CN113373216A - 一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法 - Google Patents

一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法 Download PDF

Info

Publication number
CN113373216A
CN113373216A CN202110789084.1A CN202110789084A CN113373216A CN 113373216 A CN113373216 A CN 113373216A CN 202110789084 A CN202110789084 A CN 202110789084A CN 113373216 A CN113373216 A CN 113373216A
Authority
CN
China
Prior art keywords
microrna
concentration
fluorescence
mir
mil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110789084.1A
Other languages
English (en)
Inventor
胡琴
程霞
岑瑶
许贯虹
魏芳弟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Madisenya Biotechnology Co ltd
Original Assignee
Nanjing Madisenya Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Madisenya Biotechnology Co ltd filed Critical Nanjing Madisenya Biotechnology Co ltd
Priority to CN202110789084.1A priority Critical patent/CN113373216A/zh
Publication of CN113373216A publication Critical patent/CN113373216A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Abstract

本发明公开了一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法:合成金属有机骨架Fe‑MIL‑88;发夹探针H1~H9与Fe‑MIL‑88发生荧光共振能量转移作用,发夹探针上标记的FAM(H1‑H3),TAMRA(H4‑H6),Cy5(H7‑H9)的荧光被猝灭,当存在目标物时,520nm处FAM的荧光随着目标物miR‑21浓度增加而增强,580nm处TAMRA的荧光随着目标物miR‑499浓度增加而增强,680nm处Cy5的荧光随着目标物miR‑133a浓度增加而增强;根据相应荧光强度对目标物的浓度进行定量检测。该方法灵敏度高、选择性好、检测简便。

Description

一种同时定量检测血清中3种急性心肌梗死相关microRNA荧 光探针的制备方法
技术领域
本发明属纳米材料、荧光传感技术和生物分析检测领域,具体涉及基于金属有机骨架的信号放大荧光传感平台同时定量测定血清中3种急性心肌梗死相关microRNA的方法。
背景技术
急性心肌梗死(AMI)伴有血管腔狭窄、急性持续缺氧缺血性心肌缺血和损伤,且可导致严重残疾和超高死亡率,是最常见的一类冠状动脉综合征。目前,高灵敏性心肌肌钙蛋白(hs-cTnT)被认为是诊断AMI的金标准。然而,在慢性稳定型冠状动脉疾病(应激性心肌病和血管痉挛型心绞痛)和终末期肾病(肾功能衰竭)中,血浆hs-cTnT也会有明显的升高。此外,在最新的高灵敏免疫测定法下,cTnT在6小时67左右才能有显著升高。因此,寻找更好的潜在生物标志物对于医学研究中早期快速、准确诊断AMI显得尤为重要。
MicroRNA是一种短的内源性非编码RNA(17-25个核苷酸),通过调节基因转录后水平的表达,在生物过程中发挥重要作用。越来越多的证据表明,心肌组织特异性表达microRNA,如microRNA-21(miR-21)、microRNA-499(miR-499)、microRNA-208a和microRNA-133a(miR-133a),且它们在循环中也高度稳定。值得注意的是,miR-21能够增强AMI中干细胞和祖细胞的功能,导致AMI后纤维形成和细胞肥大。而心肌和骨骼肌中的miR-499在生理上与心脏分化和I/R损伤相关,是再灌注损伤潜在的生物标志物。并且,miR-133a在早期分化、心脏发育和介导心脏传导、自律性、肥厚和心脏重构等过程中发挥着重要作用。此外,甚至在AMI事件后的1小时内,血浆和血清中相关microRNA的表达水平在患者血流中迅速显著上调。在这个意义上,这些microRNA可以被认为是AMI的早期诊断和快速预后潜在的生物标志物。目前,已有多种检测AMI相关microRNA的定量分析方法报道,如实时聚合酶链反应、微阵列、northern blot、表面增强拉曼光谱等。然而,由于microRNA尺寸小,丰度低和同源性高等特点,导致这些技术存在耗时及缺乏灵敏度的不足。另一方面,传统方法仅基于单一的AMI相关microRNA检测,不可避免地会产生假阳性或假阴性结果。为了克服这些障碍,迫切需要将信号放大技术与多路复用技术相结合。
为了进一步提高同时定量检测多个AMI相关microRNA的灵敏度,我们引入了纳米材料。近年来,由于纳米材料如金纳米颗粒、碳纳米管、氧化石墨烯、二硫化钼纳米片、金属有机框架(MOFs)等具有良好的结构和优异的光学性能而受到越来越广泛的关注。特别是MOFs,一种独特的新型纳米多孔有机-无机材料,具有超高的表面积、柔性孔隙率和良好的热稳定性。MOFs在催化、气体储存与分离、化学传感和药物递送等方面的应用已被广泛报道。此外,一些MOFs包括UiO-66和MIL-101已经被设计用于DNA传感。这些MOF对各种染料标记的单链DNA展现出极好的荧光猝灭能力以及对单链DNA和双链DNA有较好的区分能力。但是,基于MOFs和染料标记的DNA链的一步杂交的检测方法信号较弱,限制了其灵敏度。然而,借助催化发夹组装(CHA)辅助的目标物循环,可以有效放大检测信号,这有利于进一步提高灵敏度。据我们所知,通过结合CHA放大技术和金属有机骨架的荧光测定技术用于多路microRNA分析,具有极好的灵敏度和特异性,目前仍未被广泛探索。
发明内容
针对现有技术的问题,本发明的目的在于提供一种用于同时定量检测血清中3种急性心肌梗死相关microRNA(microRNA-21,microRNA-499,microRNA-133a)荧光探针的制备方法,基于金属有机骨架和信号放大技术的荧光传感平台,具有灵敏度高、选择性好、检测简便的优点,可以直接应用于血清中3种急性心肌梗死相关microRNA的同时检测。
为了实现上述发明目的,本发明采用的技术方案为:
一种用于同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法,步骤如下:
(1)、合成金属有机骨架Fe-MIL-88:将1,4-二羧基苯,六水合氯化铁与N,N-二甲基甲酰胺(DMF)混合,然后加入乙酸。混合物在120℃下反应4h,离心后获得的产物分别用DMF、乙醇和水洗涤。(参考文献:S.Xie,J.Ye,Y.Yuan,Y.Chai,R.Yuan,A multifunctionalhemin@metal-organic framework and its application to construct anelectrochemical aptasensor for thrombin detection,Nanoscale 7(2015)18232-18238)。
(2)、制备发夹探针H1,H2,H3,H4,H5,H6,H7,H8,H9(其中H1,H2,H3序列设计参照文献:D.Zhu,J.X.Huang,B.Lu,Y.Zhu,Y.Q.Wei,Q.Zhang,X.X.Guo,L.H.Yuwen,S.Su,J.Chao,L.H.Wang,Intracellular microRNA imaging with MoS2-supported nonenzymaticcatassembly of DNA hairpins,ACS Appl.Mater.Interfaces 11(2019)20725-20733。
H4-H9设计序列具体如下:
H4:
TAMRA-TCGTTAAACATCACTGCAAGTCTTAAGAATCAGATCGTTTAAGACTTGCAGT
H5:
TAMRA-ACTGCAAGTCTTAAACGATCTGATTCGTGATGTTTAACGAATCAGATCGTTT
H6:
TAMRA-AAACGATCTGATTCGTTAAACATCACTTAAGACTTGCAGTGATGTTTAACGA
H7:
Cy5-TCGTTATTTGGTTCCATTTTACCAGCTCGATCAGATCGTAGCTGGTAAAATGGA
H8:
Cy5-TCCATTTTACCAGCTACGATCTGATCGGGAACCAAATAACGATCAGATCGTAGC
H9:
Cy5-GCTACGATCTGATCGTTATTTGGTTCCAGCTGGTAAAATGGAACCAAATAACGA))
将H1-H9于95℃反应5分钟,然后自然冷却至室温。
(3)、制备荧光探针:将步骤(2)所得的发夹探针与步骤(1)所得的Fe-MIL-88混合,发夹探针的FAM(H1-H3),TAMRA(H4-H6),Cy5(H7-H9)的荧光被猝灭,随着目标物的加入,520nm处FAM的荧光随着目标物miR-21浓度逐渐增加而逐渐增强,580nm处TAMRA的荧光随着目标物miR-499浓度逐渐增加而逐渐增强,680nm处Cy5的荧光随着目标物miR-133a浓度逐渐增加而逐渐增强。
所用Fe-MIL-88与探针反应时间0-40min;
所用目标物与荧光探针反应时间为0-120min;
所用Fe-MIL-88浓度为175-525μg/mL。
(4)、根据荧光强度对相应目标物的浓度绘制标准曲线;根据520nm处荧光强度对miR-21的浓度绘制标准曲线,根据580nm处荧光强度对miR-499的浓度绘制标准曲线,根据680nm处荧光强度对miR-133a的浓度绘制标准曲线。
(5)、根据标准曲线,获得样品中miR-21,miR-499,
miR-133a的浓度,完成对3种microRNA的定量检测。
本发明同时定量检测血清中3种急性心肌梗死相关microRNA的原理是:
首先,我们根据miR-21序列,设计修饰FAM的发夹DNA探针H1、H2、H3;根据miR-499序列,设计修饰TAMRA的发夹DNA探针H4、H5、H6;根据miR-133a序列,设计修饰Cy5的发夹DNA探针H7、H8、H9。发夹探针可通过范德华力和π-π堆积作用紧密吸附在Fe-MIL-88表面,从而淬灭了荧光染料的荧光。当目标物存在时,以miR-21为例,每个miR-21都可以与H1的悬垂部分杂交,打开H1的发夹结构,产生与H2部分互补的粘性末端。伴随着H2的开放,暴露的粘性末端引发了H2和H3的杂交。最终,由于H3和H1之间形成了更稳定的状态,形成了“Y”形双工纳米结构而释放miR-21。随后,释放的miR-21反复引发新一轮的杂交。最终,一个miR-21分子通过产生几个带有FAM荧光团的“Y”型纳米结构而放大信号。由于“Y”型纳米结构的双链DNA与Fe-MIL-88之间的弱相互作用,“Y”型纳米结构被释放,荧光得到明显增强。
同样,miR-499可以触发H4、H5、H6之间的催化发夹自组装,miR-133a可以特异性触发H7、H8、H9之间的催化发夹自组装,因此TAMRA和Cy5的荧光强度分别与miR-499和miR-133a浓度密切相关。最后,根据520nm处荧光强度对miR-21的浓度进行定量检测,根据580nm处荧光强度对miR-499的浓度进行定量检测,根据680nm处荧光强度对miR-133a的浓度进行定量检测。
有益效果:本发明利用金属有机骨架Fe-MIL-88具有广吸收及可区分单链DNA及双链DNA的特性,结合催化发夹自组装的信号放大技术,构建了一种基于Fe-MIL-88的荧光探针,用于同时定量检测血清中3种急性心肌梗死相关microRNA的浓度。与传统的检测方法相比,不仅具有灵敏度高、选择性好、检测简便的优点,并且可以减少实际检测中假阳性假阴性的出现。
附图说明
图1是实施例1制备得到的Fe-MIL-88的理化性能图谱,其中:
图1A是实施例1制备得到的Fe-MIL-88的透射电子显微镜图;如图所示,Fe-MIL-88为均一的八面体结构,粒径约在200nm(图中标尺为500nm)。
图1B是实施例1制备得到的Fe-MIL-88的紫外吸收光谱图;如图所示,Fe-MIL-88在400-800nm均存在紫外吸收。
图2是实施例3中的Fe-MIL-88与探针的反应时间优化图;如图所示,随着反应时间的增加,荧光强度先减后维持不变。
图3是实施例3中目标物与荧光探针的反应时间优化图;如图所示,随着反应时间的增加,荧光强度逐渐增强然后趋于稳定。
图4是实施例3中Fe-MIL-88的浓度优化图。如图所示,随着Fe-MIL-88浓度的增大,FAM,TAMRA,Cy5的荧光强度均逐渐增大然后再减小。
图5是实施例4中miR-21,miR-499,miR-133a浓度与荧光探针的荧光变化荧光图;如图所示,随着miR-21浓度的增大,520nm处的荧光逐渐增强;随着miR-499浓度的增大,580nm处的荧光逐渐增强;随着miR-133a浓度的增大,680nm处的荧光逐渐增强。
图6是实施例4中miR-21,miR-499,miR-133a浓度与荧光探针的荧光强度的相关图;如图所示,随着miR-21浓度的增大,荧光强度逐渐增强,在0.05-30nM范围内,miR-21的浓度与荧光强度呈线性相关,线性回归方程为F=16.256cmiR-21+164.77,相关系数R2=0.9843;
随着miR-499浓度的增大,荧光强度逐渐增强,在0.08-30nM范围内,miR-499的浓度与荧光强度呈线性相关,线性回归方程为F=7.9051cmiR-499+314.08,相关系数R2=0.9836;
随着miR-133a浓度的增大,荧光强度逐渐增强,在0.1-20nM范围内,miR-133a的浓度与荧光强度呈线性相关,线性回归方程为F=7.5579cmiR-133a+209.84,相关系数R2=0.9728。
具体实施方式
六水氯化铁、1,4-二羧基苯(西格玛奥德里奇贸易有限公司);乙酸、N,N-二甲基甲酰胺(DMF)、乙醇、寡核苷酸(生工生物工程(上海)股份有限公司)。
实施例1金属有机骨架Fe-MIL-88的合成(参考文献:S.Xie,J.Ye,Y.Yuan,Y.Chai,R.Yuan,A multifunctional hemin@metal-organic framework and its application toconstruct an electrochemical aptasensor for thrombin detection,Nanoscale 7(2015)18232-18238),步骤如下:
将1,4-二羧基苯,六水合氯化铁与DMF混合,然后加入乙酸。混合物在120℃下反应4h,离心后获得的产物分别用DMF、乙醇和水洗涤。其透射电镜图如图1A所示,其紫外吸收光谱如图1B所示。
实施例2考察Fe-MIL-88与探针反应时间的影响实验,步骤如下:
将H1(200nM),H2(200nM),H3(200nM)分散在Tris-HCl缓冲溶液中,加入Fe-MIL-88于37℃孵育0、5、10、15、20、25、30、40min后,测定520nm处的荧光强度。考察Fe-MIL-88与探针反应时间的影响实验,结果如图2所示。
实施例3考察目标物与荧光探针的反应时间对目标物响应的影响实验,步骤如下:
将H1(200nM),H2(200nM),H3(200nM)分散在Tris-HCl缓冲溶液中,加入目标物miR-21于37℃孵育0、15、30、45、60、75、90、120min后,加入Fe-MIL-88(200μg/mL)于37℃孵育,测定520nm处的荧光强度。考察目标物与荧光探针的反应时间对目标物响应的影响实验,结果如图3所示。
实施例4考察Fe-MIL-88的浓度对目标物响应的影响实验,步骤如下:
将H1-H9(分别均为200nM)分散在Tris-HCl缓冲溶液中,加入目标物miR-21,miR-499,miR-133a于37℃孵育,加入Fe-MIL-88(175、230、260、300、330、365、400、420、435、450、490、525μg/mL)于37℃孵育,分别测定520nm,580nm,680nm处的荧光强度。考察Fe-MIL-88的浓度对目标物响应的影响实验,结果如图4所示。
实施例5对3种心肌梗死相关microRNA的同时定量检测,步骤如下:
将H1-H9(分别均为200nM)分散在Tris-HCl缓冲溶液中,加入目标物miR-21,miR-499,miR-133a于37℃孵育,加入Fe-MIL-88于37℃孵育,分别测定520nm,580nm,680nm处的荧光强度。所得荧光图如图5所示,荧光强度与相关microRNA浓度的相关性如图6所示。
实施例6实际血清样品中3种心肌梗死相关microRNA的同时定量检测,步骤如下:
将用Tris-HCl缓冲溶液稀释的血清与H1-H9(分别均为200nM)混合,加入不同浓度的目标物miR-21,miR-499,miR-133a于37℃孵育,加入Fe-MIL-88于37℃孵育,分别测定520nm,580nm,680nm处的荧光强度。根据标准曲线计算得到血清中相关microRNA的含量。其回收率结果如表1所示。
表1是实施例6中血清样品检测的回收率结果,a、b、c分别代表miR-21、miR-499、miR-133a,如表所示,回收率均在91.7%到108.6%之间,说明复杂基质对同时检测3种心肌梗死相关microRNA不产生明显干扰,该方法具有良好的选择性,可以用于实际样品的测定。
表1
Figure BDA0003159921020000071
Figure BDA0003159921020000081
序列表
<110> 南京迈迪森亚生物科技有限公司
<120> 一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 52
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
tcgttaaaca tcactgcaag tcttaagaat cagatcgttt aagacttgca gt 52
<210> 2
<211> 52
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
actgcaagtc ttaaacgatc tgattcgtga tgtttaacga atcagatcgt tt 52
<210> 3
<211> 52
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
aaacgatctg attcgttaaa catcacttaa gacttgcagt gatgtttaac ga 52
<210> 4
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
tcgttatttg gttccatttt accagctcga tcagatcgta gctggtaaaa tgga 54
<210> 5
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tccattttac cagctacgat ctgatcggga accaaataac gatcagatcg tagc 54
<210> 6
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gctacgatct gatcgttatt tggttccagc tggtaaaatg gaaccaaata acga 54

Claims (6)

1.一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法,其特征在于,步骤如下:
(1)、合成金属有机骨架Fe-MIL-88;
(2)、制备发夹探针H1,H2,H3,H4,H5,H6,H7,H8,H9:将H1-H9于95℃反应,然后自然冷却至室温;
(3)、制备荧光探针:将步骤(2)所得的发夹探针与步骤(1)所得的Fe-MIL-88混合,发夹探针上标记的FAM(H1-H3),TAMRA(H4-H6),Cy5(H7-H9)的荧光被猝灭,随着目标物的加入,520nm处FAM的荧光随着目标物microRNA-21浓度逐渐增加而逐渐增强,580nm处TAMRA的荧光随着目标物microRNA-499浓度逐渐增加而逐渐增强,680nm处Cy5的荧光随着目标物microRNA-133a浓度逐渐增加而逐渐增强;
(4)、根据荧光强度对相应目标物的浓度绘制标准曲线;
(5)、根据标准曲线,获得样品中microRNA-21,microRNA-499,microRNA-133a的浓度,完成对3种microRNA的定量检测。
2.根据权利要求1所述的一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法,其特征在于:步骤(1)中,金属有机骨架Fe-MIL-88的紫外吸收波长为400-800nm。
3.根据权利要求1所述的一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法,其特征在于:步骤(3)中,发夹探针与Fe-MIL-88培育时间为0-40min且大于0。
4.根据权利要求1所述的一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法,其特征在于:步骤(3)中,目标物与发夹探针培育时间为0-120min且大于0。
5.根据权利要求1所述的一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法,其特征在于:步骤(3)中,Fe-MIL-88浓度为175-525μg/mL。
6.根据权利要求1所述的一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法,其特征在于:步骤(4)中,根据520nm处荧光强度对microRNA-21的浓度绘制标准曲线,根据580nm处荧光强度对microRNA-499的浓度绘制标准曲线,根据680nm处荧光强度对microRNA-133a的浓度绘制标准曲线。
CN202110789084.1A 2021-07-13 2021-07-13 一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法 Pending CN113373216A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110789084.1A CN113373216A (zh) 2021-07-13 2021-07-13 一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110789084.1A CN113373216A (zh) 2021-07-13 2021-07-13 一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法

Publications (1)

Publication Number Publication Date
CN113373216A true CN113373216A (zh) 2021-09-10

Family

ID=77581863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110789084.1A Pending CN113373216A (zh) 2021-07-13 2021-07-13 一种同时定量检测血清中3种急性心肌梗死相关microRNA荧光探针的制备方法

Country Status (1)

Country Link
CN (1) CN113373216A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090306181A1 (en) * 2006-09-29 2009-12-10 Children's Medical Center Corporation Compositions and methods for evaluating and treating heart failure
US20100173288A1 (en) * 2007-11-02 2010-07-08 Chenyu Zhang Serum/plasma micronas and uses thereof
CN102725632A (zh) * 2009-08-28 2012-10-10 奥斯瑞根公司 肺病的miRNA生物标志物
US20160060697A1 (en) * 2012-11-27 2016-03-03 Luxembourg Institute Of Health Compositions and Methods for Evaluating Heart Failure
CN106148519A (zh) * 2016-07-05 2016-11-23 无锡市第二人民医院 一种microRNA‑499的快速检测方法
CN106916315A (zh) * 2017-02-15 2017-07-04 南京医科大学 金属多孔有机骨架材料、其制备方法及其应用
CN110514631A (zh) * 2019-08-12 2019-11-29 南京医科大学 一种高灵敏、快速定量检测t4 pnk酶的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090306181A1 (en) * 2006-09-29 2009-12-10 Children's Medical Center Corporation Compositions and methods for evaluating and treating heart failure
US20100173288A1 (en) * 2007-11-02 2010-07-08 Chenyu Zhang Serum/plasma micronas and uses thereof
CN102725632A (zh) * 2009-08-28 2012-10-10 奥斯瑞根公司 肺病的miRNA生物标志物
US20160060697A1 (en) * 2012-11-27 2016-03-03 Luxembourg Institute Of Health Compositions and Methods for Evaluating Heart Failure
CN106148519A (zh) * 2016-07-05 2016-11-23 无锡市第二人民医院 一种microRNA‑499的快速检测方法
CN106916315A (zh) * 2017-02-15 2017-07-04 南京医科大学 金属多孔有机骨架材料、其制备方法及其应用
CN110514631A (zh) * 2019-08-12 2019-11-29 南京医科大学 一种高灵敏、快速定量检测t4 pnk酶的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAN ZHU 等: "Intracellular MicroRNA Imaging with MoS2-Supported Nonenzymatic Catassembly of DNA Hairpins", 《ACS APPL MATER INTERFACES》, vol. 11, no. 23, pages 20726 *

Similar Documents

Publication Publication Date Title
Zhao et al. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection
Wu et al. Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells
US20210247349A1 (en) METHOD FOR PREPARING RATIOMETRIC ELECTROCHEMICAL miR3123 APTASENSOR BASED ON METAL-ORGANIC FRAMEWORK COMPOSITE
Zhu et al. Nucleic acid detection using single-walled carbon nanohorns as a fluorescent sensing platform
Jiang et al. Chameleon silver nanoclusters for ratiometric sensing of miRNA
Wang et al. Integration of nanomaterials with nucleic acid amplification approaches for biosensing
CN109001167B (zh) 一种基于适配体和碳点的链置换信号放大荧光传感器检测三磷酸腺苷的方法及试剂盒
EP3739063A1 (en) Fluorescent nucleic acid nanostructure-graphene biosensor for nucleic acid detection
Borghei et al. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles
Song et al. Label-free chemiluminescent ATP aptasensor based on graphene oxide and an instantaneous derivatization of guanine bases
KR101394200B1 (ko) 실버나노클러스터 프로브 및 이를 이용한 표적 폴리뉴클레오티드 검출방법 그리고 실버나노클러스터 프로브의 설계방법
Hao et al. A universal photoelectrochemical biosensor for dual microRNA detection based on two CdTe nanocomposites
Zhai et al. A label-free genetic biosensor for diabetes based on AuNPs decorated ITO with electrochemiluminescent signaling
Li et al. Hexagonal boron nitride nanosheet as an effective nanoquencher for the fluorescence detection of microRNA
Yin et al. Dual-wavelength electrochemiluminescence biosensor based on a multifunctional Zr MOFs@ PEI@ AuAg nanocomposite with intramolecular self-enhancing effect for simultaneous detection of dual microRNAs
Fu et al. A LAMP-based ratiometric electrochemical sensing for ultrasensitive detection of Group B Streptococci with improved stability and accuracy
Wang et al. Target-triggered hybridization chain reaction for ultrasensitive dual-signal miRNA detection
Cheng et al. Metal-organic frameworks-assisted nonenzymatic cascade amplification multiplexed strategy for sensing acute myocardial infarction related microRNAs
CN112626209A (zh) 用于卵巢癌诊断的miRNA标志物、其应用及诊断试剂盒
CN110726707B (zh) 基于N-Ti3C2QDs与邻苯二胺氧化物的复合纳米探针及其检测方法
CN110687172A (zh) 一种电化学发光生物传感器、制备方法及其在碱基切除修复酶检测中的应用
Zhang et al. A facile aptamer-based sensing strategy for dopamine detection through the fluorescence energy transfer between dye and single-wall carbon nanohorns
Li et al. Polymerase chain reaction-based ultrasensitive detection of HBV DNA via G-quadruplex selective iridium (III) complex luminescent probe
Huang et al. Dual signal amplification for microRNA-21 detection based on duplex-specific nuclease and invertase
CN112961907B (zh) 一种同时检测两种rna的荧光生物传感器及其制备和使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination