CN110117409A - 一种采用多壁碳纳米管增韧复合材料层间的方法 - Google Patents

一种采用多壁碳纳米管增韧复合材料层间的方法 Download PDF

Info

Publication number
CN110117409A
CN110117409A CN201910370691.7A CN201910370691A CN110117409A CN 110117409 A CN110117409 A CN 110117409A CN 201910370691 A CN201910370691 A CN 201910370691A CN 110117409 A CN110117409 A CN 110117409A
Authority
CN
China
Prior art keywords
prepreg
carbon nanotube
walled carbon
interlayer
acetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910370691.7A
Other languages
English (en)
Inventor
刘斌
高弄玥
曹双辉
汤博森
许安琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910370691.7A priority Critical patent/CN110117409A/zh
Publication of CN110117409A publication Critical patent/CN110117409A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于碳纤维/树脂基层合复合材料制造及力学性能领域,涉及一种采用多壁碳纳米管(MWCNTs)增韧复合材料层间的方法。本发明选用较低成本多壁碳纳米管作为复合材料预浸料层间的增韧材料,在预浸料剪裁完成之后,将其定量按比例投入丙酮或乙醇液体并通过超声波进行充分弥散,再通过气压枪均匀喷附在预浸料各层的表面,待丙酮或乙醇挥发完进行预浸料的铺贴,再送入热压罐进行加热加压固化,最后切割为DCB与ENF标准试样进行Ⅰ型和Ⅱ型断裂韧性测试,测试结果表明该材料在喷附面密度为1g/m2时GIC与GIIC都有显著提升,提高了复合材料层合结构的层间韧性,弥补了层合复合材料层间性能的不足。

Description

一种采用多壁碳纳米管增韧复合材料层间的方法
技术领域
本发明属于热固性碳纤维/树脂基复合材料工艺制备领域,特别涉及一种多壁碳纳米管(MWCNTs)—对树脂基连续纤维复合材料层间增韧的制备方法。
背景技术
目前树脂基连续纤维复合材料在航空领域使用较为广泛,具有比刚度和比强度较高、抗疲劳、耐腐蚀的优点,如在波音787结构用量达到50%以上。树脂基连续纤维预浸料复合材料作为飞机表面结构的材料,在受到冲击时容易产生分层,大大降低了所用结构的承载能力,因此树脂基连续纤维预浸料复合材料进行层间增韧,提高其抗分层能力。
直接将纳米材料溶于树脂,再进行与纤维的混合与整体热压固化,工艺相对复杂,需要加入的纳米材料多,会影响复合材料的非层间性能。中国专利(CN107459820A)公开了一种微纳米粒子协同层间增韧双马碳纤维复合材料的制备方法,其包括以下步骤用“多相复合”法获得固液复合的低粘度树脂体系,将热塑性微米粒子和核壳纳米粒子分散于由烯丙基化合物和环氧树脂组合的液态增韧剂中,然后加入双马微粉进行预混均匀,再置于三辊研磨机上物理共混,依靠剪切和扩散作用使得微纳米粒子均匀分散,获得增韧双马树脂体系将上述双马树脂体系于涂膜,然后与碳纤维增强体热压预浸复合,以纤维的筛滤作用获得增强体表面和束丝间富集多尺度微纳米粒子的预浸料将预浸料裁剪并铺设于模具中,采用模压成型获得微纳米粒子协同层间增韧的复合材料。该方法获得较好的层间性能,但是工艺仍然较为复杂,同时将纳米材料溶于树脂会改变预浸料层内的刚度和强度;且此申请中只测试了GIC,对于其他材料没有记载,如GIIC的检测。
中国专利(CN104945852A)公开了一种微纳米粒子层间增韧技术,首先将微纳米粒子均为无机粒子的混合溶液均匀喷涂在纤维上,然后置于烘箱内干燥处理,待溶剂挥发完全后再与热固性树脂复合,制得微纳米粒子层间增韧的复合材料,该方法虽然显著提高了复合材料的层间断裂韧性工,但成型工艺较为复杂和成本高,需要先在纤维上喷涂,会改变材料本身的界面结合强度,且未使用近些年性能超强的碳纳米管材料。
发明内容
要解决的技术问题:
为了避免现有技术的不足之处,本发明提出一种采用多壁碳纳米管增韧复合材料层间的方法,采用在预浸料各层间进行喷涂的方法增韧,工艺简单,并采用较低成本、超高力学性能的多壁碳纳米管对预浸料表面进行定量可控喷附不会改变对复合材料本身的属性。
本发明的技术方案是:一种采用多壁碳纳米管增韧复合材料层间的方法,其特征在于具体步骤如下:
步骤一:选用多壁碳纳米管作为复合材料层间增韧的材料,所述多壁碳纳米管的内径3-5nm,外径8-15nm,长度范围3-12μm,其纯度为95wt%以上;
步骤二:采用超声波弥散法将所述多壁碳纳米管在乙醇或丙酮中进行震动弥散,在室温下震动时间为10-15分钟;
步骤三:将树脂基连续纤维复合材料预浸料剪裁完成后,使用喷雾设备将弥散有多壁碳纳米管的丙酮或乙醇溶液均匀喷附于所述预浸料各层间的表面,直到所述预浸料各层表面所需弥散有多壁碳纳米管的丙酮或乙醇溶液喷完为止;所述预浸料每层表面的喷附面密度为1g/m2
步骤四:将步骤三中喷涂完成的所述预浸料进行铺贴并与热压罐固化,所述预浸料固化时温度为90-135℃,压强为0.4MPa。
本发明的进一步技术方案是:所述树脂基连续纤维复合材料预浸料为环氧树脂复合材料预浸料。
本发明的进一步技术方案是:所述喷雾设备为带气源的气枪。
有益效果
本发明的有益效果在于:本发明利用超高力学性能的多壁碳纳米管进行层间增韧,并通过简单的喷附工艺直接对半成品的预浸料进行各层间的表面喷涂处理,大大简化了工艺,而且喷附密度精准可控。
本发明使用喷雾设备将弥散有多壁碳纳米管的丙酮或乙醇溶液均匀喷附于树脂基连续纤维复合材料预浸料各层间的表面,通过对预浸料每一层的表面进行喷涂,能够增强复合材料层间的断裂韧性,且不会改变复合材料本身的属性;同时在树脂基连续纤维复合材料预浸料每层表面的喷附面密度为1g/m2,能够使得抗断裂韧性效果达到最佳。
使用本发明方法制备的增韧后的复合材料层合结构被机械加工成双悬臂梁DCB和端部切口ENF两种试样,用于测试其一、二型断裂韧性的变化,多壁碳纳米管的喷附工艺所制备的DCB试样较未增韧的原DCB试样的I型断裂韧性GIC提高了20.3%。;多壁碳纳米管的喷附工艺所制备的ENF试样较未增韧的原ENF试样的II型断裂韧性GIIC提高了
107.5%。具体效果通过附图及以下实例对比详细说明。
附图说明
图1为多壁碳纳米管增韧复合材料层间增韧示意图;
图2为实例1与实例2中复合材料试样制备过程的说明图;
图3为实例1中DCB复合材料试样尺寸说明图;
图4为实例2中ENF复合材料试样加载说明图。
具体实施方式
下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
实施例1:
多壁碳纳米管增韧T700(日本东丽公司生产)环氧树脂复合材料,具体包括以下步骤:(1)选用较低成本且较易获得的多壁碳纳米管作为复合材料层合结构层间增韧的材料,多壁碳纳米管的内径3-5nm,外径8-15nm长度范围3-12μm,其纯度为95wt%以上,并在高精度质量秤上秤好0.5g;(2)采用“超声波弥散法”对多壁碳纳米管在乙醇或丙酮中进行充分震动弥散,震动时间为10-15分钟,温度为20℃;(3)将环氧树脂复合材料预浸料剪裁完成后,预浸料表面积为0.5m2,使用带气源的气枪将弥散有多壁碳纳米管的丙酮或乙醇溶液均匀喷附于所述预浸料各层间的表面,直到所述预浸料各层表面所需弥散有多壁碳纳米管的丙酮或乙醇溶液喷完为止;所述预浸料每层表面的喷附面密度为1g/m2;(4)将步骤(3)中制作好的预浸料进行铺贴与热压罐固化,预浸料固化使用120℃温度及0.4MPa压强进行热压罐固化,固化时间8小时;(5)将整张复合材料板子切割成为DCB标准试样,并粘上金属角片。
实施例2:
多壁碳纳米管增韧T700(日本东丽公司生产)环氧树脂复合材料,其具体包括以下步骤:(1)选用较低成本且较易获得的多壁碳纳米管作为复合材料层合结构层间增韧的材料,多壁碳纳米管的内径3-5nm,外径8-15nm长度范围3-12μm,其纯度为95wt%以上,并在高精度质量秤上秤好0.2g;(2)采用“超声波弥散法”对多壁碳纳米管在乙醇或丙酮中进行充分震动弥散,震动时间为10-15分钟,温度为20℃;(3)将环氧树脂复合材料预浸料剪裁完成后,预浸料表面积为0.2m2,使用带气源的气枪将弥散有多壁碳纳米管的丙酮或乙醇溶液均匀喷附于所述预浸料各层间的表面,直到所述预浸料各层表面所需弥散有多壁碳纳米管的丙酮或乙醇溶液喷完为止;所述预浸料每层表面的喷附面密度为1g/m2;(4)将步骤(3)中制作好的预浸料进行铺贴与热压罐固化,预浸料固化应使用120℃温度及0.4MPa压强进行热压罐固化,固化时间8小时;(5)将整张复合材料板子切割成为ENF标准试样。
表1T700/环氧树脂多壁碳纳米管层间断裂韧性
增韧材料 实施例1G<sub>IC</sub>(J/m<sup>2</sup>) 实施例2G<sub>IIC</sub>(J/m<sup>2</sup>)
265.3 871.2
多壁碳纳米管 319.1 1808.0
表1数据说明:
通过实施例1多壁碳纳米管的喷附工艺所制备的DCB试样较未增韧的原DCB试样的I型断裂韧性GIC提高了20.3%。通过实施例2多壁碳纳米管的喷附工艺所制备的ENF试样较未增韧的原ENF试样的II型断裂韧性GIIC提高了107.5%。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (3)

1.一种采用多壁碳纳米管增韧复合材料层间的方法,其特征在于具体步骤如下:
步骤一:选用多壁碳纳米管作为复合材料层间增韧的材料,所述多壁碳纳米管的内径3-5nm,外径8-15nm,长度范围3-12μm,其纯度为95wt%以上;
步骤二:采用超声波弥散法将所述多壁碳纳米管在乙醇或丙酮中进行震动弥散,在室温下震动时间为10-15分钟;
步骤三:将树脂基连续纤维复合材料预浸料剪裁完成后,使用喷雾设备将弥散有多壁碳纳米管的丙酮或乙醇溶液均匀喷附于所述预浸料各层间的表面,直到所述预浸料各层表面所需弥散有多壁碳纳米管的丙酮或乙醇溶液喷完为止;所述预浸料每层表面的喷附面密度为1g/m2
步骤四:将步骤三中喷涂完成的所述预浸料进行铺贴并与热压罐固化,所述预浸料固化时温度为90-135℃,压强为0.4MPa。
2.根据权利要求1所述采用多壁碳纳米管增韧复合材料层间的方法,其特征在于:所述树脂基连续纤维复合材料预浸料为环氧树脂复合材料预浸料。
3.根据权利要求1所述采用多壁碳纳米管增韧复合材料层间的方法,其特征在于:所述喷雾设备为带气源的气枪。
CN201910370691.7A 2019-05-06 2019-05-06 一种采用多壁碳纳米管增韧复合材料层间的方法 Pending CN110117409A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910370691.7A CN110117409A (zh) 2019-05-06 2019-05-06 一种采用多壁碳纳米管增韧复合材料层间的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910370691.7A CN110117409A (zh) 2019-05-06 2019-05-06 一种采用多壁碳纳米管增韧复合材料层间的方法

Publications (1)

Publication Number Publication Date
CN110117409A true CN110117409A (zh) 2019-08-13

Family

ID=67521734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910370691.7A Pending CN110117409A (zh) 2019-05-06 2019-05-06 一种采用多壁碳纳米管增韧复合材料层间的方法

Country Status (1)

Country Link
CN (1) CN110117409A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112590252A (zh) * 2020-11-27 2021-04-02 哈尔滨工业大学 一种增强热塑性自动铺放构件层间性能的方法
CN113183554A (zh) * 2021-06-08 2021-07-30 燕山大学 碳纤维复合材料铝板增韧的制备方法
CN113402755A (zh) * 2021-06-04 2021-09-17 西北工业大学 军机复合材料热补仪补片多壁碳纳米管层间增韧方法
CN114058323A (zh) * 2021-11-09 2022-02-18 湖南大学 一种层间增韧复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513404A (zh) * 2013-10-01 2015-04-15 北京化工大学 环氧化合物包覆碳纳米管静电喷涂碳纤维预浸料的制备
CN104558659A (zh) * 2013-10-11 2015-04-29 北京化工大学 一种氨基化碳纳米管喷涂碳纤维/环氧树脂预浸料的制备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513404A (zh) * 2013-10-01 2015-04-15 北京化工大学 环氧化合物包覆碳纳米管静电喷涂碳纤维预浸料的制备
CN104558659A (zh) * 2013-10-11 2015-04-29 北京化工大学 一种氨基化碳纳米管喷涂碳纤维/环氧树脂预浸料的制备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAUSTINO MUJIKA, ET AL.: ""Influence of the modification with MWCNT on the interlaminar fracture properties of long carbon fiber composites"", 《COMPOSITES: PART B》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112590252A (zh) * 2020-11-27 2021-04-02 哈尔滨工业大学 一种增强热塑性自动铺放构件层间性能的方法
CN113402755A (zh) * 2021-06-04 2021-09-17 西北工业大学 军机复合材料热补仪补片多壁碳纳米管层间增韧方法
CN113183554A (zh) * 2021-06-08 2021-07-30 燕山大学 碳纤维复合材料铝板增韧的制备方法
CN114058323A (zh) * 2021-11-09 2022-02-18 湖南大学 一种层间增韧复合材料及其制备方法
CN114058323B (zh) * 2021-11-09 2022-08-16 湖南大学 一种层间增韧复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN110117409A (zh) 一种采用多壁碳纳米管增韧复合材料层间的方法
Zhang et al. Effect of rapid curing process on the properties of carbon fiber/epoxy composite fabricated using vacuum assisted resin infusion molding
CN110117408A (zh) 一种采用纳米多层石墨烯增韧复合材料层间的方法
CN102729488B (zh) 碳纤维复合材料臂架、其生产方法及包括其的混凝土泵车
EP3395870A1 (en) Prepreg and method for manufacturing same
US11192985B2 (en) Composite material and resin composition containing metastable particles
CN102746622A (zh) 一种中温固化环氧树脂为基体材料的预浸料及其制备方法
Park et al. A comparison of the properties of carbon fiber epoxy composites produced by non-autoclave with vacuum bag only prepreg and autoclave process
CN104356605A (zh) 一种轻质无人机壳体用预浸料及其制备方法
JP2010155986A (ja) 炭素繊維およびガラス繊維により強化された複合材料
Terekhov et al. Binders used for the manufacturing of composite materials by liquid composite molding
Wang et al. Rapid curing epoxy resin and its application in carbon fibre composite fabricated using VARTM moulding
EP3552810B1 (en) Method for forming a composite structure
US7041740B2 (en) Heat-settable resins
Maravola et al. Epoxy infiltrated 3D printed ceramics for composite tooling applications
CN105885357A (zh) 一种非均相增韧树脂、碳纤维预浸料及碳纤维复合材料
CN105021434A (zh) 一种高温复合材料试样制备方法
Zhao et al. Improving the interlaminar fracture toughness of carbon fiber/epoxy composites using clustered microcapsules
RU2278028C1 (ru) Препрег и изделие, выполненное из него
Takeda et al. Research in the application of the VaRTM technique to the fabrication of primary aircraft composite structures
Yeole et al. Improve durability and surface quality of additively manufactured molds using carbon fiber prepreg
Yang et al. Effect of random vibration processing on void content in composite laminates
CN113402755A (zh) 军机复合材料热补仪补片多壁碳纳米管层间增韧方法
CN110370680A (zh) 一种增韧碳纤维树脂基复合材料的制备方法
Shi et al. Mechanical, thermal properties and void characteristics of bamboo fiber-reinforced epoxy resin composites prepared by vacuum-assisted resin transfer molding process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190813