CN113376569A - 基于最大似然的嵌套阵稀疏表示波达方向估计方法 - Google Patents

基于最大似然的嵌套阵稀疏表示波达方向估计方法 Download PDF

Info

Publication number
CN113376569A
CN113376569A CN202110559072.XA CN202110559072A CN113376569A CN 113376569 A CN113376569 A CN 113376569A CN 202110559072 A CN202110559072 A CN 202110559072A CN 113376569 A CN113376569 A CN 113376569A
Authority
CN
China
Prior art keywords
sparse
array
arrival
nested array
covariance matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110559072.XA
Other languages
English (en)
Other versions
CN113376569B (zh
Inventor
赵永红
辛菁
李余兴
张春丽
吴思杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202110559072.XA priority Critical patent/CN113376569B/zh
Publication of CN113376569A publication Critical patent/CN113376569A/zh
Application granted granted Critical
Publication of CN113376569B publication Critical patent/CN113376569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/143Systems for determining direction or deviation from predetermined direction by vectorial combination of signals derived from differently oriented antennae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于最大似然的嵌套阵稀疏表示波达方向估计方法,首先根据目标到嵌套阵的波达方向以及嵌套阵的布阵结构,计算接收阵列的回波信号、进而计算其协方差矩阵;根据稀疏表示理论,在角度维划分整个空域,得到角度集合;矢量化协方差矩阵,在角度集合上稀疏展开,得到嵌套阵波达方向估计稀疏模型;构造块对角矩阵,剔除稀疏模型中的噪声项,得到去噪后嵌套阵波达方向估计稀疏模型;再结合协方差矩阵计算噪声白化矩阵,结合去噪后嵌套阵波达方向估计稀疏模型,计算噪声白化后的数据模型,进而计算栅格最大似然估计,最后得到波达方向最大似然估计值。本发明以实现嵌套阵在低信噪比和少快拍下的波达方向估计性能。

Description

基于最大似然的嵌套阵稀疏表示波达方向估计方法
技术领域
本发明属于雷达技术领域,具体涉及一种基于最大似然的嵌套阵稀疏表示波达方向估计方法。
背景技术
波达方向估计技术是实现目标定位不可或缺的技术手段,通过波达方向估计结果可得目标在空域的方位信息。传统典型的方法有多重信号分类方法,旋转不变子空间方法,这两种方法突破瑞利限,可实现目标的超分辨,但在低信噪比或者少快拍环境下性能严重下降。
最大似然估计假设信号源为一具有已知分布的随机过程,利用已知的样本结果信息,反推最具有可能导致这些样本结果出现的待估计参数值。在低信噪比或者相干信号源情况下仍然可以获得较好的估计性能,但是求解比较困难,需要在多维参数空间上寻优,这将导致算法的运算量很大,并且算法的性能依赖于初始值的选取。
嵌套阵是由多个均匀线阵嵌套而成,通过非均匀布阵减少空间采样的冗余性,可提高线性阵列的自由度,并且阵元位置的闭式解和嵌套阵所能提高的自由度均可通过阵元总数计算。
稀疏表示理论的基本思想是用冗余函数集合组成的原子字典代替基函数集合,进而可以将信号表示为原子字典中少数原子列向量的线性组合。当空域分布少量点目标时,对整个空域角度而言目标具有稀疏性,因此可以将稀疏表示理论应用到波达方向估计中。但需假设目标正好落在划分的角度栅格上,这将不可避免的存在模型失配问题。
针对稀疏表示波达方向估计方法中模型失配问题,现有方法主要分为两大类,一类是多次重构法,算法的计算量随着栅格个数增加按指数级增长,另一类是贝叶斯估计法,虽然降低了字典矩阵栅格失配问题,但仍然存在失配量。
发明内容
本发明的目的是提供一种基于最大似然的嵌套阵稀疏表示波达方向估计方法,以实现嵌套阵在低信噪比和少快拍下的波达方向估计性能。
本发明所采用的技术方案是,基于最大似然的嵌套阵稀疏表示波达方向估计方法,具体按照以下步骤实施:
步骤1、根据目标到嵌套阵雷达系统接收阵列的波达方向以及嵌套阵的布阵结构,计算接收阵列的回波信号;
步骤2、根据步骤1得到的接收阵列的回波信号,计算嵌套阵接收数据的协方差矩阵;
步骤3、根据稀疏表示理论,在角度维划分整个空域,得到角度集合;矢量化步骤2得到的嵌套阵接收数据协方差矩阵,并在角度集合上稀疏展开,得到嵌套阵波达方向估计稀疏模型;
步骤4、构造块对角矩阵,剔除步骤3稀疏模型中的噪声项,得到去噪后嵌套阵波达方向估计稀疏模型;再结合步骤2得到的协方差矩阵计算噪声白化矩阵,结合得到的去噪后嵌套阵波达方向估计稀疏模型,计算噪声白化后的稀疏模型;
步骤5、根据步骤4建立的噪声白化后的稀疏模型,计算目标波达方向。
本发明的特点还在于,
步骤1中接收阵列的回波信号y(t)计算如下:
y(t)=A(θ)s(t)+n(t),
其中,s(t)=[s1(t),s2(t),…,sK(t)]T表示信号矢量,[·]T为转置运算,K表示目标个数,n(t)表示通道噪声矢量,假设服从复高斯分布,即
Figure BDA0003078214000000031
Figure BDA0003078214000000032
表示均值为μ,协方差矩阵为Σ的复高斯分布,σ2表示噪声功率,IM×M表示维数为M×M的单位矩阵,M表示阵元个数,A(θ)为阵列流形矩阵,A(θ)=[a(θ1),a(θ2),…,a(θk),…,a(θK)],a(θk)表示阵列导向矢量,θk表示第k个目标的来波方向,k=1,2,…,K,
Figure BDA0003078214000000033
(·)m表示矢量的第m个元素,Dm表示嵌套阵雷达系统第m个阵元相对参考阵元的位置信息,m=1,2,…,M,λ表示电磁波的波长,t表示采样率归一化的时间,t=1,2,…,L,L为总快拍数。
步骤2协方差矩阵
Figure BDA0003078214000000034
的计算具体如下:
Figure BDA0003078214000000035
其中,(·)H为共轭转置运算。
步骤3具体如下:
步骤3.1、根据稀疏表示理论,在角度维划分整个空域,得到角度集合Θ:
Θ={θ12,…,θn,…,θN},
其中,N表示空域角度划分个数,θn表示第n个划分的角度,n=1,2,…,N;
步骤3.2、矢量化步骤2得到的嵌套阵接收数据协方差矩阵
Figure BDA0003078214000000036
Figure BDA0003078214000000041
其中,vec(·)表示矢量化运算;
步骤3.3、将步骤3.2得到的矢量化后的yv在步骤3.1得到的角度集合Θ上稀疏展开:
yv=Ψ(Θ)pΘ21+Δyv
其中,
Figure BDA0003078214000000042
Figure BDA0003078214000000043
表示Kronecker积,(·)*表示共轭运算,pΘ为稀疏向量,非零位置对应的角度信息即为目标的来波方向,
Figure BDA0003078214000000044
em表示除第m个元素为1外,其它元素均为0的单位矢量,Δyv表示嵌套阵理论协方差矩阵和实际协方差矩阵差值矢量化后的向量,嵌套阵波达方向估计稀疏模型即为yv=Ψ(Θ)pΘ21+Δyv
步骤4具体如下:
步骤4.1、构造块对角矩阵J:
Figure BDA0003078214000000045
其中,Jm=[e1,…,em-1,em+1,…,eM],m=2,…,M-1,J1=[e2,…,eM],JM=[e1,…,eM-1];
步骤4.2、根据步骤2得到的协方差矩阵
Figure BDA0003078214000000046
和步骤4.1得到块对角矩阵J,计算噪声白化矩阵W:
Figure BDA0003078214000000047
步骤4.3、建立去噪后嵌套阵波达方向估计稀疏模型:
利用步骤4.1得到的块对角矩阵J,剔除步骤3稀疏模型中的噪声项,得到去噪后嵌套阵波达方向估计稀疏模型:
yJ=Jyv=JΨ(Θ)pΘ+JΔyv
步骤4.4、根据步骤4.2得到的噪声白化矩阵W及步骤4.3得到的稀疏模型,建立噪声白化后的波达方向估计稀疏模型yw
yw=W-1/2yJ=W-1/2JΨ(Θ)pΘ+ε=Φ(Θ)pΘ+ε,
其中,Φ(Θ)=W-1/2JΨ(Θ),
Figure BDA0003078214000000051
服从复高斯白噪声分布。
步骤5具体如下:
步骤5.1、假设稀疏向量pΘ服从复高斯分布,即
Figure BDA0003078214000000052
其中,P(·|·)表示条件概率,Γ=diag(γ1,γ2,…,γN),diag(·)表示对角操作运算;
步骤5.2、根据步骤4.4中Φ(Θ)、yw以及步骤5.1中Γ,分别计算稀疏向量pΘ的均值
Figure BDA0003078214000000053
和协方差矩阵
Figure BDA0003078214000000054
Figure BDA0003078214000000055
Figure BDA0003078214000000056
步骤5.3、根据步骤5.2得到的稀疏向量pΘ的均值
Figure BDA0003078214000000057
和协方差矩阵
Figure BDA0003078214000000058
计算栅格最大似然估计
Figure BDA0003078214000000059
Figure BDA0003078214000000061
其中,ζ是一个极小正数,(·)q表示第q次迭代,(·)n,n表示矩阵第n行第n列的元素;
步骤5.4、根据步骤5.3得到的所有的栅格最大似然估计值
Figure BDA0003078214000000062
形成空间谱,由谱峰位置计算协方差矩阵Σ-k
Σ-k=Φ(Θ-k)diag(γ-k)Φ(Θ-k)H+IM(M-1)×M(M-1)
其中,
Figure BDA0003078214000000063
表示从集合Θ中删除空间谱谱峰所对应的第k个信号源对应的栅格
Figure BDA0003078214000000064
Figure BDA0003078214000000065
表示从步骤5.3得到的栅格最大似然估计结果中删除第k个信号源对应的
Figure BDA0003078214000000066
的估计值;
步骤5.5、计算参数
Figure BDA0003078214000000067
Figure BDA0003078214000000068
根据步骤5.4得到的协方差矩阵Σ-k和步骤5.5得到的参数
Figure BDA0003078214000000069
计算目标波达方向最大似然估计θk
Figure BDA00030782140000000610
其中,
Figure BDA00030782140000000611
Re{·}表示取实部运算,
Figure BDA00030782140000000612
表示第k个信号源对应的栅格
Figure BDA00030782140000000613
左右领域的角度集合,argmax[·]表示取函数最大值的变量值。
本发明的有益效果是,一种基于最大似然的嵌套阵稀疏表示波达方向估计方法,相比于均匀阵列,本发明由于采用矢量化嵌套阵协方差矩阵后的数据建立波达方向稀疏重构模型,扩大了阵列的虚拟孔径,故可有效的提高算法的估计精度和分辨性能;相比于现有方法,本发明由于采用了最大似然方法,建立了波达方向估计的最大似然模型,可通过一维搜索获得目标的来波方向,避免多次重构带来计算量骤增的问题及泰勒级数近似模型失配问题。
附图说明
图1是本发明的实现流程图;
图2是两层嵌套阵示意图;
图3是用本发明方法对空域9个不相关信号空间谱的仿真结果图;
图4是用现有方法和用本发明方法对空中角度间隔较小的两目标的成功分辨概率随信噪比的变化曲线的仿真结果图;
图5是用现有方法和用本发明方法对空中角度间隔较大的两目标的均方根误差随快拍数的变化曲线的仿真结果图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明基于最大似然的嵌套阵稀疏表示波达方向估计方法,流程图如图1所示,具体按照以下步骤实施:
步骤1、根据目标到嵌套阵雷达系统接收阵列的波达方向以及嵌套阵的布阵结构,计算接收阵列的回波信号。
步骤1中接收阵列的回波信号y(t)计算如下:
y(t)=A(θ)s(t)+n(t),
其中,s(t)=[s1(t),s2(t),…,sK(t)]T表示信号矢量,[·]T为转置运算,K表示目标个数,n(t)表示通道噪声矢量,假设服从复高斯分布,即
Figure BDA0003078214000000071
Figure BDA0003078214000000072
表示均值为μ,协方差矩阵为Σ的复高斯分布,σ2表示噪声功率,IM×M表示维数为M×M的单位矩阵,M表示阵元个数,A(θ)为阵列流形矩阵,A(θ)=[a(θ1),a(θ2),…,a(θk),…a(θK)],a(θk)表示阵列导向矢量,θk表示第k个目标的来波方向,k=1,2,…,K,
Figure BDA0003078214000000081
(·)m表示矢量的第m个元素,Dm表示嵌套阵雷达系统第m个阵元相对参考阵元的位置信息,m=1,2,…,M,λ表示电磁波的波长,t表示采样率归一化的时间,t=1,2,…,L,L为总快拍数。
步骤2、根据步骤1得到的接收阵列的回波信号,计算嵌套阵接收数据的协方差矩阵
Figure BDA0003078214000000082
步骤2协方差矩阵
Figure BDA0003078214000000083
的计算具体如下:
Figure BDA0003078214000000084
其中,(·)H为共轭转置运算。
步骤3、根据稀疏表示理论,在角度维划分整个空域,得到角度集合;矢量化步骤2得到的嵌套阵接收数据协方差矩阵,并在角度集合上稀疏展开,得到嵌套阵波达方向估计稀疏模型。
步骤3具体如下:
步骤3.1、根据稀疏表示理论,在角度维划分整个空域,得到角度集合Θ:
Θ={θ12,…,θn,…,θN},
其中,N表示空域角度划分个数,θn表示第n个划分的角度,n=1,2,…,N;
步骤3.2、矢量化步骤2得到的嵌套阵接收数据协方差矩阵
Figure BDA0003078214000000085
Figure BDA0003078214000000086
其中,vec(·)表示矢量化运算;
步骤3.3、将步骤3.2得到的矢量化后的yv在步骤3.1得到的角度集合Θ上稀疏展开:
yv=Ψ(Θ)pΘ21+Δyv
其中,
Figure BDA0003078214000000091
Figure BDA0003078214000000092
表示Kronecker积,(·)*表示共轭运算,pΘ为稀疏向量,非零位置对应的角度信息即为目标的来波方向,
Figure BDA0003078214000000093
em表示除第m个元素为1外,其它元素均为0的单位矢量,Δyv表示嵌套阵理论协方差矩阵和实际协方差矩阵差值矢量化后的向量,嵌套阵波达方向估计稀疏模型即为yv=Ψ(Θ)pΘ21+Δyv
步骤4、构造块对角矩阵,剔除步骤3稀疏模型中的噪声项,得到去噪后嵌套阵波达方向估计稀疏模型;再结合步骤2得到的协方差矩阵计算噪声白化矩阵,结合得到的去噪后嵌套阵波达方向估计稀疏模型,计算噪声白化后的稀疏模型。
步骤4具体如下:
步骤4.1、构造块对角矩阵J:
Figure BDA0003078214000000094
其中,Jm=[e1,…,em-1,em+1,…,eM],m=2,…,M-1,J1=[e2,…,eM],JM=[e1,…,eM-1];
步骤4.2、根据步骤2得到的协方差矩阵
Figure BDA0003078214000000095
和步骤4.1得到块对角矩阵J,计算噪声白化矩阵W:
Figure BDA0003078214000000096
步骤4.3、建立去噪后嵌套阵波达方向估计稀疏模型。
利用步骤4.1得到的块对角矩阵J,剔除步骤3稀疏模型中的噪声项,得到去噪后嵌套阵波达方向估计稀疏模型:
yJ=Jyv=JΨ(Θ)pΘ+JΔyv
步骤4.4、根据步骤4.2得到的噪声白化矩阵W及步骤4.3得到的稀疏模型,建立噪声白化后的波达方向估计稀疏模型yw
yw=W-1/2yJ=W-1/2JΨ(Θ)pΘ+ε=Φ(Θ)pΘ+ε,
其中,Φ(Θ)=W-1/2JΨ(Θ),
Figure BDA0003078214000000101
服从复高斯白噪声分布。
步骤5、根据步骤4建立的噪声白化后的稀疏模型,计算目标波达方向。
步骤5具体如下:
步骤5.1、假设稀疏向量pΘ服从复高斯分布,即
Figure BDA0003078214000000102
其中,P(·|·)表示条件概率,Γ=diag(γ1,γ2,…,γN),diag(·)表示对角操作运算;
步骤5.2、根据步骤4.4中Φ(Θ)、yw以及步骤5.1中Γ,分别计算稀疏向量pΘ的均值
Figure BDA0003078214000000103
和协方差矩阵
Figure BDA0003078214000000104
Figure BDA0003078214000000105
Figure BDA0003078214000000106
步骤5.3、根据步骤5.2得到的稀疏向量pΘ的均值
Figure BDA0003078214000000107
和协方差矩阵
Figure BDA0003078214000000108
计算栅格最大似然估计
Figure BDA0003078214000000109
Figure BDA0003078214000000111
其中,ζ是一个极小正数,(·)q表示第q次迭代,(·)n,n表示矩阵第n行第n列的元素;
步骤5.4、根据步骤5.3得到的所有的栅格最大似然估计值
Figure BDA0003078214000000112
形成空间谱,由谱峰位置计算协方差矩阵Σ-k
Σ-k=Φ(Θ-k)diag(γ-k)Φ(Θ-k)H+IM(M-1)×M(M-1)
其中,
Figure BDA0003078214000000113
表示从集合Θ中删除空间谱谱峰所对应的第k个信号源对应的栅格
Figure BDA0003078214000000114
Figure BDA0003078214000000115
表示从步骤5.3得到的栅格最大似然估计结果中删除第k个信号源对应的
Figure BDA0003078214000000116
的估计值;
步骤5.5、计算参数
Figure BDA0003078214000000117
Figure BDA0003078214000000118
步骤5.6、根据步骤5.4得到的协方差矩阵Σ-k和步骤5.5得到的参数
Figure BDA0003078214000000119
计算目标波达方向最大似然估计θk
Figure BDA00030782140000001110
其中,
Figure BDA00030782140000001111
Re{·}表示取实部运算,
Figure BDA00030782140000001112
表示第k个信号源对应的栅格
Figure BDA00030782140000001113
左右领域的角度集合,argmax[·]表示取函数最大值的变量值。
本发明基于最大似然的嵌套阵稀疏表示波达方向估计方法,可用于嵌套阵雷达系统,在目标满足空域稀疏性的条件下,通过最大似然方法,建立稀疏栅格迭代过程及角度细估计的表达式,提高嵌套阵雷达系统的波达方向估计性能。
本发明对目标角度信息的估计性能可通过以下仿真进一步验证。
1.实验场景:
采用如图2所示的两层嵌套阵,阵元总数M=6,阵元位置集合为{0,d,2d,3d,7d,11d},d等于半波长,空域角度划分间隔为1°,划分后的角度集合为{-90°:1°:90°}。
Figure BDA0003078214000000121
的初始值采用最小二乘估计得到,即
Figure BDA0003078214000000122
p0=(Φ(Θ))+y,(·)+表示广义逆。迭代终止条件为,达到最大迭代次数或两次迭代更新满足||γq+1q||2/||γq||2≤ι,其中迭代最大次数为2000次,γ=[γ1,γ2,…,γN]T,ι=10-4
2.实验内容与分析
实验一:用本发明方法对空间远场9个不相关的等功率信号源进行波达方向估计,得到角度估计的空间谱,如图3所示,其中,“o”表示真实目标的波达方向。
由图3可以看出,本发明方法能成功分辨来自9个不同方向的等功率信号,适用于目标个数大于阵元个数的场景。
实验二:改变信噪比,对每一个信噪比,均利用现有方法和本发明方法进行200次Monte Carlo仿真实验,分别统计出现有方法和本发明方法对空中角度间隔较小的两目标的成功分辨概率随信噪比的变化曲线,如图4所示。
由图4可以看出,随着信噪比增大,现有方法和本发明方法对空中角度间隔较小的两目标的成功分辨概率逐渐增大到100%,但本发明方法在每个信噪比处成功分辨的概率均大于等于现有方法,说明本发明方法的分辨性能优于现有方法。
实验三:改变快拍数,对每一个快拍数,均利用现有方法和本发明方法进行200次Monte Carlo仿真实验,分别统计出现有方法和本发明方法对空中角度间隔较大的两目标的均方根误差随快拍数的变化曲线,如图5所示。
由图5可以看出,随着快拍数的增大,现有方法和本发明方法对空中角度间隔较大的两目标的均方根误差逐渐减小,但本发明方法在每个快拍数处的均方根误差均小于等于现有方法,尤其在快拍数小于等于40时,本发明方法的均方根误差明显低于现有方法,说明本发明方法的估计性能优于现有方法。
综上所述,本发明方法能够对空域目标进行有效的波达方向估计,提高了目标的分辨和估计性能。

Claims (6)

1.基于最大似然的嵌套阵稀疏表示波达方向估计方法,其特征在于,具体按照以下步骤实施:
步骤1、根据目标到嵌套阵雷达系统接收阵列的波达方向以及嵌套阵的布阵结构,计算接收阵列的回波信号;
步骤2、根据步骤1得到的接收阵列的回波信号,计算嵌套阵接收数据的协方差矩阵;
步骤3、根据稀疏表示理论,在角度维划分整个空域,得到角度集合;矢量化步骤2得到的嵌套阵接收数据协方差矩阵,并在角度集合上稀疏展开,得到嵌套阵波达方向估计稀疏模型;
步骤4、构造块对角矩阵,剔除步骤3稀疏模型中的噪声项,得到去噪后嵌套阵波达方向估计稀疏模型;再结合步骤2得到的协方差矩阵计算噪声白化矩阵,结合得到的去噪后嵌套阵波达方向估计稀疏模型,计算噪声白化后的稀疏模型;
步骤5、根据步骤4建立的噪声白化后的稀疏模型,计算目标波达方向。
2.根据权利要求1所述的基于最大似然的嵌套阵稀疏表示波达方向估计方法,其特征在于,所述步骤1中接收阵列的回波信号y(t)计算如下:
y(t)=A(θ)s(t)+n(t),
其中,s(t)=[s1(t),s2(t),…,sK(t)]T表示信号矢量,[·]T为转置运算,K表示目标个数,n(t)表示通道噪声矢量,假设服从复高斯分布,即
Figure FDA0003078213990000011
Figure FDA0003078213990000012
表示均值为μ,协方差矩阵为Σ的复高斯分布,σ2表示噪声功率,IM×M表示维数为M×M的单位矩阵,M表示阵元个数,A(θ)为阵列流形矩阵,A(θ)=[a(θ1),a(θ2),…,a(θk),…,a(θK)],a(θk)表示阵列导向矢量,θk表示第k个目标的来波方向,k=1,2,…,K,
Figure FDA0003078213990000021
(·)m表示矢量的第m个元素,Dm表示嵌套阵雷达系统第m个阵元相对参考阵元的位置信息,m=1,2,…,M,λ表示电磁波的波长,t表示采样率归一化的时间,t=1,2,…,L,L为总快拍数。
3.根据权利要求2所述的基于最大似然的嵌套阵稀疏表示波达方向估计方法,其特征在于,所述步骤2协方差矩阵
Figure FDA0003078213990000022
的计算具体如下:
Figure FDA0003078213990000023
其中,(·)H为共轭转置运算。
4.根据权利要求3所述的基于最大似然的嵌套阵稀疏表示波达方向估计方法,其特征在于,所述步骤3具体如下:
步骤3.1、根据稀疏表示理论,在角度维划分整个空域,得到角度集合Θ:
Θ={θ12,…,θn,…,θN},
其中,N表示空域角度划分个数,θn表示第n个划分的角度,n=1,2,…,N;
步骤3.2、矢量化步骤2得到的嵌套阵接收数据协方差矩阵
Figure FDA0003078213990000024
Figure FDA0003078213990000025
其中,vec(·)表示矢量化运算;
步骤3.3、将步骤3.2得到的矢量化后的yv在步骤3.1得到的角度集合Θ上稀疏展开:
yv=Ψ(Θ)pΘ21+Δyv
其中,
Figure FDA0003078213990000031
Figure FDA0003078213990000032
表示Kronecker积,(·)*表示共轭运算,pΘ为稀疏向量,非零位置对应的角度信息即为目标的来波方向,
Figure FDA0003078213990000033
em表示除第m个元素为1外,其它元素均为0的单位矢量,Δyv表示嵌套阵理论协方差矩阵和实际协方差矩阵差值矢量化后的向量,嵌套阵波达方向估计稀疏模型即为yv=Ψ(Θ)pΘ21+Δyv
5.根据权利要求4所述的基于最大似然的嵌套阵稀疏表示波达方向估计方法,其特征在于,所述步骤4具体如下:
步骤4.1、构造块对角矩阵J:
Figure FDA0003078213990000034
其中,Jm=[e1,…,em-1,em+1,…,eM],m=2,…,M-1,J1=[e2,…,eM],JM=[e1,…,eM-1];
步骤4.2、根据步骤2得到的协方差矩阵
Figure FDA0003078213990000035
和步骤4.1得到块对角矩阵J,计算噪声白化矩阵W:
Figure FDA0003078213990000036
步骤4.3、建立去噪后嵌套阵波达方向估计稀疏模型;
利用步骤4.1得到的块对角矩阵J,剔除步骤3稀疏模型中的噪声项,得到去噪后嵌套阵波达方向估计稀疏模型:
yJ=Jyv=JΨ(Θ)pΘ+JΔyv
步骤4.4、根据步骤4.2得到的噪声白化矩阵W及步骤4.3得到的稀疏模型,建立噪声白化后的波达方向估计稀疏模型yw
yw=W-1/2yJ=W-1/2JΨ(Θ)pΘ+ε=Φ(Θ)pΘ+ε,
其中,Φ(Θ)=W-1/2JΨ(Θ),
Figure FDA0003078213990000041
服从复高斯白噪声分布。
6.根据权利要求5所述的基于最大似然的嵌套阵稀疏表示波达方向估计方法,其特征在于,所述步骤5具体如下:
步骤5.1、假设稀疏向量pΘ服从复高斯分布,即
Figure FDA0003078213990000042
其中,P(·|·)表示条件概率,Γ=diag(γ1,γ2,…,γN),diag(·)表示对角操作运算;
步骤5.2、根据步骤4.4中Φ(Θ)、yw以及步骤5.1中Γ,分别计算稀疏向量pΘ的均值
Figure FDA0003078213990000043
和协方差矩阵
Figure FDA0003078213990000044
Figure FDA0003078213990000045
Figure FDA0003078213990000046
步骤5.3、根据步骤5.2得到的稀疏向量pΘ的均值
Figure FDA0003078213990000047
和协方差矩阵
Figure FDA0003078213990000048
计算栅格最大似然估计
Figure FDA0003078213990000049
Figure FDA00030782139900000410
其中,ζ是一个极小正数,(·)q表示第q次迭代,(·)n,n表示矩阵第n行第n列的元素;
步骤5.4、根据步骤5.3得到的所有的栅格最大似然估计值
Figure FDA00030782139900000411
形成空间谱,由谱峰位置计算协方差矩阵Σ-k
Σ-k=Φ(Θ-k)diag(γ-k)Φ(Θ-k)H+IM(M-1)×M(M-1)
其中,
Figure FDA0003078213990000051
表示从集合Θ中删除空间谱谱峰所对应的第k个信号源对应的栅格
Figure FDA0003078213990000052
Figure FDA0003078213990000053
表示从步骤5.3得到的栅格最大似然估计结果中删除第k个信号源对应的
Figure FDA0003078213990000054
的估计值;
步骤5.5、计算参数
Figure FDA0003078213990000055
Figure FDA0003078213990000056
步骤5.6、根据步骤5.4得到的协方差矩阵Σ-k和步骤5.5得到的参数
Figure FDA0003078213990000057
计算目标波达方向最大似然估计θk
Figure FDA0003078213990000058
其中,
Figure FDA0003078213990000059
Re{·}表示取实部运算,
Figure FDA00030782139900000510
表示第k个信号源对应的栅格
Figure FDA00030782139900000511
左右领域的角度集合,argmax[·]表示取函数最大值的变量值。
CN202110559072.XA 2021-05-21 2021-05-21 基于最大似然的嵌套阵稀疏表示波达方向估计方法 Active CN113376569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110559072.XA CN113376569B (zh) 2021-05-21 2021-05-21 基于最大似然的嵌套阵稀疏表示波达方向估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110559072.XA CN113376569B (zh) 2021-05-21 2021-05-21 基于最大似然的嵌套阵稀疏表示波达方向估计方法

Publications (2)

Publication Number Publication Date
CN113376569A true CN113376569A (zh) 2021-09-10
CN113376569B CN113376569B (zh) 2024-03-05

Family

ID=77571708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110559072.XA Active CN113376569B (zh) 2021-05-21 2021-05-21 基于最大似然的嵌套阵稀疏表示波达方向估计方法

Country Status (1)

Country Link
CN (1) CN113376569B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167355A (zh) * 2021-11-25 2022-03-11 厦门大学 一种基于稀疏嵌套线性阵列的自相关域的水下doa估计方法
CN114994593A (zh) * 2022-05-25 2022-09-02 成都华日通讯技术股份有限公司 一种基于测向设备分析信号相干关系的方法
CN115825915A (zh) * 2023-02-20 2023-03-21 上海几何伙伴智能驾驶有限公司 面向稀疏阵实现栅瓣目标过滤doa估计的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140111372A1 (en) * 2012-10-22 2014-04-24 Saab-Sensis Corporation Sensor system and method for determining target location using sparsity-based processing
CN103954950A (zh) * 2014-04-25 2014-07-30 西安电子科技大学 一种基于样本协方差矩阵稀疏性的波达方向估计方法
CN110244272A (zh) * 2019-06-14 2019-09-17 西安电子科技大学 基于秩一去噪模型的波达方向估计方法
EP3588128A1 (en) * 2018-06-26 2020-01-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for detection and height and azimuth estimation of objects in a scene by radar processing using sparse reconstruction with coherent and incoherent arrays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140111372A1 (en) * 2012-10-22 2014-04-24 Saab-Sensis Corporation Sensor system and method for determining target location using sparsity-based processing
CN103954950A (zh) * 2014-04-25 2014-07-30 西安电子科技大学 一种基于样本协方差矩阵稀疏性的波达方向估计方法
EP3588128A1 (en) * 2018-06-26 2020-01-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for detection and height and azimuth estimation of objects in a scene by radar processing using sparse reconstruction with coherent and incoherent arrays
CN110244272A (zh) * 2019-06-14 2019-09-17 西安电子科技大学 基于秩一去噪模型的波达方向估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李文杰;杨涛;梅艳莹;: "基于协方差矩阵降维稀疏表示的二维波达方向估计", 计算机应用, no. 08, 10 August 2016 (2016-08-10), pages 143 - 147 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167355A (zh) * 2021-11-25 2022-03-11 厦门大学 一种基于稀疏嵌套线性阵列的自相关域的水下doa估计方法
CN114994593A (zh) * 2022-05-25 2022-09-02 成都华日通讯技术股份有限公司 一种基于测向设备分析信号相干关系的方法
CN114994593B (zh) * 2022-05-25 2024-05-31 成都华日通讯技术股份有限公司 一种基于测向设备分析信号相干关系的方法
CN115825915A (zh) * 2023-02-20 2023-03-21 上海几何伙伴智能驾驶有限公司 面向稀疏阵实现栅瓣目标过滤doa估计的方法
US11994603B1 (en) 2023-02-20 2024-05-28 Shanghai Geometrical Perception And Learning Co., Ltd. Method of sparse array oriented approach for DOA estimation of grating lobe target filtering

Also Published As

Publication number Publication date
CN113376569B (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
CN109444810B (zh) 一种非负稀疏贝叶斯学习框架下的互质阵列非网格doa估计方法
CN105403856B (zh) 基于嵌套式最小冗余阵列的波达方向估计方法
CN111337893B (zh) 一种基于实值稀疏贝叶斯学习的离格doa估计方法
CN108957388B (zh) 一种基于协方差匹配sl0算法的mimo雷达相干信源doa估计方法
CN113376569A (zh) 基于最大似然的嵌套阵稀疏表示波达方向估计方法
CN110109050B (zh) 嵌套阵列下基于稀疏贝叶斯的未知互耦的doa估计方法
CN110045323B (zh) 一种基于矩阵填充的互质阵稳健自适应波束形成算法
CN111707985A (zh) 基于协方差矩阵重构的off-grid DOA估计方法
CN109597046B (zh) 基于一维卷积神经网络的米波雷达doa估计方法
CN102645649A (zh) 基于雷达目标距离像时频特征提取的雷达目标识别方法
CN107544051A (zh) 嵌套阵列基于k‑r子空间的波达方向估计方法
CN105699950B (zh) 基于自适应迭代前后向平滑共轭梯度的雷达杂波抑制方法
CN109298383A (zh) 一种基于变分贝叶斯推断的互质阵波达方向角估计方法
CN113032721B (zh) 一种低计算复杂度的远场和近场混合信号源参数估计方法
CN111337873A (zh) 一种基于稀疏阵的doa估计方法
CN110673119A (zh) 基于压缩感知的非正则化方位估计方法及系统
CN104463245B (zh) 一种目标识别方法
CN112904298A (zh) 一种基于局部网格分裂的网格偏离空时自适应处理方法
CN112087235A (zh) 基于伪逆感知字典的稀疏度自适应doa估计方法及系统
CN116359834A (zh) 一种基于嵌套阵列改进的samp的波达方向估计方法
CN106886627B (zh) 一种m-uca估计m-1个信源的建模方法
CN116389198A (zh) 一种基于指数滤波器的多目标时延稀疏重构估计方法
CN106844886B (zh) 基于主分量分析的目标波达方向获取方法
CN110412535B (zh) 一种序贯的空时自适应处理参数估计方法
CN114648041A (zh) 一种基于平行稀疏阵列的二维欠定doa估计算法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant