领域,针对军机作战时外场条件下复合材料热补仪工艺下的层间断裂韧性提升问题。该技术区别于热压罐的增韧技术,其温度、压强、树脂含量等均与热压罐工艺不同。本发明选用工业级MWCNTs作为复合材料补片层间的增韧材料,在干织物浸渍树脂后裁剪并逐层铺贴,将MWCNTs定量按比例投入丙酮液体并通过超声波进行充分弥散后均匀喷附,再利用符合FAA标准的复合材料热补仪进行加热加压固化,最后切割为DCB标准试样进行Ⅰ型断裂韧性测试,测试结果表明该材料在喷附面密度为1.58g/m2时GIC有显著提升,说明MWCNTs提高了复合材料补片的层间韧性,弥补了传统快速修理复合材料补片层间性能差的不足。

Description

军机复合材料热补仪补片多壁碳纳米管层间增韧方法
技术领域
本发明属于航空航天技术领域,是针对军用飞机作战时外场条件下碳纤维/树脂基层合复合材料热补仪工艺下的层间断裂韧性提升问题,特别涉及一种多壁碳纳米管(MWCNTs)对复合材料补片层间增韧的热补仪技术与方法。
背景技术
直接将纳米材料溶于树脂,再进行与纤维的混合与整体热压固化,工艺相对复杂,需要加入的纳米材料多,会影响复合材料的非层间性能。中国专利(CN107459820A)公开了一种微纳米粒子协同层间增韧双马碳纤维复合材料的制备方法,其包括以下步骤用“多相复合”法获得固液复合的低粘度树脂体系,将热塑性微米粒子和核壳纳米粒子分散于由烯丙基化合物和环氧树脂组合的液态增韧剂中,然后加入双马微粉进行预混均匀,再置于三辊研磨机上物理共混,依靠剪切和扩散作用使得微纳米粒子均匀分散,获得增韧双马树脂体系将上述双马树脂体系于涂膜,然后与碳纤维增强体热压预浸复合,以纤维的筛滤作用获得增强体表面和束丝间富集多尺度微纳米粒子的预浸料将预浸料裁剪并铺设于模具中,采用模压成型获得微纳米粒子协同层间增韧的复合材料。该方法获得较好的层间性能,但是工艺仍然较为复杂,且只测试了GIC
中国专利(CN104945852A)公开了一种微纳米粒子层间增韧技术,首先将微纳米粒子均为无机粒子的混合溶液均匀喷涂在纤维上,然后置于烘箱内干燥处理,待溶剂挥发完全后再与热固性树脂复合,制得微纳米粒子层间增韧的复合材料,该方法虽然显著提高了复合材料的层间断裂韧性工,但成型工艺较为复杂,需要先在纤维上喷涂,且未使用近些年性能超强的碳纳米管材料。
发明内容
本发明是为了解决军用飞机作战时外场条件下碳纤维/树脂基层合复合材料热补仪工艺下的层间断裂韧性提升问题,提供一种适宜于快速修理复合材料补片的利用较低成本、超高力学性能的多壁碳纳米管对预浸料表面进行定量可控喷附之后正常热压固化的制备方法。
一种多壁碳纳米管增韧复合材料层间断裂韧性的新方法的制备工艺,其特征是,具体包括以下步骤:A:选用较低成本且较易获得的多壁碳纳米管作为复合材料层合结构层间增韧的材料,多壁碳纳米管的内径3-5nm,外径8-15nm长度范围3-12μm,其纯度为95wt%以上;B:采用“超声波弥散法”对多壁碳纳米管在丙酮溶液中进行充分震动弥散,震动时间为15分钟,温度为23℃;C:利用“预浸料表面喷附法”将B步骤中多壁碳纳米管喷附于复合材料预浸料表面,表面喷附使用带气源的气枪,气压为0.2-0.3MPa,将弥散有多壁碳纳米管的丙酮溶液均匀喷附于指定面积的预浸料表面,直到所有所需溶液喷完为止;D:将C中制作好的预浸料进行铺贴与热补仪固化,固化应使用120℃温度及0.1MPa压强进行热补仪固化。
本发明利用具有超高力学性能的多壁碳纳米管进行层间增韧,并通过简单的喷附工艺直接对半成品的预浸料进行表面处理,其他工艺环节均正常,因此大大简化了工艺,而且喷附密度精准可控。且利用热补仪进行加工,区别与热压罐工艺。
本发明所制备的增韧后的复合材料层合结构被机械加工成双悬臂梁DCB试样,用于测试其Ⅰ型断裂韧性的变化,与不加任何纳米材料的原有复合材料结构进行对比,其效果通过附图及以下实例对比详细说明。
附图说明
图1为实例1中复合材料试样制备过程的说明图;
图2为实例1中DCB复合材料试样模型图;
图3为实例1中DCB复合材料试样加载说明图;
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所描述的本发明。
实施例1
多壁碳纳米管增韧T700-3k(日本东丽公司生产)环氧树脂基碳纤维复合材料,其特征是,具体包括以下步骤:(1)选用较低成本且较易获得的工业级多壁碳纳米管作为复合材料层合结构层间增韧的材料,多壁碳纳米管的内径3-5nm,外径8-15nm,长度范围3-12μm,其纯度为95wt%以上;(2)采用“超声波弥散法”对多壁碳纳米管在丙酮中进行充分震动弥散,震动时间为15分钟,温度为23℃;(3)利用“表面喷附法”将(2)步骤中多壁碳纳米管喷附于复合材料湿铺贴层表面,表面喷附密度为1.58g/m2,表面喷附使用带气源的气枪,将弥散有多壁碳纳米管的丙酮溶液均匀喷附于指定面积的预浸料表面,直到所有所需溶液喷完为止;(4)将(3)中制作好的湿铺层进行铺贴与热补仪固化,预浸料固化应在120℃温度及0.1MPa压强进行热补仪固化;(5)将整张复合材料板子切割成为DCB标准试样。
表1DCB标准试样层间断裂韧性
增韧材料 实施例G<sub>IC</sub>(J/m<sup>2</sup>)
2.05243
多壁碳纳米管 4.04748
表1数据说明:
通过实施例1多壁碳纳米管的喷附工艺所制备的DCB试样较未增韧的原DCB试样的I型断裂韧性GIC提高了97.2%。

Claims (5)

1.一种多壁碳纳米管增韧军机结构复合材料补片层间断裂韧性的新方法的制备工艺,其特征是,具体包括以下步骤:
A:选用工业级多壁碳纳米管作为复合材料修理时补片层合结构层间增韧的材料;
B:采用“超声波弥散法”对多壁碳纳米管在丙酮中进行充分震动弥散;
C:利用“表面喷附法”将B步骤中多壁碳纳米管喷附于复合材料湿铺贴层表面;
D:将C中制作好的湿铺层进行铺贴与复合材料热补仪(符合FAA标准)固化。
2.根据权利要求1所述的多壁碳纳米管增韧军机结构复合材料补片层间断裂韧性的制备工艺,其特征在于步骤A中的多壁碳纳米管纯度为95wt%以上、内径3-5nm、外径8-15nm、长度范围3-12μm。
3.根据权利要求1所述的多壁碳纳米管增韧军机结构复合材料补片层间断裂韧性的制备工艺,其特征在于步骤B中的超声波弥散震动时间为15分钟,弥散温度为23℃。
4.根据权利要求1所述的多壁碳纳米管增韧军机结构复合材料补片层间断裂韧性的制备工艺,其特征在于步骤C中的复合材料湿铺贴层表面喷附应使用带气源的气枪,气压为0.2-0.3MPa,将弥散有多壁碳纳米管的丙酮溶液均匀喷附于指定面积的湿铺层表面,直到所有所需溶液喷完为止。
5.根据权利要求1所述的多壁碳纳米管增韧军机结构复合材料补片层间断裂韧性的制备工艺,其特征在于步骤D中铺层固化应使用120℃温度及0.1MPa压强进行热补仪固化。
CN202110629169.3A 2021-06-04 2021-06-04 军机复合材料热补仪补片多壁碳纳米管层间增韧方法 Pending CN113402755A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110629169.3A CN113402755A (zh) 2021-06-04 2021-06-04 军机复合材料热补仪补片多壁碳纳米管层间增韧方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110629169.3A CN113402755A (zh) 2021-06-04 2021-06-04 军机复合材料热补仪补片多壁碳纳米管层间增韧方法

Publications (1)

Publication Number Publication Date
CN113402755A true CN113402755A (zh) 2021-09-17

Family

ID=77676542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110629169.3A Pending CN113402755A (zh) 2021-06-04 2021-06-04 军机复合材料热补仪补片多壁碳纳米管层间增韧方法

Country Status (1)

Country Link
CN (1) CN113402755A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634685A (zh) * 2022-03-25 2022-06-17 中复神鹰碳纤维股份有限公司 微纳米粒子增韧的预浸料用环氧树脂及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516569A (zh) * 2011-11-18 2012-06-27 中国航空工业集团公司北京航空材料研究院 碳纳米管无纺布层间改性纤维增强复合材料的制备方法
US20120186742A1 (en) * 2010-07-26 2012-07-26 National Institute Of Aerospace Associates High kinetic energy penetrator shielding and high wear resistance materials fabricated with boron nitride nanotubes (BNNTS) and BNNT polymer composites
JP2014043542A (ja) * 2012-07-31 2014-03-13 Toray Ind Inc プリプレグおよび炭素繊維強化複合材料
US20140162518A1 (en) * 2011-07-27 2014-06-12 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
CN110117408A (zh) * 2019-05-06 2019-08-13 西北工业大学 一种采用纳米多层石墨烯增韧复合材料层间的方法
CN110117409A (zh) * 2019-05-06 2019-08-13 西北工业大学 一种采用多壁碳纳米管增韧复合材料层间的方法
CN110588015A (zh) * 2019-09-04 2019-12-20 大连理工大学 一种无机纳米粒子/热塑性颗粒协同增韧树脂基复合材料及其制备方法
CN110612323A (zh) * 2017-01-19 2019-12-24 石墨烯技术公司 利用浸渍的蜂窝碳纳米结构增强的多功能纳米复合材料
US20200361777A1 (en) * 2019-04-04 2020-11-19 Jilin University Nanometer Niobium Carbide/Carbon Nanotube Reinforced Diamond Composite And A Preparation Method Thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120186742A1 (en) * 2010-07-26 2012-07-26 National Institute Of Aerospace Associates High kinetic energy penetrator shielding and high wear resistance materials fabricated with boron nitride nanotubes (BNNTS) and BNNT polymer composites
US20140162518A1 (en) * 2011-07-27 2014-06-12 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
CN102516569A (zh) * 2011-11-18 2012-06-27 中国航空工业集团公司北京航空材料研究院 碳纳米管无纺布层间改性纤维增强复合材料的制备方法
JP2014043542A (ja) * 2012-07-31 2014-03-13 Toray Ind Inc プリプレグおよび炭素繊維強化複合材料
CN110612323A (zh) * 2017-01-19 2019-12-24 石墨烯技术公司 利用浸渍的蜂窝碳纳米结构增强的多功能纳米复合材料
US20200361777A1 (en) * 2019-04-04 2020-11-19 Jilin University Nanometer Niobium Carbide/Carbon Nanotube Reinforced Diamond Composite And A Preparation Method Thereof
CN110117408A (zh) * 2019-05-06 2019-08-13 西北工业大学 一种采用纳米多层石墨烯增韧复合材料层间的方法
CN110117409A (zh) * 2019-05-06 2019-08-13 西北工业大学 一种采用多壁碳纳米管增韧复合材料层间的方法
CN110588015A (zh) * 2019-09-04 2019-12-20 大连理工大学 一种无机纳米粒子/热塑性颗粒协同增韧树脂基复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAUSTINO MUJIKA: "Influence of the modification with MWCNT on the interlaminar fractuer properties of long carbon biber composites", 《COMPOSITES:PART B》 *
乔英杰等: "碳纳米管增韧二硅化钼金属间化合物的研究", 《稀有金属材料与工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634685A (zh) * 2022-03-25 2022-06-17 中复神鹰碳纤维股份有限公司 微纳米粒子增韧的预浸料用环氧树脂及其制备方法

Similar Documents

Publication Publication Date Title
Banakar et al. Influence of fiber orientation and thickness on tensile properties of laminated polymer composites
TW201429691A (zh) 複合材料之結合
CN110117409A (zh) 一种采用多壁碳纳米管增韧复合材料层间的方法
CN110117408A (zh) 一种采用纳米多层石墨烯增韧复合材料层间的方法
Shinde et al. Effect of TEOS electrospun nanofiber modified resin on interlaminar shear strength of glass fiber/epoxy composite
CN113402755A (zh) 军机复合材料热补仪补片多壁碳纳米管层间增韧方法
CN114133606A (zh) 高韧性热固性树脂基预浸料的制备方法及系统
KR20130091496A (ko) 탄소섬유 프리프레그 및 그의 제조방법
Liu et al. Enhanced electrical conductivity and interlaminar fracture toughness of CF/EP composites via interleaving conductive thermoplastic films
CN110181917B (zh) 一种杂化薄膜改性的碳纤维复合材料及其制备方法
CN112280077A (zh) 一种具有电磁屏蔽功能的预浸料及其制备方法
RU2278028C1 (ru) Препрег и изделие, выполненное из него
CN111320841B (zh) 一种芳纶纤维/碳纳米管复合增强碳纤维树脂预浸料
JP4428978B2 (ja) エポキシ樹脂組成物
CN109651635B (zh) 一种回收碳纤维预浸料的制备方法
CN114634685A (zh) 微纳米粒子增韧的预浸料用环氧树脂及其制备方法
CN104448711A (zh) 一种环氧树脂/碳纤维/埃洛石纳米管复合材料及其制备方法
CN109183513B (zh) 一种聚酰亚胺纤维远红外发射纸及其制备方法
CN116041907A (zh) 石墨烯环氧树脂复合材料及其制备方法
Feng et al. Thickness and pore effect of nanotube interleaves on interlaminar shear properties of carbon fibrous laminates
CN110951217B (zh) 一种芳纶纤维增强碳纤维树脂预浸料及其制备方法
EP3670584B1 (en) Fiber reinforced plastic enhanced by functionalized particle
Song et al. Research on the mechanical and thermal properties of MWCNTs/CF reinforced epoxy resin matrix composite patch
YI et al. BIO-COMPOSITES: Development of Bio-Composites for Green Aviation and Ground Vehicles.
CN112677602A (zh) 一种用于预浸料的增韧材料、高韧性复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210917

WD01 Invention patent application deemed withdrawn after publication