CN113381027B - 一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池 - Google Patents

一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池 Download PDF

Info

Publication number
CN113381027B
CN113381027B CN202110167529.2A CN202110167529A CN113381027B CN 113381027 B CN113381027 B CN 113381027B CN 202110167529 A CN202110167529 A CN 202110167529A CN 113381027 B CN113381027 B CN 113381027B
Authority
CN
China
Prior art keywords
snc
negative expansion
cobalt
based perovskite
sync
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110167529.2A
Other languages
English (en)
Other versions
CN113381027A (zh
Inventor
周嵬
章远
杨广明
邵宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202110167529.2A priority Critical patent/CN113381027B/zh
Publication of CN113381027A publication Critical patent/CN113381027A/zh
Priority to US17/666,402 priority patent/US20220263097A1/en
Application granted granted Critical
Publication of CN113381027B publication Critical patent/CN113381027B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/70Cobaltates containing rare earth, e.g. LaCoO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • C04B2235/326Tungstates, e.g. scheelite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池,属于燃料电池技术领域。本发明将负膨胀材料引入了钴基的钙钛矿氧化物,成功地制备出了具有良好电化学性能且同时具有低热膨胀性的SOFC阴极材料。复合电极在SOFC中实现了良好的机械耐受性,其可以缓和整个烧结过程中的体积变化,使其平稳过度到高温阶段,该复合电极的TEC仅为12.9×10‑6 K‑1,与SDC电解质完全匹配;另外,该复合材料在显示出良好的ORR活性和TEC值得同时,其抗CO2中毒性能也十分优异。

Description

一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体 氧化物燃料电池
技术领域
本发明涉及一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池,属于燃料电池技术领域。
背景技术
虽然SOFC具有巨大的商业化应用前景,但就目前的状况而言,SOFC的制造和使用成本太高,还没有达到商品化要求,其中操作温度过高是造成成本过高的关键因素。并且过高的操作温度还限制了SOFC在便携式设备上的应用,从而丢失了大众市场。因此降低电池操作温度是SOFC的发展趋势。发展中低温SOFC,降低操作温度,可以显著地提高热循环稳定性,同时能够使用廉价的连接体材料,降低电池的制造成本,扩大市场占有率,促进SOFC的商业化。其中低温SOFC关键材料的开发与制备是制约固体氧化物燃料电池发展的瓶颈。通过降低电解质厚度和采用新型高离子电导率材料,对电解质材料的优化已取得了巨大的进步。而在电极的优化,特别在阴极方面虽然也进行了很多的研究,但离SOFC的商业化要求还有很大差距。阻碍中低温SOFC阴极材料实际应用的问题主要集中在以下三个方面:(1)电化学性能低;(2)热膨胀系数大;(3)抗CO2中毒能力差。作为具有高效率,燃料灵活性和低排放的极具吸引力的能量转换的的固体氧化物燃料电池技术,由于许多技术障碍,特别是操作稳定性不足,尚未实现固体氧化物燃料电池(SOFC)的广泛应用,而除了SOFC阴极材料对CO2的不耐受性会影响其在操作条件下的稳定性外,由于钙钛矿氧化物材料具有刚性,不同电池组件的热膨胀行为不匹配会引入较大的内部应变,从而在操作或热循环过程中出现分层问题。电极分层是SOFC性能下降的主要原因,甚至可能导致SOFC装置损坏和运行安全问题。
考虑到开发IT-SOFC氧还原电极(ORE)材料的主要挑战是实现其高氧还原反应(ORR)的活性和长期稳定操作的耐用性。由于钴特殊的电子传输系统和催化性能,IT-SOFC最受欢迎的ORE材料是含钴的钙钛矿,包括Sm0.5Sr0.5CoO3-δ,(La,Sr)(Co,Fe)O3-δ,Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF),和SrNb0.1Co0.9O3-δ(SNC),目前我们已经成功研制了新型的B位双掺杂的钙钛矿型阴极材料SrSc0.025Nb0.175Co0.8O3-δ(SSNC)和SrTa0.1Nb0.1Co0.8O3-δ(STNC)能进一步降低SOFC的操作温度至500℃以下,研究表明Sc和Nb、Ta和Nb共掺杂可以大幅降低氧离子在钙钛矿体相的扩散能垒并提高氧空位数量,从而获得优越的氧还原催化活性。虽然这些钙钛矿阴极具有高的电化学活性,但该类材料通常具有很高的热膨胀系数(TEC),通常在20-25×10-6K-1,例如:BSCF的TEC为24×10-6K-1,远远大于SDC或YSZ的值电解质(11.2-12.3×10-6K-1)。高热膨胀系数源于钴离子在高温下发生还原及d轨道电子自旋状态升级引起的离子半径剧烈增加。当讨论燃料电池的运行稳定性(耐用性)时,对于钙钛矿氧化物阴极材料而言,热膨胀系数是衡量材料实际应用价值的重要参数之一,中低温SOFC电池的工作温度大致在500-700℃左右,该温度范围内电极材料、电解质和连接体会发生不同程度的体积膨胀,因为热膨胀系数的不匹配产生应力会导致电极从电解质上脱落,电池变形,漏气甚至开裂,会严重影响电池寿命和工作安全性、稳定性。
发明内容
本发明将以NTE氧化物ZrW2O8和Y2W3O12为起始材料,对其进行结构和组成优化,使其具有更高的氧离子电导率并保持负热膨胀特性的新型NTE材料。
本发明引入具有负热膨胀(Negative Thermal Expansion,NTE)特性的材料与SrNb0.1Co0.9O3-δ(SNC)钙钛矿进行复合,正负热膨胀系数的对冲效应将起到大幅调节阴极热膨胀性能的作用,使其可以与各类电解质具有完全匹配的热膨胀系数。
本发明第一个目的,提供了:
一种负膨胀材料复合的钴基钙钛矿材料,其特征在于,是由负膨胀材料与钴基钙钛矿材料复合而成。
在一个实施方式中,所述的负膨胀材料是具有AxByOz通式的氧化物材料,1≤x≤2,1≤y≤3,4≤z≤12;A元素选自锆(Zr)、铪(Hf)、铌(Nb)、钽(Ta)、钇(Y)、铝(Al)、铁(Fe)、铬(Cr)中的一种或几种;B元素选自钨(W)、钼(Mo)、钛(Ti)、镍(Ni)、矾(V)、磷(P)的一种或几种;更优选的,是采用AB2O8(A选自锆(Zr)或者铪(Hf),B选自钨(W)或者钼(Mo))或者A2B3O12系列的氧化物(A选自钇(Y),B选自钨(W)或者钼(Mo));
在一个实施方式中,所述的钴基钙钛矿材料的主相具有以通式ABO3表示的钙钛矿型结构,A位金属元素可以从钡(Ba)、锶(Sr)、钙(Ca)、镧(La)、镨(Pr)、钕(Nd)、钐(Sm)、铋(Bi)中选取至少一种元素;B位中至少包含钴,也可以含有从铁(Fe)、锰(Mn)、镍(Ni)、铜(Cu)、钪(Sc)、钇(Y)、铈(Ce)、镱(Yb)、钛(Ti)、铌(Nb)、钽(Ta)、矾(V)、钼(Mo)、锑(Sb)、铋(Bi)等元素中选取至少一种元素。
在一个实施方式中,所述的负膨胀材料是Y2W3O12(YWO),所述的钴基钙钛矿材料是SrNb0.1Co0.9O3-δ(SNC);在一个实施方式中,所述的钴基钙钛矿材料中还包含Srx(Nb0.1Co0.9Yy)O3-δ(SYNC)和SrWO4
在一个实施方式中,所述的负膨胀材料是ZrW2O8(ZWO),并且所述的钴基钙钛矿材料中还包含SrWO4和CoWO4
负膨胀材料复合的钴基钙钛矿材料的制备方法,其特征在于,包括如下步骤:将负膨胀材料与钴基钙钛矿材料混合后,得到前驱体材料,再进行煅烧。
在一个实施方式中,所述的负膨胀材料在前驱体材料中的含量范围是5-40wt%,优选10-20wt%。
在一个实施方式中,所述的煅烧的过程是指在600-1000℃条件下煅烧1-6h;优选在650-800℃下煅烧2h。
在一个实施方式中,所述的SrNb0.1Co0.9O3-δ(SNC)钙钛矿材料是通过如下方法制备得到:按照分子计量比,取Sr(NO3)2、C10H5NbO20、Co(NO3)2·6H2O,按照柠檬酸-EDTA络合方法制备得到固体前驱体;再进行煅烧后得到;也可以通过固相反应法得到。
在一个实施方式中,煅烧是1000℃下煅烧5h。
在一个实施方式中,所述的Y2W3O12(YWO)或者ZrW2O8(ZWO)是通过按照化学计量比将Y2O3和/或ZrO,以及WO3粉末为原料进行混合,球磨处理后,煅烧得到。
在一个实施方式中,球磨过程采用乙醇为溶剂,转速400rpm;煅烧为1100℃下煅烧5h。
本发明的第三个方面,提供了:
上述的负膨胀材料复合的钴基钙钛矿材料在用于制造固体氧化物燃料电池中的应用。
本发明的第四个方面,提供了:
负膨胀材料在用于制造固化氧化物燃料电池阴极材料中的应用。
在一个实施方式中,所述的负膨胀材料用于降低阴极材料的热膨胀系数、降低阴极材料的阻抗、提高阴极材料ORR电活性、提高阴极材料对CO2中毒的耐受性、增加阴极材料表面氧空位、提高燃料电池功率密度或者提高燃料电池对加热-冷却循环的耐受性。
有益效果
本发明将负膨胀材料引入了钙钛矿氧化物,成功地制备出了具有良好电化学性能且同时具有低热膨胀性的SOFC阴极材料。YWO与SNC之间的相反应可以使主体材料表面形貌由光滑颗粒变为细小颗粒,SrWO4等杂质会析出附着在材料表面;SNC和YWO之间发生界面相反应,在SrWO4的形成过程中Sr从钙钛矿主相中脱出,使钙钛矿A位阳离子产生缺陷,并且,Y元素掺杂进入钙钛矿主相的B位,从而形成了A位缺陷的Srx(Nb0.1Co0.9Yy)O3-δ(SYNC)。
该新型复合电极在SOFC中实现了良好的机械耐受性,通过原位TEC探究了c-SYNC在烧结过程中的机械性能变化,其可以缓和整个烧结过程中的体积变化,使其平稳过度到高温阶段,该复合电极的TEC仅为12.9×10-6K-1,与SDC电解质完全匹配。
通过YWO的复合,SNC+YWOx由于相反应导致阻抗的增大,并随着YWO比例增加逐渐增大,而SNC+YWO10和SNC+YWO20在600℃时的ASR值分别为0.052和0.059Ωcm2,明显地降低了材料的阻抗;SrWO4的析出和钙钛矿结构中A位缺陷的产生大大提高了ORR活性。
SNC+YWOx在显示出良好的ORR活性和TEC值得同时,其抗CO2中毒性能也十分优异,在600℃引入10vol.%CO2连续监测60min后,SNC+YWO20的ASR值(~1.75Ωcm2)小足SNC阴极阻抗值的二分之一(~4.13Ωcm2)。
c-SYNC阴极大大提高的长期耐受性和ORR活性证明了我们提出的引入NTE材料的热膨胀补偿策略的有效性。这种策略结合了C-SYNC阴极的低TEC和原位形成均匀分布的c-SYNC颗粒引起的高ORR活性。事实证明,将负热膨胀性YWO引入到阴极中对于开发耐用和高性能的SOFC而言是一种简单,有效和通用的策略。
附图说明
图1是SNC+ZWOx(x=10,20和40wt%)/SNC+YWOx(x=10,20和40wt%)在800℃下煅烧2h的XRD图谱;
图2是SNC+ZWO20/SNC+YWO20样品在400-1200℃烧结2h的XRD图谱;
图3是SNC+ZWOx(x=0、10、20和40wt%)粉末在800℃的空气中煅烧2h的粉末表面的扫描电子显微镜图像:(a和b)x=0,(c和d)x=10,(e和f)x=20,(g和h)x=40。
图4是SNC+YWOx复合阴极在800℃的空气中煅烧2h的粉末表面的SEM图像(x=0,10,20和40wt%)。(a和b)x=0,(c和d)x=10,(e和f)x=20,(g和h)x=40。
图5是SNC+ZWOx(x=0,10和20wt%)/SNC+YWOx(x=0,10和20wt%)致密条状样品从200℃到900℃的热膨胀曲线。
图6是TGA表征结果,其中(a)SNC,ZWO,SNC/ZWO20和SNC+ZWO20样品在空气中的TGA曲线,(b)SNC,YWO,SNC/YWO20和SNC+YWO20样品在空气中的TGA曲线。
图7是在800、900和1000℃烧制的SNC+YWO20阴极的ASRArrhenius曲线。
图8是SNC+ZWOx(x=10,20和40)阴极的ASRs在500至750℃测试区间随温度的变化的Arrhenius曲线图。
图9是SNC+YWOx(x=10,20和40)阴极的ASRs在500至750℃测试区间随温度的变化的Arrhenius曲线图
图10是SNC+YWOx(x=0,10,20,30和40)复合电极对称电池在600℃下的EIS图。内插图为x=0,10和20的阻抗图谱。欧姆阻抗的影响已经去除。
图11是电池ASR曲线,其中,(a)在600℃温度下,在10%的CO2下经过60分钟,以及去除CO2直到t=120分钟之后,SNC+YWOx对称电池的ASR值。(b)每个样品的ASR值与初始ASR0的相对变化率。
图12是电池EIS分析,其中,(a)在二氧化碳处理后t=60分钟时SNC+YWO20和SNC的EIS图。(b)在CO2处理60分钟之前和之后进行SNC+YWO20的EIS图的DRT分析。
图13是相结构分析的结果,其中,(a)样品c-SYNC-红色曲线,SNC-蓝色曲线和YWO-灰色曲线在800℃烧结2h的XRD图谱。(b)SNC和c-SYNC粉末XRD图的放大部分,2θ=30–35°。
图14是c-SYNC粉末的Rietveld精修图,其中包含测量数据,模拟和差异曲线。
图15是c-SYNC和SNC/YWO的(a)Co2p轨道和(b)Nb3d轨道的XPS光谱。
图16是c-SYNC和SNC/YWO的Sr3d轨道的XPS光谱
图17是c-SYNC阴极示意图
图18是c-SYNC粉末的(a1)HRTEM图像和(a2)相应成分的线扫图,(b)c-SYNC粉末的相应EDX元素图。(c-g)c-SYNC粉末的HRTEM和SEAD图像:(c,f)c-SYNC粉末的TEM图,(d)YWO的HRTEM图,(e)SrWO4的HRTEM图,(g1-g4)SEAD和SYNC的HRTEM图和[101]空间轴(g1,g3)和[110]空间轴(g2,g4)对应FFT图。
图19是空气中c-SYNC样品从室温(RT)到750℃的加热和冷却后高温原位XRD图谱。
图20是SNC,SNC/YWO和c-SYNC粉末的O1sXPS曲线
图21是热膨胀曲线,其中,(a)未经煅烧的SNC和SNC/YWO条状样品在空气中从100到1200℃的热膨胀曲线。(b)SNC和c-SYNC致密条状样品从室温到900℃的热膨胀曲线。
图22是使用N2作为平衡气,在600℃下氧气分压(pO2)从0.1到1atm的c-SYNC阴极(在800℃焙烧)的阻抗谱。
图23是在不同温度下(a)550,(b)600和(c)650℃的c-SYNC和SNC(在800℃焙烧)的阻抗谱。
图24是c-SYNC和SNC阴极在不同温度下的ASR的Arrhenius图。
图25是c-SYNC样品(a)在变化的pO2下以及(b)在变化的测量温度(500至700℃)下EIS结果的DRT分析,
图26是c-SYNC和SNC样品在550、600和650℃下拟合EIS的(a)R1和(a)R2的值,插图中为等效电路图。
图27是在600℃下各种优异的阴极材料的TEC和ASR比较值的分布图。
图28是(a)在600℃的空气中,不同厚度的c-SYNC和SNC阴极的ASR值。(b)c-SYNC和SNC阴极的ASR在600℃的空气中200小时的稳定性,两个阴极的阴极厚度均为40μm。(c)稳定性试验前后的SNC和c-SYNC的EIS图。
图29是空气中在800℃下煅烧2h的c-SYNC阴极的厚度和表面横截面的扫描电子显微镜图像:(a和b)厚度=10μm,(c和d)厚度=20μm,(e和f)厚度=30μm,(g和h)厚度=40μm。
图30是(a)在H2下,阳极支撑的c-SYNC单电池的厚度为40μm的I-V和I-P曲线。在H2下具有(b)40μm(c)10μm厚度的SNC阴极的I–V和相应的I–P曲线。(d)使用H2和空气作为燃料和氧化剂在600℃下进行200小时的单电池耐久性测试,插图为c-SYNC和SNC阴极的SEM横截面图像。
图31是(a)在600℃至300℃的温度之间持续90小时的40次温度循环期间,SNC和c-SYNC阴极的ASR值;(b)c-SYNC和(c)SNC在1、10、20、30和40个周期后的EIS值;(d)通过原位形成c-SYNC提出的耐久性增强机制。
具体实施方式
适用于本发明的技术构思的钙钛矿材料,其是主相具有以通式ABO3表示的钙钛矿型结构,A位金属元素可以从钡(Ba)、锶(Sr)、钙(Ca)、镧(La)、镨(Pr)、钕(Nd)、钐(Sm)、铋(Bi)中选取至少一种元素。B位中作为主要元素所含有的过渡金属元素,可从钴(Co)、铁(Fe)、锰(Mn)、镍(Ni)、铜(Cu)、钪(Sc)、钇(Y)、铈(Ce)、镱(Yb)、钛(Ti)、铌(Nb)、钽(Ta)、矾(V)、钼(Mo)、锑(Sb)、铋(Bi)等元素中选取至少一种元素。更优选的,上述的钙钛矿材料是B位为含有钴的钙钛矿材料。
适用于本发明的技术构思的负膨胀材料,可以选自AxByOz通式的氧化物材料,1≤x≤2,1≤y≤3,4≤z≤12;A元素选自锆(Zr)、铪(Hf)、铌(Nb)、钽(Ta)、钇(Y)、铝(Al)、铁(Fe)、铬(Cr)中的一种或几种;B元素选自钨(W)、钼(Mo)、钛(Ti)、镍(Ni)、矾(V)、磷(P)的一种或几种;更优选的,是采用AB2O8(A选自锆(Zr)或者铪(Hf),B选自钨(W)或者钼(Mo))或者A2B3O12系列的氧化物(A选自钇(Y),B选自钨(W)或者钼(Mo))。
材料合成
1、SNC材料的制备:将化学计量的Sr(NO3)2,C10H5NbO20,Co(NO3)2·6H2O进行混合,再将溶液与EDTA-NH3和柠檬酸混合,获得pH值接近6-7的溶液,蒸发5小时后,合成SNC粉末前驱体(Evaluation of the CO2 Poisoning Effect on a Highly Active CathodeSrSc0.175Nb0.025Co0.8O3-δin the Oxygen Reduction Reaction[J].Acs AppliedMaterials&Interfaces,2016,8(5):3003.)。将SNC的固体前驱体在空气中于1000℃下煅烧5h,以获得最终粉体。也可以通过固相法制备得到,具体的制备过程可以参阅相关现有技术文献,例如:Wei,Zhou,and,et al.Structural,electrical and electrochemicalcharacterizations of SrNb0.1Co0.9O3-δas a cathode of solid oxide fuel cellsoperating below 600℃[J].International Journal of Hydrogen Energy,2010.
2、负膨胀材料的制备:YWO是以Y2O3和WO3粉末为原料,通过在球磨中以乙醇为溶剂以400rpm的转速研磨、制备,然后干燥,将混合物在空气中于1100℃下煅烧5h以获得YWO粉末。同样地,ZWO是以ZrO和WO3粉末为原料,依同法制备得到。
3、SOFC复合阴极材料的制备:将适量的YWO(或者ZWO)和SNC混合,通过在空气中800℃下煅烧2h,得到c-SYNC复合粉体。
XRD表征
ZrW2O8(ZWO)是按照化学计量比称取对应的氧化物,通过高温固相法1150℃煅烧20h高温淬火得到成相粉体,而Y2W3O12(YWO)也是通过高温固相法1200℃煅烧20h后得到成相粉体。主体材料SrNb0.1Co0.9O3-δ(SNC)则选择EDTA-CA法合成,煅烧温度为1000℃,煅烧5h后成相。SNC与不同比例的ZWO或YWO混合制备成复合阴极材料,分别用SNC+ZWOx(x=10,20和40wt%)和SNC+YWOx(x=10,20和40wt%)表示,混合物通过球磨法机械混合,烘干后在800℃下煅烧2h使两相充分结合,随后进行XRD测试其相结构的变化,如图1所示。由图中对比我们可以得出结论,SNC与ZWO和YWO在高温下均发生明显相反应,而且随着NTE材料比例的增多,相反应加剧,并生成SrWO4和CoWO4,但在YWO与SNC复合材料中仅发现SrWO4的相,而ZWO与SNC复合材料中发现了SrWO4和CoWO4,且相反应生成的杂相峰强度很大,说明其相反应更加剧烈,这种相结构的差异可能会导致二者的氧还原活性和性能表现上的差异。
为了研究温度对复合材料之间相反应的影响,我们将SNC+ZWOx复合材料和SNC+YWOx复合材料取x=20wt%,分别在不同温度下煅烧2h,通过XRD表征研究其相结构的变化,图2是SNC+ZWO20/SNC+YWO20样品在400-1200℃烧结2h的XRD图谱;由图中曲线我们可以看出,主体材料与NTE材料之间相反应,在800℃以下几乎不发生反应,但是作为SOFC阴极材料,制备过程必须经过高温煅烧,因此,高温相反应不可避免。而800℃生成的SrWO4当温度达到1000℃后,对应的峰逐渐减弱说明该组分达到了分解温度发生分解,随后,SNC+ZWO20和SNC+YWO20两种材料均生成新的杂相:四方晶系Sr(CoW)5O3,P4mm空间群结构(PDF#74-2464),以及立方晶Sr2CoWO6,Fm-3m空间群结构(PDF#74-2470),然而,通过对比可以看出,SNC+ZWO20在较高温度下SNC与ZWO的相反应更加剧烈,SNC峰明显减弱,其主相难以维持,复合材料大多数被杂相取代,而SNC+YWO20在较高温度下的相反应较为缓和,主相峰依然存在。由此可以推断,这两种复合材料在较高温度下的ORR活性可能会受到影响,因此,降低电极制备的烧结温度可以避免这个问题。
SEM表征
图3和4分别对应了SNC+ZWOx和SNC+YWOx几种混合比例的复合阴极材料煅烧后的SEM电镜图,图4的(a)和(b)区域为纯SNC的形貌图,其形貌是光滑的大颗粒状粉体。从图1中我们可以观察到,加入ZWO后,SNC与ZWO很好地结合并形成细颗粒状形貌的粉体,随着ZWO含量的增加,这种颗粒状粉体占据全图视野,说明相反应程度加深,生成的第二相变多,当ZWO含量增至x=20wt%时,第二相SrWO4从粉体体相中析出,以絮状形态分布在材料表面。在SNC复合YWO的实验中,我们同样可以观察相类似的现象,但是,与ZWO相比,SNC与YWO的相反应由于没有那么剧烈,生成的SrWO4杂质颗粒少量分布于主体材料表面,其主体仍是以均匀的细颗粒状粉体为主,且当YWO含量达到x=40wt%后,其形貌依然变化不大,从而进一步证明ZWO和YWO与主体材料SNC的相反应会使复合材料由光滑颗粒转变为细颗粒状结构,并且生成的杂相分布在主体材料表面,ZWO由于相反应程度剧烈,当含量增高时杂质大量附着在材料表面,这一现象在YWO复合材料中较少。
TEC与TGA分析
为了研究SNC+ZWOx和SNC+YWOx热膨胀系数,分别各取x=0,10和20wt%的样品0.6g压成条状胚体,在1200℃下高温煅烧5h,使条状样品致密后测试在空气气氛下的200℃-900℃升温过程的热膨胀系数,SNC+ZWOx和SNC+YWOx的热膨胀系数测试结果如图5所示。通过图中的曲线可以观察到,SNC的TEC值在200℃-900℃温度范围内为22.7×10-6K-1,而在同等温度区间内,相同NTE材料复合比例的情况下,SNC+ZWO复合材料比SNC+YWO复合材料的TEC值表现更低,这与ZWO本身的TEC值较低有关(ZWO的TEC为-9×10-6K-1左右,YWO的TEC为-7×10-6K-1左右)。热膨胀现象的发生可以解释为当阴极加热到SOFC的工作温度时,Co4+还原为Co3+,和更高温度下Co3+还原为Co2+引起的晶格膨胀的原因。可以从图5中观察到,升温从600℃开始,SNC的热膨胀系数突然增大,这就是过渡金属Co开始还原造成的,而引入ZWO很好地缓和这一情况,当温度超过600℃后,SNC+ZWO10的TEC依然保持平稳的线性关系,然后这个规律在SNC+ZWO20中并不适用,其在温度达到700℃后TEC值有大幅度增长,这可能是由于前面观察到的ZWO与SNC之间强烈的相反应,使其生成了SrWO4并改变了主体结构和材料形貌导致的。此外,我们得到SNC+ZWO10和SNC+ZWO20在200℃-900℃温度范围内的TEC值分别为14.0×10-6K-1和9.24×10-6K-1。相比于SNC+ZWOx,图5给出了SNC+YWOx(x=0,10和20wt%)的测试结果,从图中曲线我们发现,SNC+YWO10和SNC+YWO20在200℃-900℃温度范围内的TEC值分别为16.6×10-6K-1和12.9×10-6K-1。虽然YWO与SNC复合材料在TEC调控方面比ZWO偏弱,但是我们发现,当x=20时,SNC+YWO20的TEC与电解质材料的TEC几乎一致。
为了进一步证明热膨胀的变化趋势,进行了空气气氛下从室温升温至1000℃的热重分析(TGA),结果如图6所示。图中SNC/YWO20为SNC与YWO20的混合物,未经烧结处理,SNC/YWO20同理。我们发现,ZWO和YWO的重量损失分别显示为0.46%和0.35%,且在高温段没有变化,因此可以排除ZWO和YWO重量减轻对复合材料的影响。同时我们从图6中观察发现,SNC+ZWO20的重量减轻小于SNC和SNC/ZWO20的重量减轻,尤其是在500℃以上时,SNC+YWO20也有相似现象,并且,SNC+ZWO20的失重比SNC+YWO20更小。高于400℃的重量损失应归因于Co价态的降低导致晶格氧的损失,如Co4+到Co3+和Co3+到Co2+的减少,因此复合材料抑制了钙钛矿在高温下Co价态的降低,从而抑制了TEC的增高,这也与上面提到的热膨胀的变化规律相一致。
电化学阻抗分析
为了研究复合该阴极材料的ORR催化活性,我们进行了EIS电化学阻抗谱的测试。因此,我们首先在空气中500至750℃的开路条件下研究了分别在800、900和1000℃温度下焙烧的SNC+YWO20|SDC|SNC+YWO20对称电池。
对称电池的制备过程是:将电极粉末(c-SYNC或SNC)与异丙醇,乙二醇和甘油混合,球磨30min以形成电极浆料,然后将浆料喷涂到SDC圆片的两侧,在800℃下煅烧2h以获得对称电池。通过调节喷涂时间来控制电极的厚度。
图7中显示了不同煅烧温度下SNC+YWO20电极的ASR的Arrhenius曲线,其中800℃焙烧的样品的Ea比在900和1000℃焙烧的样品的Ea低得多。这表明较高的烧成温度会导致ORR活性降低,这归因于根据XRD结果在800℃以上发生的更复杂的相反应。因此,我们选择煅烧温度800℃来制备后续的所有电极,进行进一步研究。
表1给出了几种复合材料在不同温度下的ASR值。通过阻抗曲线图,我们可以直观地对比每个组分的ASR阻抗值得大小,以及它们和温度的关系,阻抗值越小可以说明ORR电活性越好。
表1 SNC+ZWOx(x=10,20和40)和SNC+YWOx(x=10,20和40)阴极在550至700℃的ASRs值。
Figure BDA0002937928350000101
从图7中可以看出,以600℃时的阻抗为例,SNC主体材料的ASR值为0.09Ωcm2,向SNC中引入10%的ZWO后,其ASR值为0.08Ωcm2,说明少量的ZWO不会使ASR阻抗值发生明显变化,然而,随着ZWO的比例继续增加,当其比例为x=20%时,SNC+ZWO20的ASR值增大至0.23Ωcm2,可以看出阻抗明显变大,而当其比例为x=40%时,SNC+ZWO20的ASR值变为26.24Ωcm2,比x=20%时增大了超过10倍,与原始值相差巨大,这是由于SNC与ZWO之间不利的相反应造成的,严重破坏了主体结构,造成ORR催化衰退。
相比于SNC+ZWOx,SNC+YWOx的ASR阻抗图如图9所示,当x=10和x=20时,对应的SNC+YWO10和SNC+YWO20复合材料阴极在600℃时的ASR值分别为0.052和0.059Ωcm2,我们通过对比发现,加入一定量的YWO之后,复合材料的SNC+YWOx的ORR催化活性比原始SNC相比变小很多,这说明二者之间的相反应并没有阻碍复合材料的氧还原催化过程,相反,还起到了促进作用,这可能是由于相反应改变了SNC主体材料的相结构,因为,当YWO含量继续增加至x=40的时候,SNC+YWO40的ASR值变为1.66Ωcm2,相比于初始值依然增大了很多,这说明,我们观察到的相反应生成的SrWO4杂质还是会在一定程度上阻碍阴极的氧还原催化反应。
为了进一步分析SNC+YWOx的ORR催化活性随YWO比例增加而产生的变化,我们给出了SNC+YWOx对称电池在600℃下的EIS电化学阻抗图谱进行分析,如图10所示。EIS阻抗谱中,高频段与实部轴上的交点位置反映的是电极的欧姆阻抗,它一般表示电极与电解质的接触面以及电解质内产生的欧姆阻抗,高频段与低频段在实部轴上的截距为电极的极化阻抗,即前文中提到的比面积阻抗ASR,其中,高频段代表电极的电荷转移过程,低频段代表氧表面扩散过程产生的阻抗。由图中我们看出,x=20作为一个临界值,小于等于20时,SNC+YWOx可以形成有利于ORR活性的复合组分,可以在SNC优异的ORR的基础上,进一步降低电化学阻抗值,改善其催化活性,而x大于20后,SNC+YWOx的阻抗值大大增加,这需要从不同的催化过程速率控制步骤来确定形成这种现象的具体原因。从图10我们可以简单地判断出,SNC+YWO10和SNC+YWO20相比于SNC,其高频段和低频段阻抗值均减小了很多,而且低频段减小更多,说明其复合产物促进了体相电荷转移过程,而生成的细颗粒结构更大地促进了氧表面扩散过程。而另一方面,SNC+YWO30和SNC+YWO40的阻抗值相较于其他几个组分,明显变大,通过分析我们可以得出,它们对应的高频段和低频段阻抗均变大,这可能是由于过于严重的相反应破坏了复合材料主体钙钛矿成分,而相反应产生的杂质大量析出附着在表面又大大降低了氧表面扩散过程,从而使它们的ORR活性剧烈衰减。
CO2对电化学阻抗的影响
许多具有高活性的SOFC阴极都易CO2中毒,因此通过在600℃下进行CO2中毒测试,用EIS阻抗图谱来评估SNC+YWOx(x=0,10,20,30和40)阴极在含CO2气氛中的耐受性。如图11的(a)所示,在600℃下,基于SNC+YWOx(x=0,10,20,30和40)的对称电池在引入10vol.%CO2的空气中和在移除CO2后的空气中连续监测120min的ASR值。由于过高的YWO浓度会大大增高SNC+YWOx复合材料的ASR值,因此,在通入CO2后,在图11的(b)中,我们计算出了在相同条件下,相对于初始值的ASR值的相对变化率。我们可以清楚地看到,随着YWO含量的增大,其在含CO2的测试条件下,ASR的相对变化值逐渐变小,这是由于表面覆盖的SrWO4和YWO的引入改善了阴极对CO2中毒的耐受性。如图12的(a)所示,在600℃引入10vol.%CO2连续监测60min后,SNC+YWO20的ASR(~1.75Ωcm2)不到SNC阴极阻抗的一半(~4.13Ωcm2)。SNC+YWO20阴极相应的ASR增长速率为0.028Ωcm2 min-1,而SNC阴极的增长速率为0.067Ωcm2min-1。通常认为,CO2中毒作用的机制是由于CO2竞争性吸附活性位而抑制了决定ORR反应速率的氧表面迁移过程。并且我们从上述结果中得到了图12的(b)中经CO2处理后SNC+YWO20的LF峰变大的依据。因此,在SNC+YWO20中观察到的良好的CO2耐受性可以归因于YWO添加剂的高酸性和SrWO4对阴极表面的覆盖。因此,SNC+YWO20复合材料会阻碍CO2的吸附并保护SNC免受CO2中毒。另外,切换回空气后,观察到两个样品均可恢复。
通过以上测试可以看出,将负膨胀材料引入了钙钛矿氧化物作为SOFC阴极材料。我们选取了两种较为常见的各向同性NTE材料(ZWO和YWO),与ORR活性较高但TEC系数较大的SNC钙钛矿阴极进行复合,研究其相结构,材料形貌,热膨胀变化以及电化学阻抗测试,(1)ZWO与SNC之间的相反应比YWO更加剧烈,且随着NTE材料含量的增加,复合材料SNC+ZWOx和SNC+YWOx的相反应都在变强,且生成SrWO4等物质;(2)ZWO,YWO与SNC之间的相反应可以使主体材料表面形貌由光滑颗粒变为细小颗粒,SrWO4等杂质会析出附着在材料表面;(3)随着NTE含量增加,复合材料的TEC值显著降低,且ZWO对降低TEC作用更为明显,SNC+YWO20的TEC值为9.24×10-6K-1,已经远低于电解质材料的TEC值,而SNC+YWO20复合材料的TEC值为12.9×10-6K-1,可以达到与SDC的TEC值完全匹配的程度;(4)电化学阻抗测试中,SNC+ZWOx由于相反应导致阻抗的增大,并随着ZWO比例增加逐渐增大,而SNC+YWO10和SNC+YWO20在600℃时的ASR值分别为0.052和0.059Ωcm2,对应HF和LF两个过程都有利于ORR反应;(5)SNC+YWOx在显示出良好的ORR活性和TEC值得同时,其抗CO2中毒性能也十分优异,在600℃引入10vol.%CO2连续监测60min后,SNC+YWO20的ASR值(~1.75Ωcm2)小足SNC阴极阻抗值的二分之一(~4.13Ωcm2)。
相结构分析
Y2W3O12氧化物(YWO)作为NTE候选材料与SrNb0.1Co0.9O3-δ(SNC)阴极复合以抵消钙钛矿相较不匹配的TEC值,通过在高温下煅烧SNC和YWO的物理混合物,SNC和YWO之间会发生界面相反应,我们进一步探索主体材料SNC,SNC与YWO混合物,以及SNC与YWO混合后高温煅烧形成复合材料这三者之间相结构。由于YWO和SNC之间的TEC差异很大,如果两相之间通过微弱的物理接触连接,那么在热循环过程中很容易发生两相之间的剥离。两相之间的化学反应将会增强双相之间的连接性,从而确保良好的机械完整性。我们通过煅烧YWO和SNC考察它们之间的潜在相反应。
图13的(a)显示了纯SNC,纯YWO和在800℃热处理2小时后的20wt%SNC与80wt%YWO的混合物(c-SYNC)的XRD图谱。煅烧后,检测到第二相SrWO4的形成(JCPDF85-0587)。这意味着从SNC中析出的Sr可以与YWO中的W反应形成SrWO4,这样复合材料中SNC钙钛矿的A位就会出现A位阳离子缺陷。经过仔细观察发现,SNC相的XRD图谱中大约(2θ=33°)的[110]晶带轴对应的峰,如图13的(b)所示,它显示了向更低角度的偏移,这表明由于A位产生了钙钛矿晶格中阳离子缺陷导致晶格体积的膨胀。同时,SNC几乎保持了原始的主要P4/mmm结构。Srx(Nb0.1Co0.9Yy)O3-δ(SYNC)可以在热处理过程中通过Y元素的B部位掺杂原位形成,这个结论可以被精修结果支持,如图14所示,精修结果显示SNC具有P4/mmm空间群,晶格尺寸为
Figure BDA0002937928350000132
(精修的详细结果在表2的信息中给出)。以上结果证实了离子半径较大的Y元素被掺杂到SNC的B位,以及Sr析出物导致A部位缺陷,进而导致晶格膨胀。经过热处理后,SNC/YWO机械混合材料成为了新形成的SYNC,YWO和SrWO4的混合物,我们将这种混合物定义为c-SYNC。
表2 c-SYNC粉末的Rietveld精修数据。
Figure BDA0002937928350000131
SNC的A位阳离子缺陷和B位低价掺杂物可以引入更多的氧空位,从而有利于氧还原反应。为了阐明Y掺杂后B位元素的化学状态,我们根据X射线光电子能谱(XPS)对c-SYNC样品中Co和Nb的价态与其前驱物(SNC/YWO,热处理前SNC和YWO的混合物)的价态进行比较分析。我们从图15的(a)和图15的(b)中观察到SNC/YWO和c-SYNC具有相同的Co2p和Nb3d峰轮廓,表明Co和Nb的化学状态几乎没有变化。因此,取代Y3+不会对Co和Nb阳离子价态产生影响。
c-SYNC样品中Sr 3d的XPS光谱如图16所示,从中可以看出,分化后的Sr 3d5/2和3d3/2峰对应两种不同种类的Sr,即晶格Sr(低结合能)和表面Sr(高结合能)。煅烧后,表面Sr与晶格Sr的比率明显增加。这种增加可以归因于表面SrWO4的形成,这与XRD结果一致。根据以上分析,可以推断出,在800℃下,SNC和YWO之间将通过阳离子交换机制发生相反应。如图17所示,SNC的A位的Sr阳离子与YWO反应,在材料表面形成SrWO4。然后,Y扩散到SNC的B位,最终形成稳定的SYNC钙钛矿结构,其中还包含一些YWO和SrWO4物质。
c-SYNC的晶体结构还可以通过高分辨率透射电子显微镜(HRTEM)以及和HR-TEM联用的能谱线扫进行验证(如图18的(a)所示),W和Y与Sr,Nb和Co的同时出现在7.5μm的位置。这揭示了YWO的存在以及SYNC和YWO粒子的强复合。从选定区域的元素分布分析(如图18的(b)),Y和W元素均匀分布在Sr,Co和Nb集中的颗粒区域。以上结果再次证明了SYNC和SrWO4通过表面阳离子交换形成并覆盖在SNC颗粒表面。从图18的(c)d中单个c-SYNC复合粒子的图像中可以找到SrWO4。YWO的存在还可以通过图18的(d)中的晶格间距
Figure BDA0002937928350000141
来确认。在放大视图(图18的(e))中测得的
Figure BDA0002937928350000142
晶格间距对应SrWO4的[101]轴。SYNC的存在可以通过图18的(f)和图18的(g)中观察到的
Figure BDA0002937928350000144
Figure BDA0002937928350000143
晶格间距以及相应的快速傅里叶转换(FFT)和选区电子衍射(SAED)充分证明。
相稳定和热稳定性分析
良好的化学和热匹配性对SOFC操作非常重要,尤其是阴极材料的耐受性。我们首先通过在室温(RT)到750℃的原位X射线衍射(XRD)表征考察c-SYNC粉末的晶体结构稳定性(图19)。在加热和冷却过程中每个温度点保持5小时,c-SYNC的相结构没有改变,也没有新相的形成。前文中,将SNC/YWO复合材料在400-1200℃烧结2h后在室温下测试了XRD,发现在800℃时c-SYNC复合材料形成SrWO4,并在1000℃以上时将SrWO4转化为立方Sr2CoWO6(PDF#74-2470)。并且前文中c-SYNC的热重分析(TGA)结果中c-SYNC的失重小于SNC和SNC/YWO的失重,尤其是在500℃以上时,因此这归因于c-SYNC钙钛矿中A位阳离子缺陷的产生抑制了钙钛矿中高温下Co价的降低。此外,催化剂的表面可能会形成活性氧物种,即高氧化性的O2 2-/O。图20从下到上依次描绘了SNC,SNC/YWO和SYNC的O1s的XPS光谱,其图谱具有四个不同的特征峰,即~529.0eV的晶格氧(O2-),~530.1eV的活性氧物种(O2 2-/O-),~531.2eV的羟基/吸附表面氧(OH/O2)和~532.1eV的吸附H2O分子。在引入YWO形成复合材料后,烧结过程中形成c-SYNC后,-OH/O2的比例先增加后降低。同时,在烧结期间,c-SYNC的O2 2-/O-比例增加。与SNC粉末相比,c-SYNC具有更高浓度的吸附氧(Oad,包括O2-,O-和OH),如Oad/Olattice比所示。因此,我们可以得出c-SYNC在表面上具有更多的氧空位。
TEC是SOFC阴极的关键特性,反应出阴极材料热稳定性。阴极的TEC必须与电解质的TEC相匹配,以降低热循环过程中阴极和电解质的剥离的风险。通常,经典的钴基钙钛矿阴极具有很高的ORR活性,然而,由于它们具有较高的TEC值,它们在热稳定性方面的表现不令人满意,例如Ba0.5Sr0.5Co0.8Fe0.2O3(24×10-6K-1)和La0.6Sr0.4CoO3(21×10-6K-1)。这可以解释为当阴极加热到SOFC的工作温度(通常高于500℃)时,Co4+还原为Co3+,然后进一步还原为Co2+引起的离子半径膨胀。通过将负热膨胀材料与SOFC混合以改善热稳定性降低TEC是一个简单的想法。对于前驱体SNC/YWO,我们从室温到1200℃范围内测量了YWO材料和SNC复合过程中的热膨胀曲线,涵盖了烧结过程的温度范围,如图21的(a)所示。我们可以发现,SNC的体积收缩比SNC/YWO的体积收缩大得多,这表明YWO可以抑制SNC颗粒收缩,从而减轻了SNC剧烈烧结产生的不利影响。值得注意的是,当温度高于800℃时,SNC/YWO的收缩也有一定程度的变大,这可能是由于从600℃以上开始YWO和SNC的相反应而导致的YWO质量分数的降低。在1200℃烧结后,再次测量所制备的c-SYNC和SNC的TEC曲线,如图21的(b)所示,上文也做过同样的测试,不同温度范围内的结果总结在表3中。在RT-900℃下测得的c-SYNC的TEC降低(12.9×10-6K-1)与SDC电解质(12.3×10-6K-1)的TEC完全匹配,并且远小于纯SNC的TEC(22.7×10-6K-1)和其他含钴的钙钛矿氧化物的TEC。通过比较在550-900℃下测得的TEC,c-SYNC显示的TEC显著低于SNC(分别为10.8×10-6K-1和26.5×10-6K-1)。这个结果和TGA阐述的Co3+还原为Co2+和XRD结果证明的SNC与YWO之间在600℃以上发生相反应一致。因此,我们可以得出结论,c-SYNC是耐用的且有前景的候选阴极材料,因为这种材料使TEC大大降低,尤其是在SOFC典型的工作温度范围500至800℃的情况下。
表3 SNC和c-SYNC样品在空气中的TEC值。
Figure BDA0002937928350000151
电化学阻抗分析
通过电化学阻抗谱(EIS)测量中实部轴上两个截距之差测得的单位面积阻抗(ASR)可以反映出阴极的ORR活性。因此,我们在空气中500至750℃的开路条件下研究了c-SYNC|SDC|c-SYNC对称电池。如上文所述,电极的烧结温度均为800℃。我们测试了不同氧分压下c-SYNC电极的极化阻抗,如图22所示。在较高的氧气压力下,总极化电阻较低,例如在pO2=1atm时,ASR为0.024Ωcm2。在pO2=0.1atm时为0.084Ωcm2。如图23和图24所示,在550至650℃时,c-SYNC阴极的总电阻也比SNC阴极的总电阻低。例如,在600℃下c-SYNC的ASR值为0.063Ωcm2,远低于SNC的ASR值(0.098Ωcm2)。因此,我们可以得出结论,将YWO与SNC混合会形成A位缺陷的钙钛矿,从而有利于ORR活性。此外,复合材料(富含YWO和SrWO4)的表面覆盖率对ORR活性无影响。
弛豫时间分布技术(DRT)被用于确定电极氧还原过程的速控步骤。图25的(a)给出了其高频峰(HF)和低频峰(LF)的拟合曲线,其通常分别表示为电子转移过程和氧表面过程。pO2的变化似乎不影响HF峰,但对LF峰影响很大,LF峰随着pO2的降低而移至较低的频率。这意味着当LF峰值频率在101至102Hz范围内时,表面氧的吸附/解吸和表面传输被认为是速控步骤。此外,温度的降低显著增大了图25的(b)中的LF峰值,这可以归因于氧气的吸附/解吸过程。
另外,提出了具有L1-Rohm-(R1-CPE1)-(R2-CPE2)的等效电路模型以拟合EIS图。电感元件L1与外部电路相关,而Rohm主要与电池的欧姆阻抗相关。R1和R2分别代表来自高频和低频过程的阻抗。图26的(a)和图26的(b)显示了550、600和650℃下SNC和c-SYNC样本R1和R2的拟合结果。我们发现R2的值高于R1的值,这表明在该种情况下氧表面交换可能是速控步骤,这与DRT分析非常吻合。与SNC相比,在不同温度下的c-SYNC样品中观察到R1和R2大幅度降低。这些观察结果表明,通过引入YWO,c-SYNC复合材料的A位缺陷可能是促进大量电子转移和表面氧过程的有效方法。
图27是600℃下各种优异的阴极材料的TEC和ASR比较值的分布图。总结了多种优异的高ORR催化活性SOFC阴极的电化学阻抗值(在600℃时)和它们的TEC值。
具体的参照材料包括:富钴材料:Ba0.5Sr0.5Co0.8Fe0.2O3–δ;La0.4Ba0.6CoO3–δ;La0.3Ba0.7Co0.6Fe0.4O3–δ;La0.6Sr0.4CoO3–δ;La0.8Sr0.2Co0.8Fe0.2O3–δ;SrCo0.8Nb0.1Ta0.1O3–δ;SrCo0.8Fe0.2O3–δ;Sm0.5Sr0.5CoO3–δ;富铁材料:Ba0.5Sr0.5Co0.2Fe0.8O3–δ;La0.4Sr0.6Co0.2Fe0.8O3–δ;Sm0.6Sr0.4Fe0.8Co0.3O3–δ;Gd0.6Sr0.4Fe0.8Co0.2O3–δ;Ba0.5Sr0.5Zn0.2Fe0.8O3–δ;Ba0.5Sr0.5Cu0.2Fe0.8O3–δ;Sm0.5Sr0.5Cu0.2Fe0.8O3–δ;SrNb0.2Fe0.8O3–δ;Sm0.5Sr0.5FeO3–δ;双钙钛矿:PrBaCo2O5+δ;PrBa0.5Sr0.5Co2O5+δ;PrBa0.5Sr0.5CoCuO5+δ(650℃);NdBaCo2O5+δ;NdBa0.5Sr0.5Co2O5+δ;SmBaCo2O5+δ;SmBa0.5Sr0.5Co2O5+δ;GdBaCo2O5+δ;GdBa0.5Sr0.5Co2O5+δ;YBaCo2O5+δ
与其它材料相比,c-SYNC表现出优异的ORR活性和最低的TEC值。例如Sm0.5Sr0.5CoO3-δ具有高ORR活性(0.87Ωcm2),但TEC为22.3×10-6K-1,Sm0.5Sr0.5FeO3-δ显示出较低的TEC(18.3×10-6K-1),但ORR活性很低(2Ωcm2)。因此,这证实了简便的NTE材料合成策略即可有效降低阴极的TEC并提高ORR活性,而无需在钙钛矿中掺杂活性较低的Cu或Fe元素,以牺牲ORR活性为代价降低TEC。
与SNC阴极的热匹配性相比,c-SYNC阴极与电解质层的热相容性更好,因此能进一步提高电池在操作条件下的耐受性。耐受性的提高可以归因于对c-SYNC热膨胀的优化。这种改善兼容性的另一个优点是可以使用c-SYNC为SOFC制造更厚的阴极。较厚的阴极可增加ORR催化活性位,并具有较高的阴极中毒耐受性,同时可降低阴极剥落的风险,因为阴极剥落可能会导致SNC阴极失效。因此,我们研究了阴极厚度对对称电池ORR活性的影响(图28),以证明这一推测。阴极厚度在5到40μm之间变化,增量为5μm,并在涂覆过程中通过喷涂时间手动控制。通过对称电池的SEM图像验证涂层的厚度(图29)。在图28的(a)中,在600℃下,当阴极厚度从5μm增加到40μm时,c-SYNC的ASR值从0.084减小到0.059Ωcm2。相反,在相应条件下,SNC的ASR变化从0.12Ωcm2增加到0.23Ωcm2,这表明通过增加电极厚度可以有效改善c-SYNC的ORR活性。图28的(b)中显示,在c-SYNC的40μm厚阴极在600℃的耐久性测试过程中未观察到明显下降,在600℃的测试时间超过200h时,其ASR值从0.073至0.080Ωcm2(图28的(c))。上述结果表明在阴极和电解质层之间的界面处的良好相容性。相比之下,SNC的最佳厚度为10μm。由于在稳定期间ASR值从0.23到0.35Ωcm2增大,40μm厚的SNC阴极界面处发生少量分层导致ASR的增加。因此试图制备更厚的SNC阴极(40μm)并不适用于SOFC阴极的应用。
单电池性能和稳定性测试
对应的,我们通过制备以YSZ(8μm)/SDC(5μm)双层电解质的YSZ-Ni阳极支撑的单电池,进一步评估了c-SYNC和SNC阴极的电化学性能。制备单电池首先通过流延法制备阳极支撑的半电池(NiO+YSZ/YSZ/SDC)。然后将c-SYNC(或SNC)阴极浆料喷涂到SDC表面的中心(圆形面积为0.45cm2)上,然后在空气中于800℃烧结2h。
如图30的(a)所示,40μm厚的c-SYNC阴极的最大功率密度在750℃,700℃和650℃下分别为1690mW cm-2,1139mW cm-2和817mW cm-2,超过了SNC的功率密度。(对于SNC样品,40μm厚的阴极,在750℃下为890mW cm-2(图30的(b));对于10μm厚的阴极,在700℃下为1088mWcm-2(图30的(c)))。如图30的(d)所示,在600℃,当c-SYNC和SNC分别在恒定电流为450mAcm-2和360mA cm-2下持续工作200小时,c-SYNC阴极(40μm)的单电池的耐久性也优于SNC(40μm)。c-SYNC和SNC阴极横截面的SEM图像显示在图30的(d)中。两种材料的阴极形态显着不同。用于c-SYNC的电极表面具有精细的多孔蜂窝结构,表明具有更优的三相界面和机械稳定性。
为了进一步评估减少TEC可以增强热循环稳定性的有效性,我们测试了SNC和c-SYNC对称电池在经受严酷的加热-冷却循环时的ASR值的变化。因为可以通过优化c-SYNC阴极的TEC匹配来降低电解质-电极界面处的分层风险,SNC阴极的厚度设置为10μm,而c-SYNC的厚度为40μm。将程序升温300至600℃的速率设定为30℃min-1,然后将电池稳定10min后测试电池阻抗,随后立刻冷却至300℃(平均速率为7.5℃min-1)稳定10min以完成一个循环。从图31的(a)可以看出,经过40个循环之后,c-SYNC的ASR仅从0.075增大至0.081Ωcm2,而SNC阴极从0.095增大至0.12Ωcm2。如图31的(b)和31的(c)所示的c-SYNC和SNC在热循环后EIS值的变化也证实了c-SYNC具有更好的耐受性。可以发现,SNC的RΩ增加,这表明循环后电解质和阴极之间的界面电阻增加。如图31的(d)所示,改善的耐受性可缓解界面分层的问题。首先,通过与YWO形成复合材料,为整个沉积烧结的阴极层产生更相容的TEC,从而降低阴极-阴极界面的应力。第二,易于破裂的SNC-电解质界面(烧结颈)的数量可以由形成的c-SYNC-电解质代替,c-SYNC-电解质具有更相容的TEC,因此c-SYNC和电解质之间的热应变较小。

Claims (8)

1.一种负膨胀材料复合的钴基钙钛矿材料的制备方法,其特征在于,所述的负膨胀材料复合的钴基钙钛矿材料是由负膨胀材料与钴基钙钛矿材料复合而成;所述的负膨胀材料是Y2W3O12,所述的钴基钙钛矿材料是SrNb0.1Co0.9O3-δ
所述的制备方法包括如下步骤:将负膨胀材料与钴基钙钛矿材料混合后,得到前驱体材料,再进行煅烧;
所述的负膨胀材料在前驱体材料中的含量范围是5-40wt%;
所述的煅烧是指在600-1000℃条件下煅烧1-6h。
2.根据权利要求1所述的负膨胀材料复合的钴基钙钛矿材料的制备方法,其特征在于,所述的负膨胀材料在前驱体材料中的含量范围是10-20wt%。
3.根据权利要求1所述的负膨胀材料复合的钴基钙钛矿材料的制备方法,其特征在于,煅烧是指在650-800℃下煅烧2h。
4.根据权利要求1所述的负膨胀材料复合的钴基钙钛矿材料的制备方法,其特征在于,所述的SrNb0.1Co0.9O3-δ是通过如下方法制备得到:按照分子计量比,取Sr(NO32、C10H5NbO20、Co(NO32·6H2O,按照柠檬酸-EDTA络合方法制备得到固体前驱体;再进行煅烧后得到。
5.根据权利要求1所述的负膨胀材料复合的钴基钙钛矿材料的制备方法其特征在于,所述的Y2W3O12是通过如下方法制备得到:按照化学计量比将Y2O3以及WO3粉末为原料进行混合,球磨处理后,煅烧得到。
6.由权利要求1-5任一项所述的制备方法所直接得到的负膨胀材料复合的钴基钙钛矿材料。
7.权利要求6所述的负膨胀材料复合的钴基钙钛矿材料在制造固体氧化物燃料电池中的应用。
8.一种燃料电池,其特征在于,包含有权利要求6所述的负膨胀材料复合的钴基钙钛矿材料。
CN202110167529.2A 2021-02-07 2021-02-07 一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池 Active CN113381027B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110167529.2A CN113381027B (zh) 2021-02-07 2021-02-07 一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池
US17/666,402 US20220263097A1 (en) 2021-02-07 2022-02-07 Composite of cobalt-based perovskite material with negative thermal expansion material, and preparation method of same, and solid oxide fuel cell comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110167529.2A CN113381027B (zh) 2021-02-07 2021-02-07 一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池

Publications (2)

Publication Number Publication Date
CN113381027A CN113381027A (zh) 2021-09-10
CN113381027B true CN113381027B (zh) 2022-03-04

Family

ID=77570572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110167529.2A Active CN113381027B (zh) 2021-02-07 2021-02-07 一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池

Country Status (2)

Country Link
US (1) US20220263097A1 (zh)
CN (1) CN113381027B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115920978A (zh) * 2021-09-22 2023-04-07 四川大学 一种提高催化剂运行稳定性和高温性能的方法
CN113903924A (zh) * 2021-10-10 2022-01-07 郑州大学 一种含异常热膨胀行为材料的sofc复合阴极材料及其制备方法以及应用
CN114335568A (zh) * 2021-12-17 2022-04-12 国家能源集团新能源有限责任公司 一种低热膨胀系数的复合电极材料及制备方法与应用
CN114744214A (zh) * 2022-02-21 2022-07-12 南京工业大学 一种三重传导性的钙钛矿氧化物、制备方法及用途
CN115094520B (zh) * 2022-07-11 2023-11-03 中国科学院合肥物质科学研究院 一种负热膨胀材料(Ni1-xFex)1-δS及其制备方法
CN115650312B (zh) * 2022-08-22 2024-02-23 南京工业大学 一种质子导体可逆电池空气电极、制备方法和用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4430619B2 (ja) * 2003-01-14 2010-03-10 パナソニック株式会社 低熱膨張材料
CN101023147B (zh) * 2004-07-30 2010-05-12 独立行政法人理化学研究所 热膨胀抑制剂、零热膨胀材料、负热膨胀材料、热膨胀抑制方法和热膨胀抑制剂的制造方法
JP5935258B2 (ja) * 2011-08-02 2016-06-15 国立研究開発法人理化学研究所 熱膨張制御金属複合材料およびその製造方法
CN103801288B (zh) * 2014-02-25 2015-10-28 华中科技大学 用于一氧化氮氧化的复合氧化物催化剂及其制备方法
CN111087173B (zh) * 2019-12-30 2022-11-04 厦门天马微电子有限公司 一种负膨胀填料及其制备方法和应用
CN111403754B (zh) * 2020-03-30 2022-05-17 郑州大学 一种含负热膨胀材料的新型复合阴极材料及其在制备sofc方面的应用
CN111704462B (zh) * 2020-07-03 2022-05-20 中国科学院新疆理化技术研究所 适用于通用航空尾气排放测温的复合负温度系数热敏电阻及其制备方法

Also Published As

Publication number Publication date
CN113381027A (zh) 2021-09-10
US20220263097A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
CN113381027B (zh) 一种负膨胀材料复合的钴基钙钛矿材料、制备方法以及固体氧化物燃料电池
Yao et al. Characterization of Ta/W co-doped SrFeO3-δ perovskite as cathode for solid oxide fuel cells
Xu et al. Sc and Ta-doped SrCoO3-δ perovskite as a high-performance cathode for solid oxide fuel cells
Huang et al. Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+ δ (x= 0, 0.5, 1) as promising cathodes for IT-SOFCs
CN110581283B (zh) 一种铋掺杂固体氧化物电池燃料极材料及其制备方法与应用
Wang et al. Stability, compatibility and performance improvement of SrCo0. 8Fe0. 1Nb0. 1O3− δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells
Yao et al. Copper doped SrFe0. 9-xCuxW0. 1O3-δ (x= 0–0.3) perovskites as cathode materials for IT-SOFCs
Garali et al. Synthesis, characterization and electrochemical properties of La2-xEuxNiO4+ δ Ruddlesden-Popper-type layered nickelates as cathode materials for SOFC applications
Zhou et al. Structural and electrochemical properties of B-site Ru-doped (La0. 8Sr0. 2) 0.9 Sc0. 2Mn0. 8O3-δ as symmetrical electrodes for reversible solid oxide cells
US20130295484A1 (en) Material for solid oxide fuel cell, cathode for solid oxide fuel cell and solid oxide fuel cell including the same, and method of manufacture thereof
Du et al. A SmBaCo 2 O 5+ δ double perovskite with epitaxially grown Sm 0.2 Ce 0.8 O 2− δ nanoparticles as a promising cathode for solid oxide fuel cells
Jin et al. Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+ δ as a novel cathode for intermediate-temperature solid-oxide fuel cell
Kim et al. Crystal chemistry and electrochemical properties of Ln (Sr, Ca) 3 (Fe, Co) 3 O 10 intergrowth oxide cathodes for solid oxide fuel cells
Ren et al. Toward stabilizing Co3O4 nanoparticles as an oxygen reduction reaction catalyst for intermediate-temperature SOFCs
Niemczyk et al. Effective oxygen reduction on A-site substituted LaCuO 3− δ: toward air electrodes for SOFCs based on perovskite-type copper oxides
US20120135331A1 (en) Cathode
Nie et al. A-site Ca-doped layered double perovskite Pr1-xCaxBa0. 94Co2O5+ δ as high-performance and stable cathode for intermediate-temperature solid oxide fuel cells
Hou et al. Constructing highly active surface-nanostructured core/bi-shell La1. 2Sr0. 8Ni0. 5Mn0. 5O4+ δ cathode for protonic ceramic fuel cells
Arrive et al. Study of (La, Sr)(Ti, Ni) O3-δ materials for symmetrical Solid Oxide Cell electrode-Part A: Synthesis and structure analysis in air
CN115044928A (zh) 一种质子导体型固体氧化物电化学池氧电极材料及其制备方法
Samreen et al. Advancements in Perovskite‐Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review
Hu et al. A high-performance composite cathode based on thermal expansion complementation for SOFC
Ji et al. Ruddlesden-Popper-based lanthanum cuprate thin film cathodes for solid oxide fuel cells: Effects of doping and structural transformation on the oxygen reduction reaction
Olszewska et al. ReBaCo2-xMnxO5+ δ (Re: rare earth element) layered perovskites for application as cathodes in Solid Oxide Fuel Cells
Xia et al. Enhancing ORR activity and CO2 tolerance of Pr0. 4Sr0. 6Co0. 2Fe0. 8O3-δ-based SOFC cathode through synergistic doping and surface modification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant