CN113373341A - 碳纳米管增强铝制电力金具的制造工艺 - Google Patents
碳纳米管增强铝制电力金具的制造工艺 Download PDFInfo
- Publication number
- CN113373341A CN113373341A CN202110677369.6A CN202110677369A CN113373341A CN 113373341 A CN113373341 A CN 113373341A CN 202110677369 A CN202110677369 A CN 202110677369A CN 113373341 A CN113373341 A CN 113373341A
- Authority
- CN
- China
- Prior art keywords
- nano tube
- carbon nano
- electric power
- manufacturing process
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1005—Pretreatment of the non-metallic additives
- C22C1/101—Pretreatment of the non-metallic additives by coating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/12—Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/223—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
- C22C2026/002—Carbon nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
一种碳纳米管增强铝制电力金具的制造工艺,属于材料加工技术领域。该碳纳米管增强铝制电力金具的制造工艺,包括以下步骤:S1,超高真空状态下,采用蒸发或低压冷态溅射工艺在碳纳米管表面均匀沉积纳米合金A保护层,形成带有纳米合金A保护层的碳纳米管CNT/A;S2,将CNT/A加入到铝基体中,铝基体为粉体、半熔融体或熔融体形态,之后在半熔融或熔融状态下搅拌糅合均匀成混合体;S3,将混合体制成坯件后锻造或轧制,或直接浇筑铸造,得到碳纳米管增强铝制电力金具。本发明能够实现碳纳米管与铝基体的有效结合,得到增强的铝制电力金具。
Description
技术领域
本发明涉及的是一种材料加工领域的技术,具体是一种碳纳米管增强铝制电力金具的制造工艺。
背景技术
铝制电力金具在电力行业中广泛应用,但是铝制电力金具强度较低,为满足使用要求需增加尺寸,导致其重量、体积变大,制造成本随之增加。
目前已有利用碳纳米管对铝进行增强的研究,使得其在轻质、抗拉强度、延伸率等性能上有了一些提升。但由于碳纳米管在铝基体中分散不均匀,导致增强效果不如预期。中国发明专利CN107881374B、中国发明专利申请CN202010980169.3都是将碳纳米管直接加入铝合金熔体中,随后搅拌,再用结晶器浇铸得到纳米碳铝合金材料。其存在问题包括:1、碳纳米管与铝合金熔体密度差较大,碳纳米管漂浮于铝合金熔体表面,无法在铝合金内均匀分散;2、碳纳米管与铝合金直接接触,高温下生成碳化铝,碳化铝在室外湿热环境中会与水反应生产氢氧化铝,对铝合金强度产生灾难性破坏。
为了解决现有技术存在的上述问题,本发明由此而来。
发明内容
本发明针对现有技术存在的上述不足,提出了一种碳纳米管增强铝制电力金具的制造工艺,能够实现碳纳米管与铝基体的有效结合,得到增强的铝制电力金具。
本发明包括以下步骤:
S1,超高真空状态下,采用蒸发或低压冷态溅射工艺在碳纳米管表面均匀沉积纳米合金A保护层,形成带有纳米合金A保护层的碳纳米管CNT/A;
S2,将CNT/A加入到铝基体中,铝基体为粉体、半熔融体或熔融体形态,之后在半熔融或熔融状态下边加热边搅拌糅合均匀成混合体;
S3,将混合体制成坯件后锻造或轧制,或直接浇筑混合体进行铸造,得到碳纳米管增强铝制电力金具。
碳纳米管为单壁碳纳米管或多壁碳纳米管中至少一种;碳纳米管纯度大于99%,直径为10~200nm,长度为5~20μm。
纳米合金A包括钯、金、银、钪、钛、钒、锰、铁、钴、镍、铜、锌、锡、铬、硅、磷中至少一种元素,纯度大于99%。
铝基体的纯度大于99%。
步骤S1中,超高真空状态的真空度为0.1~10Pa。
步骤S1中,蒸发温度为400~1500℃。
步骤S1中,低压冷态溅射参数:压力20~40mbar,温度20~200℃。
纳米合金A保护层的厚度为10~1000nm。
步骤S2中,按重量比,CNT:A:Al=0.1~5.0:0.1~5.0:90.0~99.8。
步骤S2在惰性气体气氛或真空环境中操作,半熔融或熔融的温度为400~1000℃。
技术效果
与现有技术相比,本发明具有如下技术效果:
1)在碳纳米管CNT表面气相沉积得到的纳米合金A保护层中,纳米合金A晶粒活性高,与铝基体制成混合体时,首先与铝化合,形成纳米尺度的过渡层,避免了铝晶界对碳纳米管的排斥与腐蚀,实现了铝与碳纳米管的有效结合;而且纳米合金A保护层增加了碳纳米管的密度、减小了碳纳米管与铝的密度差,避免了碳纳米管漂浮于铝表面,便于CNT/A均匀地分散在混合体中;
2)对所需原材料采用机械融合的方法,边加热边对CNT/A与铝进行加压搅拌糅合,实现了CNT/A与铝的均匀混合,增强效果显著,从而提高电力金具的整体性能;
3)工艺简单、易操作、高效、环保,适合进行产业化生产。
附图说明
图1为本发明实施例1中CNT/A的SEM照片;
图2为本发明实施例1中坯件的SEM照片;
图3为本发明实施例1中坯件的EDS成分分析。
具体实施方式
下面结合附图及具体实施方式对本发明进行详细描述。实施例中未注明具体条件的实验方法,按照常规方法和条件进行。
实施例1
本实施例的制造过程如下:
S1,将100克碳纳米管(苏州第一元素,CNTp)与156克混合金属粉末(铜:镁:硅:铁:铬:锰=1.5:1.0:0.7:0.6:0.3:0.1)真空球磨1小时,将全部粉体置于放电等离子体烧结炉(SPS-HPD2)石墨腔体内,抽真空至1Pa,直流脉冲电压10V、电流10kA至温度1350℃、保温30秒,制得CNT/A;图1为CNT/A的高分辨扫描电镜照片,可以看出纳米合金A保护层厚度约100nm,均匀包覆在碳纳米管表面。
S2,在氩气气氛保护下,将步骤S1制得的CNT/A全部加入到3750克纯铝液(熔融状态,温度约700℃)中,同时施加压力搅拌糅合约2h,至混合均匀,得到混合体;
S3,将混合体浇筑或挤压成坯,图2为坯件断面的高分辨扫描电镜照片,可以看出碳纳米管均匀分散在铝基体内;图3为坯件断面EDS成分分析,可以看出混合金属粉末中各金属成分均匀分散在铝基体内;在1000t卧式挤压机上将坯料热挤压成棒材,挤压温度为460℃,挤压速率2mm/s,挤压比为18:1,挤压棒材直径为Φ15mm;将挤压棒材在500℃下固溶处理4h,然后淬入室温水中,随后于200℃保温10h并空冷;最后进行表面抛光处理得到电力金具。
经检测该电力金具的性能参数如下:抗拉强度400MPa,维氏硬度80,密度2.6997g/cm3。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (10)
1.一种碳纳米管增强铝制电力金具的制造工艺,其特征在于,包括以下步骤:
S1,超高真空状态下,采用蒸发或低压冷态溅射工艺在碳纳米管表面均匀沉积纳米合金A保护层,形成带有纳米合金A保护层的碳纳米管CNT/A;
S2,将CNT/A加入到铝基体中,铝基体为粉体、半熔融体或熔融体形态,之后在半熔融或熔融状态下边加热边搅拌糅合均匀成混合体;
S3,将混合体制成坯件后锻造或轧制,或直接浇筑铸造,得到碳纳米管增强铝制电力金具。
2.根据权利要求1所述制造工艺,其特征是,碳纳米管为单壁碳纳米管或多壁碳纳米管中至少一种;碳纳米管纯度大于99%,直径为10~200nm,长度为5~20μm。
3.根据权利要求1所述制造工艺,其特征是,纳米合金A包括钯、金、银、钪、钛、钒、锰、铁、钴、镍、铜、锌、锡、铬、硅、磷中至少一种元素,纯度大于99%。
4.根据权利要求1所述制造工艺,其特征是,铝基体的纯度大于99%。
5.根据权利要求1所述制造工艺,其特征是,步骤S1中,超高真空状态的真空度为0.1~10Pa。
6.根据权利要求1所述制造工艺,其特征是,步骤S1中,蒸发温度为400~1500℃。
7.根据权利要求1所述制造工艺,其特征是,步骤S1中,低压冷态溅射参数:压力20~40mbar,温度20~200℃。
8.根据权利要求1所述制造工艺,其特征是,纳米合金A保护层的厚度为10~1000nm。
9.根据权利要求1所述制造工艺,其特征是,步骤S2中,按重量比,CNT:A:Al=0.1~5.0:0.1~5.0:90.0~99.8。
10.根据权利要求1所述制造工艺,其特征是,步骤S2在惰性气体气氛或真空环境中操作,半熔融或熔融的温度为400~1000℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110677369.6A CN113373341A (zh) | 2021-06-18 | 2021-06-18 | 碳纳米管增强铝制电力金具的制造工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110677369.6A CN113373341A (zh) | 2021-06-18 | 2021-06-18 | 碳纳米管增强铝制电力金具的制造工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113373341A true CN113373341A (zh) | 2021-09-10 |
Family
ID=77577607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110677369.6A Withdrawn CN113373341A (zh) | 2021-06-18 | 2021-06-18 | 碳纳米管增强铝制电力金具的制造工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113373341A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115216712A (zh) * | 2022-06-27 | 2022-10-21 | 国网山东省电力公司汶上县供电公司 | 一种含高强度耐拉伸合金材料的电力金具 |
CN115747591A (zh) * | 2022-11-28 | 2023-03-07 | 凤阳爱尔思轻合金精密成型有限公司 | 一种高韧性铝合金材料及其制备工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110154953A1 (en) * | 2009-12-25 | 2011-06-30 | Tsinghua University | Method for making aluminum-based composite material |
CN106350695A (zh) * | 2016-09-09 | 2017-01-25 | 南昌大学 | 一种单质铜包覆多壁碳纳米管/铝基复合材料半固态坯料的制备方法 |
CN106544537A (zh) * | 2016-10-31 | 2017-03-29 | 中国航空工业集团公司北京航空材料研究院 | 一种碳纳米管增强铝基复合材料的制备方法 |
CN110643846A (zh) * | 2019-11-07 | 2020-01-03 | 苏州第一元素纳米技术有限公司 | 碳纳米管增强镁合金制备方法 |
CN110777331A (zh) * | 2019-11-07 | 2020-02-11 | 苏州第一元素纳米技术有限公司 | 金属包覆碳纳米管的制备方法 |
-
2021
- 2021-06-18 CN CN202110677369.6A patent/CN113373341A/zh not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110154953A1 (en) * | 2009-12-25 | 2011-06-30 | Tsinghua University | Method for making aluminum-based composite material |
CN106350695A (zh) * | 2016-09-09 | 2017-01-25 | 南昌大学 | 一种单质铜包覆多壁碳纳米管/铝基复合材料半固态坯料的制备方法 |
CN106544537A (zh) * | 2016-10-31 | 2017-03-29 | 中国航空工业集团公司北京航空材料研究院 | 一种碳纳米管增强铝基复合材料的制备方法 |
CN110643846A (zh) * | 2019-11-07 | 2020-01-03 | 苏州第一元素纳米技术有限公司 | 碳纳米管增强镁合金制备方法 |
CN110777331A (zh) * | 2019-11-07 | 2020-02-11 | 苏州第一元素纳米技术有限公司 | 金属包覆碳纳米管的制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115216712A (zh) * | 2022-06-27 | 2022-10-21 | 国网山东省电力公司汶上县供电公司 | 一种含高强度耐拉伸合金材料的电力金具 |
CN115747591A (zh) * | 2022-11-28 | 2023-03-07 | 凤阳爱尔思轻合金精密成型有限公司 | 一种高韧性铝合金材料及其制备工艺 |
CN115747591B (zh) * | 2022-11-28 | 2024-02-13 | 凤阳爱尔思轻合金精密成型有限公司 | 一种高韧性铝合金材料及其制备工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Saheb et al. | Spark plasma sintering of metals and metal matrix nanocomposites: a review | |
Sadeghian et al. | Microstructural and mechanical evaluation of Al–TiB2 nanostructured composite fabricated by mechanical alloying | |
CN109554565B (zh) | 一种碳纳米管增强铝基复合材料的界面优化方法 | |
CN113373341A (zh) | 碳纳米管增强铝制电力金具的制造工艺 | |
CN109706363B (zh) | 一种共晶高熵合金及其制备的方法 | |
US20090061211A1 (en) | Magnesium-based composite material and method for making the same | |
CN113337746B (zh) | 一种碳化物增强高熵合金复合材料的制备方法 | |
US10851443B2 (en) | Magnesium composite containing physically bonded magnesium particles | |
Sadeghi et al. | Hot rolling of MWCNTs reinforced Al matrix composites produced via spark plasma sintering | |
CN109807294B (zh) | 一种超细晶合金块体材料及其制备方法 | |
Liu et al. | Fabrication of CNTs–TiC–Ti2 (Ni, Al)–Ni3Ti reinforced Ti-based composite coating by laser alloying processing | |
CN109277560A (zh) | 一种高强高韧石墨烯/金属复合材料的制备方法 | |
CN105568101A (zh) | 一种高强度的镁铝合金及其制备方法 | |
CN111893325A (zh) | 一种高纯钽锭及其制备方法 | |
JP2016050344A (ja) | セラミックスナノ粒子が担持されたアルミニウム又はアルミニウム合金粉体及びそれを用いたセラミックス−アルミニウム系複合材料、並びに、その粉体の製造方法 | |
JP5709239B2 (ja) | チタン基複合材料の製造方法および該方法によって製造されたチタン基複合材料 | |
Ogawa et al. | In situ chemical vapor deposition of metals on vapor-grown carbon fibers and fabrication of aluminum-matrix composites reinforced by coated fibers | |
CN112226639A (zh) | 一种基于环己烯球磨介质的原位超细晶TiC增强钛基复合材料及其制备方法 | |
CN114657438A (zh) | 一种含Si类共晶高熵合金及其制备方法 | |
US20160167129A1 (en) | Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles | |
CN117604318A (zh) | 一种具有取向双峰结构的原位自生石墨烯/铜复合材料及其制备方法 | |
CN116607039A (zh) | 一种石墨烯增强tc4钛基复合材料制备方法 | |
EP2130935B1 (en) | Sintered binary aluminum alloy powder, and method for production thereof | |
KR102010307B1 (ko) | 알루미늄-티타늄 복합재료의 제조방법 및 이에 의해 제조된 알루미늄-티타늄 복합재료 | |
CN113751707B (zh) | 一种制备纳米碳化物颗粒弥散强化合金粉末的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20210910 |
|
WW01 | Invention patent application withdrawn after publication |